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ABSTRACT
Finger motion tracking has a number of applications in

user-interfaces, sports analytics, medical rehabilitation and
sign language translation. This paper presents a system called
FinGTrAC that shows the feasibility of fine grained finger
gesture tracking using low intrusive wearable sensor platform
(smart-ring worn on the index finger and a smart-watch worn
on the wrist). Such sparse sensors are convenient to wear but
cannot track all fingers and hence provide under-constrained
information. However application specific context can fill the
gap in sparse sensing and improve the accuracy of gesture
classification. This paper shows the feasibility of exploit-
ing such context in an application of American Sign Lan-
guage (ASL) translation. Non-trivial challenges arise due to
noisy sensor data, variations in gesture performance across
users and the inability to capture data from all fingers. Fin-
GTrAC exploits a number of opportunities in data prepro-
cessing, filtering, pattern matching, context of an ASL sen-
tence to systematically fuse the available sensory information
into a Bayesian filtering framework. Culminating into the de-
sign of a Hidden Markov Model, a Viterbi decoding scheme
is designed to detect finger gestures and the corresponding
ASL sentences in real time. Extensive evaluation on 10 users
shows a detection accuracy of 94.2% for 100 most frequently
used ASL finger gestures over different sentences.

Index Terms— Internet of Things, Wearable, Gesture,
Bayesian Inference

1. INTRODUCTION
This paper presents a system called FinGTrAC (Finger
Gesture Tracking with Application Context) that explores
the limits and feasibility of fine-grained finger gesture track-
ing with a single ring worn on a finger and a smartwatch worn
on the wrist. The five fingers posses more than 30 degrees
of freedom which is in-feasible to track with a sensor on
only one finger. However, we note that application specific
opportunities provide sufficient context to fill in for the miss-
ing sensor data. For example, basketball players maintain a
specific wrist angle, careful flexing of finger joints and an
optimal positioning of index and middle fingers before shoot-
ing the ball [1]. Virtual reality applications have similar prior
probabilities of finger configurations. We argue that such
application specific context can fill the gap in sensing, and
track the main finger motion metrics of interest. We make our

case with an application in American Sign Language (ASL)
translation. A sign language is a way of communication that
uses body motion (arms, hands, fingers) and facial expres-
sions to communicate a sentence instead of auditory speech.
We show the feasibility of translating sentences composed of
100 most frequently [2] used ASL words. While the sensor
data is under-constrained, we fuse them with Bayesian infer-
encing techniques that exploit the context information in a
ASL sentence towards achieving a higher accuracy.

Prior works on finger motion tracking are limited to a few
gestures [3, 4] or use intrusive setup of sensor gloves (15-20
sensors) and Electromyography (EMG) electrodes [5, 6, 7] to
track 100 ASL gestures. A combination of algorithms from
simple regression models to artificial neural networks[8] have
been used in these works, however context information of
hand motion in between words has not been modeled thus
requiring tens of sensors. While cameras [9, 10, 11, 12] can
track full finger motion using deep learning approaches, they
benefit from availability of large datasets for training and val-
idation. In contrast, our work explores the limits and feasi-
bility of bayesian inferencing models when extensive training
data is unavailable or difficult to generate. A recent work [13]
performs ASL translation of 103 words with smartwatches
but the training and testing has been done with same sen-
tences. Thus, it would be impractical to train for all possi-
ble sentences in any language. In contrast to above, FinG-
TrAC offers application specific context to track finger motion
gestures using a low intrusive platform with minimal training
overhead. To the best of our knowledge FinGTrAC is the first
work that uses only two wearable sensors to track 100 ASL
gestures with minimal training overhead. Results demonstrate
that a single user training suffices to accommodate diverse
new users. New training is not necessary for new users.

Fig. 1: ASL detection with smart devices
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A FinGTrAC user needs to wear a smart ring on the index
finger (index finger is the most involved finger in ASL fin-
ger gestures), and a smartwatch on the wrist as shown in Fig.
1. The Inertial Measurement Unit (IMU) sensors (accelerom-
eters, gyroscopes, and magnetometers) on these devices are
used for finger tracking. This is a non-trivial problem with
a number of challenges. (1) All fingers, and both hands are
involved in finger gestures, whereas FinGTrAC uses a sensor
only on the index finger. Thus, the data is under-constrained.
(2) The sensor data is noisy and the difference between ASL
gestures can be subtle. (3) FinGTrAC needs to maintain high
accuracy and robustness despite variations in the way differ-
ent users may perform the same gesture.

