
Locally Differentially Private Frequency Estimation

with Consistency

Tianhao Wang1, Milan Lopuhaä-Zwakenberg2, Zitao Li1, Boris Skoric2, Ninghui Li1

1Purdue University, 2Eindhoven University of Technology

{tianhaowang, li2490, ninghui}@purdue.edu, {m.a.lopuhaa, b.skoric}@tue.nl

Abstract—Local Differential Privacy (LDP) protects user pri-
vacy from the data collector. LDP protocols have been increas-
ingly deployed in the industry. A basic building block is frequency
oracle (FO) protocols, which estimate frequencies of values. While
several FO protocols have been proposed, the design goal does
not lead to optimal results for answering many queries. In this
paper, we show that adding post-processing steps to FO protocols
by exploiting the knowledge that all individual frequencies should
be non-negative and they sum up to one can lead to significantly
better accuracy for a wide range of tasks, including frequencies
of individual values, frequencies of the most frequent values,
and frequencies of subsets of values. We consider 10 different
methods that exploit this knowledge differently. We establish
theoretical relationships between some of them and conducted
extensive experimental evaluations to understand which methods
should be used for different query tasks.

I. INTRODUCTION

Differential privacy (DP) [12] has been accepted as the

de facto standard for data privacy. Recently, techniques for

satisfying DP in the local setting, which we call LDP, have

been studied and deployed. In this setting, there are many

users and one aggregator. The aggregator does not see the

actual private data of each individual. Instead, each user sends

randomized information to the aggregator, who attempts to

infer the data distribution based on that. LDP techniques have

been deployed by companies like Apple [1], Google [14],

Microsoft [9], and Alibaba [32]. Examples of use cases include

collecting users’ default browser homepage and search engine,

in order to understand the unwanted or malicious hijacking of

user settings; or frequently typed emoji’s and words, to help

with keyboard typing recommendation.

The fundamental tools in LDP are mechanisms to estimate

frequencies of values. Existing research [14], [5], [31], [2],

[36] has developed frequency oracle (FO) protocols, where

the aggregator can estimate the frequency of any chosen value

in the specified domain (fraction of users reporting that value).

While these protocols were designed to provide unbiased

estimations of individual frequencies while minimizing the es-

timation variance [31], they can perform poorly for some tasks.

In [17], it is shown that when one wants to query the frequency

of all values in the domain, one can obtain significant accuracy

improvement by exploiting the belief that the distribution

likely follows power law. Also, some applications naturally

require querying the sums of frequencies for values in a subset.

For example, with the estimation of each emoji’s frequency,

one may be interested in understanding what categories of

emoji’s are more popular and need to issue subset frequency

queries. For another example, in [38], multiple attributes are

encoded together and reported using LDP, and recovering the

distribution for each attribute separately requires computing

the frequencies of sets of encoded values. For frequencies of

a subset of values, simply summing up the estimations of all

values is far from optimal, especially when the input domain

is large.

We note that the problem of answering queries using

information obtained from the frequency oracle protocols is

an estimation problem. Existing methods such as those in [31]

do not utilize any prior knowledge of the distribution to be

estimated. Due to the significant amount of noise needed to

satisfy LDP, the estimations for many values may be negative.

Also, some LDP protocols may result in the total sum of

frequencies to be different from one. In this paper, we show

that one can develop better estimation methods by exploiting

the universal fact that all frequencies are non-negative and they

sum up to 1.

Interestingly, when taking advantage of such prior knowl-

edge, one introduces biases in the estimations. For example,

when we impose the non-negativity constraint, we are in-

troducing positive biases in the estimation as a side effect.

Essentially, when we exploit prior beliefs, the estimations

will be biased towards the prior beliefs. These biases can

cause some queries to be much more inaccurate. For example,

changing all negative estimations to zero improves accu-

racy for frequency estimations of individual values. However,

the introduced positive biases accumulate for range queries.

Different methods to utilize the prior knowledge introduces

different forms of biases, and thus have different impacts for

different kinds of queries.

In this paper, we consider 10 different methods, which

utilizes prior knowledge differently. Some methods enforce

only non-negativity; some other methods enforce only that

all estimations sum to 1; and other methods enforce both.

These methods can also be combined with the “Power” method

in [17] that exploits power law assumption.

We evaluate these methods on three tasks, frequencies of

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24157
www.ndss-symposium.org

individual values, frequencies of the most frequent values,

and frequencies of subsets of values. We find that there is no

single method that out-performs other methods for all tasks. A

method that exploits only non-negativity performs the best for

individual values; a method that exploits only the summing-

to-one constraint performs the best for frequent values; and a

method that enforces both can be applied in conjunction with

Power to perform the best for subsets of values.

To summarize, the main contributions of this paper are

threefold:

• We introduced the consistency properties as a way to

improve accuracy for FO protocols under LDP, and

summarized 10 different post-processing methods that

exploit the consistency properties differently.

