
Answering Multi-Dimensional Analytical Queries
under Local Differential Privacy

Tianhao Wang∗
Purdue University

tianhaowang@purdue.edu

Bolin Ding
Alibaba Group

bolin.ding@alibaba-inc.com

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-inc.com

Cheng Hong
Alibaba Group

vince.hc@alibaba-inc.com

Zhicong Huang
Alibaba Group

zhicong.hzc@alibaba-inc.com

Ninghui Li
Purdue University

ninghui@cs.purdue.edu

Somesh Jha
University of Wisconsin

jha@cs.wisc.edu

ABSTRACT

Multi-dimensional analytical (MDA) queries are often issued
against a fact table with predicates on (categorical or ordinal)
dimensions and aggregations on one or more measures. In
this paper, we study the problem of answering MDA queries
under local differential privacy (LDP). In the absence of a
trusted agent, sensitive dimensions are encoded in a privacy-
preserving (LDP) way locally before being sent to the data
collector. The data collector estimates the answers to MDA
queries, based on the encoded dimensions. We propose sev-
eral LDP encoders and estimation algorithms, to handle a
large class of MDA queries with different types of predicates
and aggregation functions. Our techniques are able to an-
swer these queries with tight error bounds and scale well
in high-dimensional settings (i.e., error is polylogarithmic
in dimension sizes). We conduct experiments on real and
synthetic data to verify our theoretical results, and compare
our solution with marginal-estimation based solutions.

ACM Reference Format:

Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong
Huang, Ninghui Li, and Somesh Jha. 2019. Answering Multi-
Dimensional Analytical Queries under Local Differential Privacy.
In 2019 International Conference on Management of Data (SIGMOD

’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3299869.3319891

∗Work done at Alibaba Group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319891

1 INTRODUCTION

Large volumes of users’ data about their profiles and activi-
ties are collected by enterprises to make informed business
decisions. In order to meet users’ expectation of their pri-
vacy, applications and services must provide rigorous pri-
vacy guarantees on how their data is collected and analyzed.
Differential privacy (DP) [14] has emerged as the de facto
standard for privacy guarantees, and is being used by, e.g.,
Apple [32], Google [16], Uber [23], and Microsoft [9].

A well-studied DP model is in the centralized setting,
where a trusted data collector obtains exact data from users,
and injects noise in the analytical process to guarantee DP. In
the absence of such a trusted party, users prefer not to have
their private data leave their devices in an unprotected form,
and thus, the centralized setting of DP is no longer applicable.
In such scenarios, one can adopt the local differential privacy
model (LDP) [12]. Each user’s private data is encoded by a
randomized algorithm before being sent to the data collector.
LDP guarantees that the likelihood of any specific output of
the algorithm varies little with input, i.e., the private data. In
this way, users do not need to trust the data collector.

Data model and application scenarios. LDP fits the class
of analytical applications considered in this paper well. Sup-
pose a number of individuals use a service in the cloud, and
each user generates some multi-dimensional data during the
service. Some dimensions, called measure attributes, are nat-
urally known to the service provider, e.g., active time and
purchase amount for the billing purpose; some other dimen-
sions are sensitive, e.g., income and location, and users prefer
to have them collected only in a privacy-preserving way;
the remaining ones are non-sensitive. On the other side, the
provider wants to analyze how the service performs by is-
suing analytical queries that aggregate measure attributes
under constraints on sensitive dimensions. While all the
dimensions will never be released to the public and the ana-
lytics are conducted internally by the provider, the provider
needs to guarantee that the sensitive dimensions are handled
properly by providing an LDP data collection algorithm that
runs on each user’s device. A motivating example follows.

Age Salary State OS ActiveTime Purchase

t1 30 50K NY Win 1.6h $120
t2 60 80K WA iOS 1.2h $100
t3 50 90K NY Win 1.0h $100
t4 40 70K NY iOS 1.8h $100

Table 1: A relational tableT with sensitive dimensions

Server SideClient Side

LDP encodedSensitive data Fact table

Estimated answer P̄(q)

processor P̄

User t2

User t3

User tn

... ...

User t1
A

A

A

A

Estimation

Online MDA query q

Figure 1: Answering MDA queries under LDP

Example 1.1. The multi-dimensional data model of users in
an online shopping app is shown in Table 1. Users are anony-
mous. Measure attributes ActiveTime (how much time a user
spent in the app) and Purchase (amount of money spent in
the app), are inherently known to the service provider. Age,
Salary, and State are sensitive dimensions, and attribute OS is
non-sensitive. The service provider wants to analyze how much
money is spent by a specific group of users using a query:

SELECT SUM(Purchase) FROM T (1)

WHERE Age ∈ [30, 40] AND Salary ∈ [50K, 150K].

In this paper, we study how to (approximately) answer a
class of multi-dimensional analytical (MDA) queries, while
each user’s sensitive data is collected under LDP. An MDA
query is a SQL query with aggregation (e.g., COUNT, SUM,
orAVG) onmeasure attributes (accessible by service provider),
and a predicate with equality and range constraints on sen-
sitive dimensions (to be collected under LDP).