FinGTrAC exploits a number of opportunities to deal with
under-constrained sensor data and reducing the search space
for finger gestures. (1) Fingers have a high degree of freedom
and the ring (on index finger) cannot capture all of them suf-
ficiently enough to identify a word. Therefore, we also track
hand motion in between words of a sentence. Particularly, the
motion of the watch (on wrist) in between words of a sen-
tence provides a lot of contextual information. This opens
up opportunities for higher accuracy gesture detection in the
context of an ASL sentence than in isolation. (2) Extraction of
high level motion features combined with techniques such as
Dynamic Time Warping (DTW) can narrow down the search
space for words while simultaneously increasing the robust-
ness across diverse users. (3) Analogous to decoding a packet
over a noisy channel in wireless networking, decoding words
in a sentence can be modeled as a Bayesian Filtering prob-
lem (HMM). Thus, we leverage Viterbi decoding to provide
optimal sentence decoding from noisy sensor data.

Fig. 2: Smart ring, watch

2. BACKGROUND:
APPLICATION DOMAIN

ASL uses gestures instead of
speech for communication.
Majority of ASL signs in-
volve motion of the dominant
hand including fingers. The
non-dominant hand includ-
ing facial expressions are
used occasionally to com-
plement the dominant hand
gestures. ASL grammar mainly consists of sentences in the
following format: Subject-Verb-Object [14]. Sometimes, the
word order can change when the context of the topic is es-
tablished first through topicalization [15]. This results in the
following format: Object, Subject-Verb. Facial expressions
are used to denote emphasis, questions etc. Pauses indicate
end of sentences and words [16]. The signs do not indicate
tense of a verb such as washed or washing. Therefore, the
following format is often used to resolve ambiguity [17]:
Time-Subject-Verb-Object. For example, WEEK-PAST I

WASH MY CAR is the equivalent to saying I washed my car
last week in English with the appropriate time and tense.

3. PLATFORM DESCRIPTION
Smart rings that can pair with phones wirelessly to stream
information and monitor activity are available on the market
[18]. However, most of these platforms are closed and do not
provide access to raw sensor data. Thus, our platform consists
of a button shaped sensor – VMU931[19] snugly fit on the
finger like a ring as shown in Fig. 2 and a smartwatch. The
ring (VMU931) and watch (SONY SmartWatch 3 SWR50),
both generate 9 axis IMU data during ASL finger gestures - 3
axes each for Accelerometer, Magnetometer, and Gyroscope.

4. CORE TECHNICAL MODULES
4.1. Data Segmentation and Preprocessing

ASL sentences include brief pauses between words [16]. Let
us denote the sensor data during signing of a word as ”Word
Phase” and the data when the hand is moving from one word
to another word as ”Transition Phase”. Sentences can be de-
composed into above two phases by detecting change points
in the observed sensor data. We first determine a finger print
of the change points for sample sentences. For a new sen-
tence, we find occurrences of this pattern using a DTW[20]
based pattern matching to decompose a sentence into words.
We also perform other pre-processing step such as low pass
filtering (cut off freq 10Hz) to eliminate high frequency noisy
as well as eliminate unlikely matches for a particular word by
looking at features such as number of peaks in the data.

4.2. Word Gesture Recognition and Ranking by DTW

We use Dynamic Time Warping (DTW) [20] to bootstrap de-
tection of ASL words. For example, Fig. 3(a) shows the z-
axis ring accelerometer data of two users gesturing the word
”people”. Although the overall shape is similar, parts of the

0 0.5 1 1.5 2 2.5 3

Time in Seconds

-10

-5

0

5

10

Z
-A

c
c
e

le
ra

ti
o

n User1

User2

0 1 2 3 4

Time in Seconds

-10

-5

0

5

10

Z
-A

c
c
e

le
ra

ti
o

n User1

User2

Fig. 3: (a) Accelerometer data for ”people” for two users (b)
Data from user-2 is compressed and stretched to match with
user-1 by DTW

motion traces happen at a faster rate or earlier for user-2 while
other parts happen slower. DTW minimally compresses and
stretches the two sequences relative to each other such that
they provide the best overlap. Fig. 3(b) shows the two se-
quences after DTW optimization. The residual differences
between the two series determines their similarity score.
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Training: We first build a training database where la-
belled sensor data (9-axis IMU data) from the ring and watch
is created for each ASL word. One user wears the prototype
and signs all 100 ASL words in our dictionary. A one time
training with a single user is sufficient for FinGTrAC, and no
separate training is needed for new users.