• We established theoretical relationships between Con-

strained Least Squares and Maximum Likelihood Esti-

mation, and analyze which (if any) estimation biases are

introduced by these methods.

• We conducted extensive experiments on both synthetic

and real-world datasets, the results improved the under-

standing on the strengths and weaknesses of different

approaches.

Roadmap. In Section II, we give the problem definition,

followed by the background information on FO in Section III.

We present the post-processing methods in Section IV. Ex-

perimental results are presented in V. Finally we discuss

related work in Section VI and provide concluding remarks

in Section VII.

II. PROBLEM SETTING

We consider the setting where there are many users and

one aggregator. Each user possesses a value v from a finite

domain D, and the aggregator wants to learn the distribution

of values among all users, in a way that protects the privacy

of individual users. More specifically, the aggregator wants to

estimate, for each value v ∈ D, the fraction of users having v
(the number of users having v divided by the population size).

Such protocols are called frequency oracle (FO) protocols

under Local Differential Privacy (LDP), and they are the key

building blocks of other LDP tasks.

Privacy Requirement. An FO protocol is specified by a pair

of algorithms: Ψ is used by each user to perturb her input

value, and Φ is used by the aggregator. Each user sends Ψ(v)
to the aggregator. The formal privacy requirement is that the

algorithm Ψ(·) satisfies the following property:

Definition 1 (ε-Local Differential Privacy). An algorithm Ψ(·)
satisfies ε-local differential privacy (ε-LDP), where ε ≥ 0, if

and only if for any input v, v′ ∈ D, we have

∀y ∈Ψ(D) : Pr [Ψ(v) = y] ≤ eε Pr [Ψ(v′) = y] ,

where Ψ(D) is discrete and denotes the set of all possible

outputs of Ψ.

Since a user never reveals v to the aggregator and reports

only Ψ(v), the user’s privacy is still protected even if the

aggregator is malicious.

Utility Goals. The aggregator uses Φ, which takes the

vector of all reports from users as the input, and produces

f̃ = 〈f̃v〉v∈D, the estimated frequencies of the v ∈ D (i.e.,

the fraction of users who have input value v). As Ψ is a

randomized function, the resulting f̃ becomes inaccurate.

In existing work, the design goal for Ψ and Φ is that the

estimated frequency for each v is unbiased, and the variance

of the estimation is minimized. As we will show in this paper,

these may not result in the most accurate answers to different

queries.

In this paper, we consider three different query scenarios 1)

query the frequency of every value in the domain, 2) query

the aggregate frequencies of subsets of values, and 3) query

the frequencies of the most frequent values. For each value or

set of values, we compute its estimate and the ground truth,

and calculate their difference, measured by Mean of Squared

Error (MSE).

Consistency. We will show that the utility of existing mecha-

nisms can be improved by enforcing the following consistency

requirement.

Definition 2 (Consistency). The estimated frequencies are

consistent if and only if the following two conditions are

satisfied:

1) The estimated frequency of each value is non-negative.

2) The sum of the estimated frequencies is 1.

III. FREQUENCY ORACLE PROTOCOLS

We review the state-of-the-art frequency oracle protocols.

We utilize the generalized view from [31] to present the

protocols, so that our post-processing procedure can be applied

to all of them.

A. Generalized Random Response (GRR)

This FO protocol generalizes the randomized response tech-

nique [35]. Here each user with private value v ∈ D sends

the true value v with probability p, and with probability 1− p
sends a randomly chosen v′ ∈ D\{v}. Suppose the domain D
contains d = |D| values, the perturbation function is formally

defined as

∀y∈D Pr
[

ΨGRR(ε,d)(v)=y
]

=

{

p= eε

eε+d−1 , if y = v

q= 1
eε+d−1 , if y 6= v

(1)

This satisfies ε-LDP since p
q = eε.

From a population of n users, the aggregator receives a

length-n vector y = 〈y1, y2, · · · , yn〉, where yi ∈ D is the

reported value of the i-th user. The aggregator counts the

number of times each value v appears in y and produces

a length-d vector c of natural numbers. Observe that the

components of c sum up to n, i.e.,
∑

v∈D cv = n. The

2

aggregator then obtains the estimated frequency vector f̃ by

scaling each component of c as follows:

f̃v =
cv
n − q

p− q
=

cv
n − 1

eε+d−1
eε−1

eε+d−1

As shown in [31], the estimation variance of GRR grows

linearly in d; hence the accuracy deteriorates fast when the

domain size d increases. This motivated the development of

other FO protocols.

B. Optimized Local Hashing (OLH)

This FO deals with a large domain size d by first using a

random hash function to map an input value into a smaller

domain of size g, and then applying randomized response to

the hash value in the smaller domain. In OLH, the reporting

protocol is

ΨOLH(ε)(v) := 〈H, ΨGRR(ε,g)(H(v))〉,

where H is randomly chosen from a family of hash functions

that hash each value in D to {1 . . . g}, and ΨGRR(ε,g) is given

in (1), while operating on the domain {1 . . . g}. The hash

family should have the property that the distribution of each

v’s hashed result is uniform over {1 . . . g} and independent

from the distributions of other input values in D. Since H
is chosen independently of the user’s input v, H by itself

carries no meaningful information. Such a report 〈H, r〉 can

be represented by the set Y = {y ∈ D | H(y) = r}. The use

of a hash function can be viewed as a compression technique,

which results in constant size encoding of a set. For a user with

value v, the probability that v is in the set Y represented by the

randomized report 〈H, r〉 is p = eε−1
eε+g−1 and the probability

that a user with value 6= v is in Y is q = 1
g .

For each value x ∈ D, the aggregator first computes the

vector c of how many times each value is in the reported set.

More precisely, let Yi denote the set defined by the user i,
then cv = |{i | H(v) ∈ Yi}|. The aggregator then scales it:

f̃v =
cv
n − 1/g

p− 1/g
(2)

In OLH, both the hashing step and the randomization step

result in information loss. The choice of the parameter g
is a tradeoff between losing information during the hashing

step and losing information during the randomization step.

It is found that the estimation variance when viewed as a

continuous function of g is minimized when g = eε + 1 (or

the closest integer to eε + 1 in practice) [31].

C. Other FO Protocols

Several other FO protocols have been proposed. While they

take different forms when originally proposed, in essence, they

all have the user report some encoding of a subset Y ⊆ D, so

that the user’s true value has a probability p to be included in

Y and any other value has a probability q < p to be included

in Y . The estimation method used in GRR and OLH (namely,

f̃v = cv/n−q
p−q) equally applies.

Optimized Unary Encoding [31] encodes a value in a size-d
domain using a length-d binary vector, and then perturbs each

bit independently. The resulting bit vector encodes a set of

values. It is found in [31] that when d is large, one should flip

the 1 bit with probability 1/2, and flip a 0 bit with probability

1/eε. This results in the same values of p, q as OLH, and has

the same estimation variance, but has higher communication

cost (linear in domain size d).

Subset Selection [36], [30] method reports a randomly

selected subset of a fixed size k. The sensitive value v is

included in the set with probability p = 1/2. For any other

value, it is included with probability q = p· k−1
d−1+(1−p)· k

d−1 .

To minimize estimation variance, k should be an integer equal

or close to d/(eε+1). Ignoring the integer constraint, we have

q = 1
2 · 2k−1

d−1 = 1
2 · 2 d

eε+1−1

d−1 = 1
eε+1 · d−(eε+1)/2

d−1 < 1
eε+1 . Its

variance is smaller than that of OLH. However, as d increases,

the term
d−(eε+1)/2

d−1 gets closer and closer to 1. For a larger

domain, this offers essentially the same accuracy as OLH, with

higher communication cost (linear in domain size d).

Hadamard Response [4], [2] is similar to Subset Selection

with k = d/2, where the Hadamard transform is used to

compress the subset. The benefit of adopting this protocol is

to reduce the communication bandwidth (each user’s report is

of constant size). While it is similar to OLH with g = 2, its

aggregation part Φ faster, because evaluating a Hadamard entry

is practically faster than evaluating hash functions. However,

this FO is sub-optimal when g = 2 is sub-optimal.

D. Accuracy of Frequency Oracles

In [31], it is proved that f̃v = cv/n−q
p−q produces unbiased

estimates. That is, ∀v ∈ D, E

[

f̃v

]

= fv . Moreover, f̃v has

variance

σ2
v =

q(1− q) + fv(p− q)(1− p− q)

n(p− q)2
(3)

As cv follows Binomial distribution, by the central limit

theorem, the estimate f̃v can be viewed as the true value fv
plus a Normally distributed noise:

f̃v ≈ fv + N (0, σv). (4)

When d is large and ε is not too large, fv(p−q)(1−p−q) is

dominated by q(1−q). Thus, one can approximate Equation (3)

and (4) by ignoring the fv . Specifically,

σ2 ≈ q(1− q)

n(p− q)2
, (5)

f̃v ≈ fv + N (0, σ). (6)

As the probability each user’s report support each value is

independent, we focus on post-processing f̃ instead of Y.

3

IV. TOWARDS CONSISTENT FREQUENCY ORACLES

While existing state-of-the-art frequency oracles are de-

signed to provide unbiased estimations while minimizing the

variance, it is possible to further reduce the variance by

performing post-processing steps that use prior knowledge to

adjust the estimations. For example, exploiting the property

that all frequency counts are non-negative can reduce the

variance; however, simply turning all negative estimations to

0 introduces a systematic positive bias in all estimations.

By also ensuring the property that the sum of all estima-

tions must add up to 1, one ensures that the sum of the

biases for all estimations is 0. However, even though the

biases cancel out when summing over the whole domain,

they still exist. There are different post-processing methods

that were explicitly proposed or implicitly used. They will

result in different combinations of variance reduction and bias

distribution. Selecting a post-processing method is similar to

considering the bias-variance tradeoff in selecting a machine

learning algorithm.