Word Gesture Detection: An unknown ASL gesture
from a new user is matched using DTW with training data
of each word in our ASL dictionary. The matching is done
across all 9 dimensions of IMU data as well as the orientation
estimates based on A3[21]. The word with the best match is
most likely to be the unknown word. The ring data turned
out to be more prominent in the word detection phase and the
overall matching accuracy with DTW is 70.1%. This is be-
cause words-pairs such as ”mother, father”, ”see, three” have
similar wrist and index finger motions. Also, subtle variations
in the way users perform gestures can cause miss-matches.

To cope up with the poor accuracy of DTW matching,
FinGTrAC considers not only the best match for an unknown
word, but also the top 10 matches. Our data indicates that the
correct word is among top 10 ranks in 100% of the cases indi-
cating promise. The top 10 matches for each word from DTW
are further processed with a Hidden Markov Model (HMM) to
improve the accuracy of word detection. The HMM, particu-
larly, incorporates wrist location transitions between words in
the context of a sentence to decode the most likely sentence.
Details are elaborated next.

Fig. 4: HMM model relating sensor data to model parameters

4.3. Sentence Decoding with HMM and Viterbi

While results from word recognition with DTW might be
inaccurate, we incorporate transition characteristics between
words towards more accurate sentence detection. The HMM
architecture is depicted in Fig. 4, details elaborated below.

Forward Pass: FinGTrAC models words within a sen-
tence as the hidden states in HMM. The HMM first computes
the likelihood probability of each dictionary word occurring
as the tth word in the sentence during a step called Forward
Pass. Mathematically, we denote this probability as follows:
P (i|d1:t) = Li(t)
In other words, given all sensor data from beginning of the
sentence to the current word – d1:t, P (i|d1:t) denotes how
likely is ith dictionary word to occur as the tth word in the
sentence. These likelihood probabilities are computed from

the below recursive equation.

Li(t+ 1) = p(dt+1|i)
∑
j

Lj(t)p(i|j) (1)

There are two key probabilities that the HMM model relies
on while computing the above likelihood probabilities. First,
p(dt+1|i) denotes the emission probability, which indicates
how likely is the word i to generate the sensor observation
during the (t + 1)th ”word phase” – dt+1. Secondly, p(i|j)
is the transition probability which indicates how likely is a
transition from word j to i happen in a sentence given the
watch location difference between word transitions. The de-
tails are elaborated below.

Emission Probability: The emission probabilities p(dt+1|i)
are derived from DTW matching.

p(dt+1|i) ≈ DTW metric(dt+1, di,template) (2)

As described in Section 4.2, the 9-axis IMU data for an un-
known word is matched by DTW with labelled templates for
each dictionary word di,template. The normalized similarity
metric from DTW would be used to assign the emission prob-
abilities. If we rank all words by the similarity metric, the
correct word appears in the top 10 ranks in 100% cases. Thus
we set probabilities of words beyond top 10 ranks to be zero,
to decreasing the computational complexity of HMM.

Transition Probability: The transition probabilities are
determined from the change in wrist location between two
words as computed from the smart-watch.

We first determine wrist locations for each word in the
dictionary using Kinect sensor [22]. Kinect is only used for
training data, and not a part of FinGTrAC system. This is a
one time training overhead with a single user to determine the
wrist locations for each word. Thus, Kinect locations at the
start and end – lst,kinect(i) and led,kinect(i) for each word i
in the dictionary is known with high precision. Later, during
testing, a new user signs a sequence of unknown words form-
ing a sentence. We compute wrist locations for each of these
words by using techniques in MUSE [23] on the smartwatch
data. Then, we update the transition probability as follows:

p(i|j) ∝ e
−l2d
2σ2

√
2πσ2

,

ld = ||(lst(i)− led(j))| − |(lst,kinect(i)− led,kinect(j))||
(3)

led(j) denotes the end location of word j and lst(i) denotes
the start location of word i as determined by the smartwatch
data. σ2 denotes the standard-deviation of location errors,
which is approximately 10cm.