We study the property of several post-processing methods,

aiming to understand how they compare under different set-

tings, and how they relate to each other. Our goal is to identify

efficient post-processing methods that can give accurate esti-

mations for a wide variety of queries. We first present the

baseline method that does not do any post-processing.

• Base: We use the standard FO as presented in Section III

to obtain estimations of each value.

Base has no bias, and its variance can be analytically

computed (e.g., using [31]).

A. Baseline Methods

When the domain is large, there will be many values in

the domain that have a zero or very low true frequency; the

estimation of them may be negative. To overcome negativity,

we describe three methods: Base-Pos, Post-Pos, and Base-Cut.

• Base-Pos: After applying the standard FO, we convert all

negative estimations to 0.

This satisfies non-negativity, but the sum of all estimations

is likely to be above 1. This reduces variance, as it turns

erroneous negative estimations to 0, closer to the true value.

As a result, for each individual value, Base-Pos results in an

estimation that is at least as accurate as the Base method. How-

ever, this introduces systematic positive bias, because some

negative noise are removed or reduced by the process, but the

positive noise are never removed. This positive bias will be

reflected when answering subset queries, for which Base-Pos

results in biased estimations. For larger-range queries, the bias

can be significant.

Lemma 1. Base-Pos will introduce positive bias to all values.

Proof. The outputs of standard FO are unbiased estimation,

which means for any v,

fv = E

[

f̃v

]

= E

[

f̃v · 1[f̃v ≥ 0]
]

+ E

[

f̃v · 1[f̃v < 0]
]

As Base-Pos changes all negative estimated frequencies to 0,

we have

E [f ′
v] = E

[

f̃v · 1[f̃v ≥ 0]
]

After enforcing non-negativity constraints, the bias will be

E [f ′
v]− fv > 0.

• Post-Pos: For each query result, if it is negative, we convert

it to 0.

This method does not post-process the estimated distribution.

Rather, it post-processes each query result individually. For

subset queries, as the results are typically positive, Post-Pos

is similar to Base. On the other hand, when the query is on a

single item, Post-Pos is equivalent to Base-Pos.

Post-Pos still introduces a positive bias, but the bias would

be smaller for subset queries. However, Post-Pos may give

inconsistent answers in the sense that the query result on A∪B,

where A and B are disjoint, may not equal the addition of the

query results for A and B separately.

• Base-Cut: After standard FO, convert everything below

some sensitivity threshold to 0.

The original design goal for frequency oracles is to recover

frequencies for frequent values, and oftentimes there is a sen-

sitivity threshold so that only estimations above the threshold

are considered. Specifically, for each value, we compare its

estimation with a threshold

T = F−1
(

1− α

d

)

σ, (7)

where d is the domain size, F−1 is the inverse of cummulative

distribution function of the standard normal distribution, and

σ is the standard deviation of the LDP mechanism (i.e., as in

Equation (5)). By Base-Cut, estimations below the threshold

are considered to be noise. When using such a threshold, for

any value v ∈ D whose original count is 0, the probability that

it will have an estimated frequency above T (or the probability

a zero-mean Gaussian variable with standard deviation δ is

above T) is at most α
d . Thus when we observe an estimated

frequency above T , the probability that the true frequency of

the value is 0 is (by union bound) at most d× α
d = α. In [14],

it is recommended to set α = 5%, following conventions in

the statistical community.

Empirically we observe that α = 5% performs poorly,

because such a threshold can be too high when the population

size is not very large and/or the ε is not large. A large

threshold results in all except for a few estimations to be

below the threshold and set to 0. We note that the choice

of α is trading off false positives with false negatives. Given

a large domain, there are likely between several and a few

dozen values that have quite high frequencies, with most of

the remaining values having low true counts. We want to keep

an estimation if it is a lot more likely to be from a frequent

value than from a very low frequency one. In this paper, we

choose to set α = 2, which ensures that the expected number

of false positives, i.e., values with very low true frequencies

but estimated frequencies above T , to be around 2. If there are

4

around 20 values that are truly frequent and have estimated

frequencies above T , then ratio of true positives to false

positives when using this threshold is 10:1.

This method ensures that all estimations are non-negative. It

does not ensure that the sum of estimations is 1. The resulting

estimations are either high (above the chosen threshold) or

zero. The estimation for each item with non-zero frequency

is subject to two bias effects. The negative bias effect is

caused by the situation when the estimations are cut to zero.

The positive effect is when large positive noise causes the

estimation to be above the threshold, the resulting estimation

is higher than true frequency.

B. Normalization Method

We now explore several methods that normalize the esti-

mated frequencies of the whole domain to ensure that the sum

of the estimates equals 1. When the estimations are normalized

to sum to 1, the sum of the biases over the whole domain has

to be 0.

Lemma 2. If a normalization method adjusts the unbiased

estimates so that they add up to 1, the sum of biases it

introduces over the whole domain is 0.

Proof. Denote f ′
v as the estimated frequency of value v after

post-processing. By linearity of expectations, we have

∑

v∈D

(E [f ′
v]− fv) = E

[

∑

v∈D

f ′
v

]

−
∑

v∈D

fv = E [1]− 1 = 0

One standard way to do such normalization is through

additive normalization:

• Norm: After standard FO, add δ to each estimation so that

the overall sum is 1.

The method is formally proposed for the centralized set-

ting [16] of DP and is used in the local setting, e.g., [28],

[22]. Note the method does not enforce non-negativity. For

GRR, Hadamard Response, and Subset Selection, this method

actually does nothing, since each user reports a single value,

and the estimations already sum to 1. For OLH, however, each

user reports a randomly selected subset whose size is a random

variable, and Norm would change the estimations. It can be

proved that Norm is unbiased:

Lemma 3. Norm provides unbiased estimation for each value.

Proof. By the definition of Norm, we have
∑

v∈D f ′
v =

∑

v∈D(f̃v + δ) = 1. As the frequency oracle outputs unbiased

estimation, i.e., E
[

f̃v

]

= fv , we have

E

[

∑

v∈D

f ′
v

]

= 1 = E

[

∑

v∈D

(f̃v + δ)

]

=
∑

v∈D

E

[

f̃v

]

+ d · E [δ] = 1 + d · E [δ]

=⇒ E [δ] = 0

Thus E [f ′
v] = E

[

f̃v + δ
]

= E

[

f̃v

]

+ 0 = fv.

Besides sum-to-one, if a method also ensures non-negativity,

we first state that it introduces positive bias to values whose

frequencies are close to 0.

Lemma 4. If a normalization method adjusts the unbiased

estimates so that they add up to 1 and are non-negative, then

it introduces positive biases to values that are sufficiently close

to 0.

Proof. As the estimates are non-negative and sum up to 1,

some of the estimates must be positive. For a value close to

0, there exists some possibility that its estimation is positive;

but the possibility its estimation is negative is 0. Thus the

expectation of its estimation is positive, leading to a positive

bias.

Lemma 4 shows the biases for any method that ensures

both constraints cannot be all zeros. Thus different methods

are essentially different ways of distributing the biases. Next

we present three such normalization methods.

• Norm-Mul: After standard FO, convert negative value to 0.

Then multiply each value by a multiplicative factor so that

the sum is 1.

More precisely, given estimation vector f̃ , we find γ such that
∑

v∈D

max(γ × f̃v, 0) = 1,

and assign f ′
v = max(γ×f̃v, 0) as the estimations. This results

in a consistent FO. Kairouz et al. [19] evaluated this method

and it performs well when the underlying dataset distribution

is smooth. This method results in positive biases for low-

frequency items, but negative biases for high-frequency items.

Moreover, the higher an item’s true frequency, the larger the

magnitude of the negative bias. The intuition is that here γ
is typically in the range of [0, 1]; and multiplying by a factor

may result in the estimation of high frequency values to be

significantly lower than their true values. When the distribution

is skewed, which is more interesting in the LDP case, the

method performs poorly.

• Norm-Sub: After standard FO, convert negative values to

0, while maintaining overall sum of 1 by adding δ to each

remaining value.

More precisely, given estimation vector f̃ , we want to find δ
such that

∑

v∈D

max(f̃v + δ, 0) = 1

Then the estimation for each value v is f ′
v = max(f̃v + δ, 0).

This extends the method Norm and results in consistency.

Norm-Sub was used by Kairouz et al. [19] and Bassily [3]

to process results for some FO’s. Under Norm-Sub, low-

frequency values have positive biases, and high-frequency

items have negative biases. The distribution of biases, however,

is more even when compared to Norm-Mul.

• Norm-Cut: After standard FO, convert negative and small

positive values to 0 so that the total sums up to 1.

5

We note that under Norm-Sub, higher frequency items have

higher negative biases. One natural idea to address this is to

turn the low estimations to 0 to ensure consistency, without

changing the estimations of high-frequency values. This is

the idea of Norm-Cut. More precisely, given the estimation

vector f̃ , there are two cases. When
∑

v∈D max(f̃v, 0) ≤ 1,

we simply change each negative estimations to 0. When
∑

v∈D max(f̃v, 0) > 1, we want to find the smallest θ such

that
∑

v∈D|f̃v≥θ

f̃v ≤ 1

Then the estimation for each value v is 0 if f̃v < θ and f̃v
if f̃v ≥ θ. This is similar to Base-cut in that both methods

change all estimated values below some thresholds to 0. The

differences lie in how the threshold is chosen. This results in

non-negative estimations, and typically results in estimations

that sum up to 1, but might result in a sum < 1.

C. Constrained Least Squares

From a more principled point of view, we note that what

we are doing here is essentially solving a Constraint Inference

(CI) problem, for which CLS (Constrained Least Squares) is

a natural solution. This approach was proposed in [16] but

without the constraint that the estimates are non-negative (and

it leads to Norm). Here we revisit this approach with the

consistency constraint (i.e., both requirements in Definition 2).