Prior Probability: Prior knowledge about the states in
HMM is useful in improving the accuracy of decoding. For
example, if DTW matching metric is similar for ”I” and
”have”, with all other information being equal, ”I” is the
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Fig. 5: FinGTrAC’s Performance (a) Word error rate across sentences (b) Histogram of ranks of correct words (c) Confusion
matrix for word classification (d) Classification accuracy improves with successive stages of optimization across for all users

more likely word signed by the user since ”I” is used more
frequently than ”have” in ASL. We use the frequencies of our
dictionary words [2] f(i) as prior probabilities to improve
the accuracy. We integrate prior probabilities into emission
probabilities and update equation 2 as below:

p(dt+1|i) ≈ f(i).DTW metric(dt+1, di,template) (4)

At the end of forward pass, we have likelihood probabili-
ties for each dictionary word at each position of the sentence.
We next do a backward pass using Viterbi [24] algorithm to
decode the most likely sentence.

5. EVALUATION
User Study: All reported results in the paper are generated
from a systematic user study campaign. Due to recruitment
challenges, we could only recruit users with normal hearing
ability. Thus, we conduct a study similar to other wearable
ASL translation works [13, 11], and only recruit users with
normal hearing ability and train them extensively to perform
ASL finger gestures through a 3 hour long online ASL tuto-
rial. Here, we conduct the study with 10 users that include
7 males and 3 females. The users are aged between 20 to
30 years. Overall, the users signed 50 ASL sentences (3-11
words each) that included 90 words from our 100 word ASL
dictionary. The sentences were composed from a dictionary
of 100 most frequently used ASL words[2]. 53 of the words
use both hands while 47 of the words use only the dominant
hand. Finally, the users perform gestures of the 50 sentences
ten times by wearing the ring and smartwatch platform de-
scribed in Section 3. We collect 9-dimensional IMU data both
from the ring as well as the smart-watch during these experi-
ments, which is processed further with our algorithms.

Overall Sentence Recognition Accuracy: Fig. 5(a)
shows the word error rate across sentences. The word er-
ror rate of a sentence is the ratio of number of incorrectly
decoded words and the total number of words. Most of the
sentences are decoded correctly across users with an average
word error rate of 5.86%. For cases where the words were not
decoded correctly, Fig. 5(b) shows the histogram of the rank
of the correct word. Evidently, the correct word is within top
5 most likely words as detected by our system. We believe
this is a promising result which can combine with natural
language processing (NLP) to recover the residual errors.

Gesture Accuracy Breakup by Words: For each word
gesture, the word classification accuracy is defined as the ra-

tio of number of times the gesture was detected correctly to
the total number of its occurrences. Fig. 5(c) shows a confu-
sion matrix depicting the word classification accuracy. Miss-
classifications can occur when two gestures are similar. How-
ever, most words are decoded correctly by FinGTrAC with an
average accuracy of 94.2% . The accuracy figures are similar
for both one hand and two-handed gestures.

Gain by Module: Fig. 5(d) shows the improvements in
accuracy delivered by various modules in FinGTrAC. DTW
detects words with an average accuracy of 70.1%. Further,
the HMM model incorporates wrist location transitions in
between words and improves the accuracy of word detec-
tion to 94.2% . Essentially, the application domain based
inferencing with HMM has increased the gain from 72.2% to
94.2% which we believe is significant.

6. CONCLUSION
FinGTrAC shows the feasibility of finger gesture classifica-
tion from low-weight wearable sensors such as a smart-ring
and smart-watch with minimal training. The importance of
application context in boosting accuracy has been demon-
strated by a case-study of sign language translation. FinG-
TrAC uses a probabilistic framework incorporating the noisy
and under-constrained motion sensor data, as well as con-
textual information between ASL words to decode the most
likely sentence. A systematic user study with 10 users shows
a word recognition accuracy of 94.2% over a dictionary of
100 most frequently used ASL words. Despite progress, this
is only the first step. We believe the results from this work
offer significant promise in extending this work. RNNs[25]
and LSTMs[26] which have revolutionized speech process-
ing are applicable for ASL translation too. Lack of extensive
training dataset might be a bottleneck, however we plan to
exploit transfer-learning approaches to train wearable sensor
data from videos of online ASL tutorials. The finger motion
captured in such videos can be used for training wearable mo-
tion sensors. Natural language processing and language mod-
eling techniques [25] can be integrated into RNNs thus boost-
ing the accuracy. Facial expressions in ASL can be detected
using a combination EMG (facial muscles), EEG (brian sig-
nals), and EOG (eye signals) with an embedded earphone sen-
sors [27]. Given plenty of such opportunities, we believe our
preliminary study offers enough promise to pursue research
in this direction towards extending ASL translation to large
dictionary sizes/dialects.
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