• CLS: After standard FO, use least squares with constraints

(summing-to-one and non-negativity) to recover the values.

Specifically, given the estimates f̃ by FO, the method outputs

f
′ that is a solution of the following problem:

minimize: ||f ′ − f̃ ||2
subject to: ∀vf ′

v ≥ 0
∑

v

f ′
v = 1

We can use the KKT condition [21], [20] to solve the

problem. The process is presented in Appendix A. In the

solution, we partition the domain D into D0 and D1, where

D0 ∩D1 = ∅ and D0 ∪D1 = D. For v ∈ D0, assign f ′
v = 0.

For v ∈ D1,

f ′
v =f̃v −

1

|D1|

(

∑

v∈D1

f̃v − 1

)

Norm-Sub is the solution to the Constraint Least

Square (CLS) formulation to the problem, and δ =

− 1
|D1|

(

∑

v∈D1
f̃v − 1

)

is the δ we want to find in Norm-

Sub.

D. Maximum Likelihood Estimation

Another more principled way of looking into this problem is

to view it as recovering distributions given some LDP reports.

For this problem, one standard solution is Bayesian inference.

In particular, we want to find the f
′ such that

Pr

[

f
′ |̃f
]

=
Pr

[

f̃ |f ′
]

· Pr [f ′]

Pr

[

f̃

] (8)

is maximized. Note that we require f
′ satisfies ∀vf ′

v ≥ 0
and

∑

v f
′
v = 1. In (8), Pr [f ′] is the prior, and the prior

distribution influence the result. In our setting, as we assume

there is no such prior, Pr [f ′] is uniform. That is, Pr [f ′] is

a constant. The denominator Pr

[

f̃

]

is also a constant that

does not influence the result. As a result, we are seeking

for f
′ which is the maximal likelihood estimator (MLE), i.e.,

Pr

[

f̃ |f ′
]

is maximized.

For this method, Peter et al. [19] derived the exact MLE

solution for GRR and RAPPOR [14]. We compute Pr

[

f̃ |f ′
]

using the general form of Equation (4), which states that, given

the original distribution f
′, the vector f̃ is a set of independent

random variables, where each component f̃v follows Gaussian

distribution with mean f ′
v and variance σ′2

v . The likelihood

of f̃ given f
′ is thus

Pr

[

f̃ |f ′
]

=
∏

v

Pr

[

f̃v|f ′
v

]

≈
∏

v

1
√

2πσ′2
v

· e−
(f′

v−f̃v)2

2σ′2
v =

1
√

2π
∏

v σ
′2
v

· e−
∑

v

(f′

v−f̃v)2

2σ′2
v .

(9)

To differentiate from [19], we call it MLE-Apx.

• MLE-Apx: First use standard FO, then compute the MLE

with constraints (summing-to-one and non-negativity) to

recover the values.

In Appendix B, we use the KKT condition [21], [20] to obtain

an efficient solution. In particular, we partition the domain D
into D0 and D1, where D0 ∩D1 = ∅ and D0 ∪D1 = D. For

v ∈ D0, f ′
v = 0; for v ∈ D1,

f ′
v =

q(1− q)xv + f̃v(p− q)

p− q − (p− q)(1− p− q)xv
(10)

where

xv =

∑

x∈D1
f̃v(p− q)− (p− q)

(p− q)(1− p− q)− |D1|q(1− q)

We can rewrite Equation (10) as

f ′
v =f̃v · γ + δ,

where

γ =
p− q

p− q + (p− q)(1− p− q)xv

δ =
q(1− q)xv

p− q + (p− q)(1− p− q)xv

Hence MLE-Apx appears to represent some hybrid of Norm-

Sub and Norm-Mul. In evaluation, we observe that Norm-Sub

and MLE-Apx give very close results, as γ ∼ 1. Furthermore,

6

Method Description Non-neg Sum to 1 Complexity

Base-Pos Convert negative est. to 0 Yes No O(d)
Post-Pos Convert negative query result to 0 Yes No N/A

Base-Cut Convert est. below threshold T to 0 Yes No O(d)
Norm Add δ to est. No Yes O(d)

Norm-Mul Convert negative est. to 0, then multiply γ to positive est. Yes Yes O(d)
Norm-Cut Convert negative and small positive est. below θ to 0. Yes Almost O(d)
Norm-Sub Convert negative est. to 0 while adding δ to positive est. Yes Yes O(d)
MLE-Apx Convert negative est. to 0, then add δ to positive est. Yes Yes O(d)

Power Fit Power-Law dist., then minimize expected squared error Yes No O(
√
n · d)

PowerNS Apply Norm-Sub after Power Yes Yes O(
√
n · d)

TABLE I
SUMMARY OF METHODS.

when the fv component in variance is dominated by the

other component (as in Equation (5)), the CLS formulation

is equivalent to our MLE formulation.

E. Least Expected Square Error

Jia et al. [17] proposed a method in which one first

assumes that the data follows some type of distribution (but

the parameters are unknown), then uses the estimates to fit the

parameters of the distribution, and finally updates the estimates

that achieve expected least square.

• Power: Fit a distribution, and then minimize the expected

squared error.

Formally, for each value v, the estimate f̃v given by FO

is regarded as the addition of two parts: the true frequency

fv and noise following the normal distribution (as shown

in Equation (6)). The method then finds f ′
v that minimizes

E

[

(fv − f ′
v)

2|f̃v
]

. To solve this problem, the authors esti-

mate the true distribution fv from the estimates f̃ (where f̃ is

the vector of the f̃v’s).

In particular, it is assume in [17] that the distribution follows

Power-Law or Gaussian. The distributions can be determined

by one or two parameters, which can be fitted from the

estimation f̃ . Given Pr [x] as the probability fv = x from

the fitted distribution, and Pr [x ∼ N (0, σ)] as the pdf of x
drawn from the Normal distribution with 0 mean and standard

deviation σ (as in Equation (6)), one can then minimize the

objective. Specifically, for each value v ∈ D, output

f ′
v =

∫ 1

0

Pr

[

(f̃v − x) ∼ N (0, σ)
]

· Pr [x] · x
∫ 1

0
Pr

[

(f̃v − y) ∼ N (0, σ)
]

· Pr [y] dy
dx. (11)

We fit Pr [x] with the Power-Law distribution and call the

method Power. Using this method requires knowledge and/or

assumption of the distribution to be estimated. If there are

too much noise, or the underlying distribution is different,

forcing the observations to fit a distribution could lead to

poor accuracy. Moreover, this method does not ensure the

frequencies sum up to 1, as Equation (11) only considers the

frequency of each value v independently. To make the result

consistent, we use Norm-Sub to post-process results of Power,

since Power is close to CLS, and Norm-Sub is the solution to

CLS. We call it PowerNS.

• PowerNS: First use standard FO, then use Power to recover

the values, finally use Norm-Sub to further process the

results.

F. Summary of Methods

In summary, Norm-Sub is the solution to the Constraint

Least Square (CLS) formulation to the problem. Furthermore,

when the fv component in variance is dominated by the

other component (as in Equation (5)), the CLS formulation

is equivalent to our MLE formulation. In that case, Norm-Sub

is equivalent to MLE-Apx.

Table I gives a summary of the methods. First of all, all

of the methods preserve the frequency order of the value,

i.e., f ′
v1

≤ f ′
v2

iff f̃v1
≤ f̃v2

. The methods can be classifies

into three classes: First, enforcing non-negativity only. Base-

Pos, Post-Pos, Base-Cut, and Power fall in this category.

Second, enforcing summing-to-one only. Only Norm is in this

class. Third, enforcing the two requirement simultaneously.

Norm-Mul, Norm-Cut, Norm-Sub, and PowerNS satisfy both

requirements.

V. EVALUATION

As we are optimizing multiple utility metrics together, it

is hard to theoretically compare different methods. In this

section, we run experiments to empirically evaluate these

methods.

At the high level, our evaluations show that different meth-

ods perform differently in different settings, and to achieve

the best utility, it may or may not be necessary to exploit all

the consistency constraints. As a result, we conclude that for

full-domain query, Base-Cut performs the best; for set-value

query, PowerNS performs the best; and for high-frequency-

value query, Norm performs the best.

A. Experimental Setup

Datasets. We run experiments on two datasets (one synthetic

and one real).

• Synthetic Zipf’s distribution with 1024 values and 1

million reports. We use s = 1.5 in this distribution.

• Emoji: The daily emoji usage data. We use the average

emoji usage of an emoji keyboard 1, which gives the total

count of n = 884427 with d = 1573 different emojis.

Setup. The FO protocols and post-processing algorithms

are implemented in Python 3.6.6 using Numpy 1.15; and

all the experiments are conducted on a PC with Intel Core

i7-4790 3.60GHz and 16GB memory. Although the post-

processing methods can be applied to any FO protocol, we

1http://www.emojistats.org/, accessed 12/15/2019 10pm ET

7

APPENDIX A

SOLUTION FOR CLS

Using the KKT condition [21], [20], we augment the

optimization target with the following equations:

minimize
∑

v

(f ′
v − f̃v)

2 + a+ b

where
∑

v

f ′
v = 1, ∀v : 0 ≤ f ′

v ≤ 1,

a = µ ·
∑

v

f ′
v, b =

∑

v

λv · f ′
v, ∀v : λv · f ′

v = 0.

Since b = 0, and a = µ is a constant, the condition that

minimizing the target is unchanged. Given that the target

is convex, we can find the minimum by taking the partial

derivative with respect to each variable:

∂
[

∑

v(f
′
v − f̃v)

2 + a+ b
]

∂f ′
v

= 0

=⇒ 2(f ′
v − f̃v) + µ+ λv = 0

=⇒ f ′
v = f̃v −

1

2
(µ+ λv)

Now suppose there is a subset of domain D0 ⊆ D s.t.,

∀v ∈ D0, f
′
v = 0 and ∀v ∈ D1 = D \D0, f

′
v > 0 ∧ λv = 0.

By summing up f ′
v for all v ∈ D1, we have

1 =
∑

v∈D1

f̃v −
|D1|µ
2

Thus for all v ∈ D1, we can use the formula

f ′
v =f̃v −

1

|D1|

(

∑

v∈D1

f̃v − 1

)

to derive the estimate f ′
v for value v ∈ D1, and f ′

v = 0 for

v ∈ D0. One can also find D0 using a similar approach when

dealing with MLE. And it can also be verified
∑

v f
′
v = 1.

APPENDIX B

SOLUTION FOR MLE-APX

From Equation (9), we first simplify the exponent plugging

in the value of σ′
v as in Equation (3):

∑

v

(f ′
v − f̃v)

2

2σ′2
v

=
n

2

∑

v

(f ′
v − f̃v)

2(p− q)2

q(1− q) + f ′
v(p− q)(1− p− q)

The factor n
2 in the exponent ensures that for large n the

exponent will vary the most with f
′, which dominates the

coefficient 1√
2π

∏
v σ′2

v

. Thus approximately we find f
′ that

achieves the following optimization goal:

minimize:
∑

v

(f ′
v − f̃v)

2(p− q)2

q(1− q) + f ′
v(p− q)(1− p− q)

subject to:
∑

v

f ′
v = 1,

∀v, 0 ≤ f ′
v ≤ 1.

Using the KKT condition [21], [20], we augment the

optimization target with the following equations:

minimize
∑

v

(f ′
v − f̃v)

2(p− q)2

q(1− q) + f ′
v(p− q)(1− p− q)

+ a+ b

where
∑

v

f ′
v = 1, ∀v : 0 ≤ f ′

v ≤ 1,

a = µ ·
∑

v

f ′
v, b =

∑

v

λv · f ′
v, ∀v : λv · f ′

v = 0.

Since b = 0, and a = µ is a constant, the condition for

minimizing the target is unchanged. Given that the target

is convex, we can find the minimum by taking the partial

derivative with respect to each variable:

∂
[

∑

v
(f ′

v−f̃v)
2(p−q)2

q(1−q)+f ′

v(p−q)(1−p−q) + a+ b
]

∂f ′
v

=
−(f ′

v − f̃v)
2(p− q)2 · (p− q)(1− p− q)

(q(1− q) + f ′
v(p− q)(1− p− q))2

+
2(f ′

v − f̃v)(p− q)2

q(1− q) + f ′
v(p− q)(1− p− q)

+ µ+ λv = 0

Define a temporary notation

xv =
(f ′

v − f̃v)(p− q)

q(1− q) + f ′
v(p− q)(1− p− q)

so that f ′
v =

q(1− q)xv + f̃v(p− q)

p− q − (p− q)(1− p− q)xv
(12)

With xv , we can simplify the previous equation:

(p− q)(1− p− q)x2
v − 2(p− q)xv − µ− λv = 0 (13)

Now suppose there is a subset of domain D0 ⊆ D s.t.,

∀v ∈ D0, f
′
v = 0 and ∀v ∈ D1 = D \D0, f

′
v > 0 and λv = 0.

Thus for those v ∈ D1, solution of xv in Equation (13) does

not depend on v. We solve xv by summing up f ′
v for all

v ∈ D1:

∑

v∈D1

f ′
v =1 =

∑

v∈D1

q(1− q)xv + f̃v(p− q)

p− q − (p− q)(1− p− q)xv

=
|D1|q(1− q)xv +

∑

v∈D1
f̃v(p− q)

p− q + (p− q)(1− p− q)xv

=⇒ xv =

∑

x∈D1
f̃v(p− q)− (p− q)

(p− q)(1− p− q)− |D1|q(1− q)

Given xv , we can compute f ′
v from Equation (12) for each

value v ∈ D1 efficiently; and f ′
v = 0 for v ∈ D0. It can be

verified
∑

v f
′
v = 1.

Finally, to find D0, one initiates D0 = ∅ and D1 = D, and

iteratively tests whether all values in D1 are positive. In each

iteration, for any negative ax, x is moved from D1 to D0.

The process terminates when no negative ax is found for all

x ∈ D1.

16

	Introduction
	Problem Setting
	Frequency Oracle Protocols
	Generalized Random Response (GRR)
	Optimized Local Hashing (OLH)
	Other FO Protocols
	Accuracy of Frequency Oracles

	Towards Consistent Frequency Oracles
	Baseline Methods
	Normalization Method
	Constrained Least Squares
	Maximum Likelihood Estimation
	Least Expected Square Error
	Summary of Methods

	Evaluation
	Experimental Setup
	Bias-variance Evaluation
	Full-domain Evaluation
	Set-value Evaluation
	Frequent-value Evaluation
	Discussion

	Related Work
	Conclusion
	References
	Appendix A: Solution for CLS
	Appendix B: Solution for MLE-Apx