Overview of our solution (Figure 1). On the client side,
each user holds some multi-dimensional data, and runs an
LDP encoding algorithmA on the sensitive dimensions. The
output is sent to the server. A fact table on the server side is
a combination of LDP encoded dimensions collected from
users and dimensions/measures that are non-sensitive or
known to the server. An arbitrary number of MDA queries
can be issued as the privacy is guaranteed for each user be-
fore her/his data is collected. Since sensitive dimensions are
encoded with random noise injected, we need an algorithm
P̄ to estimate the query answers (with bounded errors).

Challenges. Answering MDA queries under LDP is closely
related to the recent line of works on releasing marginals
under LDP [8, 30, 41]. Amarginal table records the (empirical)
probability distribution between a set of dimensions. Each
row in amarginal is equivalent to aCOUNT query. In Table 1,

e.g., a row in the 2-way marginal (Age, Salary) is:

SELECT Age, Salary,COUNT(∗) FROM T (2)

WHERE Age = 30 AND Salary = 50K.

LDP marginals can be adapted to answer an MDA query
by summing up marginal rows such as (2) covered by the
query. For example, to answer a COUNT query with Age ∈

[30, 40] AND Salary ∈ [50K, 150K], assuming Salary takes
values in thousands, we need to add up 11 × 101 rows in
the 2-way marginal on (Age, Salary), with the error variance
potentially amplified 11 × 101 times.More generally, suppose
there are d ordinal dimensions, each withm distinct values,
the worst-case squared error is proportional to O(md), as we
may need to sum upmd such rows under range constraints.
The worst-case error could be exorbitant whenm is large.

LDP frequency oracles [4, 5, 9, 13, 35] are in another related
line. Here, each user has a private value and encodes it with
noise in an LDP way. Each LDP encoded value is sent to the
server, and on the server, we want to estimate the frequency
of a given value (i.e., how many users hold this value). Some
very simple MDA queries, e.g., in Table 1,

SELECT COUNT(∗) FROM T WHERE State = NY

can be translated into frequency queries, e.g., the frequency
of łNYž. However, it was unknown how to handle other
aggregations, e.g., SUM, with frequency oracles and how to
handle complicated predicates, e.g., range constraints, on
multiple dimensions without blowing up estimation errors.

Contributions. We aim to process MDA queries with both
privacy and accuracy guarantees. To this end, we first revisit
LDP frequency oracles, which are building blocks in our so-
lution. We propose a weighted frequency oracle: each user
is associated with a public weight and holds a private value;
an LDP version of the value is sent to the server. We want to
estimate, for a given value, the total weight of users holding
this value. It will be used to handle more general aggrega-
tions, e.g., SUM, AVG, and STDEV, of measures attributes ś
each measure is regarded as the weight of each user.

Our solution (A, P̄) relies on a hierarchical decomposition
of the ordinal dimensions into sub-intervals, and can reduce
the worst-case squared error from O(md) in the marginal-
based solution to logO(d)m (keeping other terms that are
dependent on data size and privacy budget the same).
The decomposition schema on each single dimension is

not new, which has been used to answer range COUNT

queries in the centralized DP setting firstly by [22]. Our
new contribution is a novel way to incorporate weighted
frequency oracles in the hierarchy, so that the error in the
estimated answer is polylogarithmic in the cardinality of
dimensions (instead of polynomial if we adopt LDPmarginals
in a naive way). A more important contribution is that we

extend the decomposition schema for d dimensions so that
the error is still polylogarithmic, i.e., logO(d)m.
The main idea behind the hierarchical decomposition is

that the privacy budget is partitioned across a polylogarith-
mic number of levels in the hierarchy, and the query is par-
titioned into a polylogarithmic number of sub-queries on
sub-intervals in the hierarchy. An alternative is that each
user encodes and sends only one randomly selected level in
the hierarchy, so that less LDP noise is added to that level but
sampling noise is introduced in the estimation. By carefully
exploring the properties of our weighted frequency oracles,
a bit surprisingly, this alternative can boost the accuracy of
estimated answers to MDA queries by orders of magnitude,
which we will demonstrate theoretically and empirically.

Finally, we consider the case when the total number of
private dimensions is large, but the number of dimensions
in the query is small (which is often true in practice). By
exploring variants of our weighted frequency oracles, we
propose an LDP mechanism whose estimation error is only
exponential in the number of dimensions in the query, but
less heavily dependent on the total number of dimensions.

Organization. Section 2 presents the data model and the
privacy guarantee. Section 3 introduces our weighted LDP
frequency oracle. Section 4 gives our solution for one dimen-
sion, which will be generalized and optimized for multiple
dimensions in Section 5. Experimental results are reported in
Section 6. We present extensions to our solution in Section 7,
and discuss related work in Section 8.

2 PRELIMINARIES

We first introduce MDA queries and the privacy guarantee.

2.1 Multi DimensionalModel andAnalytics

Each user contributes a tuple t to a table with a set of at-
tributes, called dimensions ormeasures. A dimension, denoted
by D, appears in predicates, and a measure, denoted by M ,
is aggregated in analytical questions. We also use D orM to
denote the domain (the set of possible values) of an attribute,
and t[D] and t[M] are the attribute values in a tuple.

Multi-dimensional analytical (MDA) queries. Let T be
the relational table, called fact table. We focus on the follow-
ing class of multi-dimensional analytical queries:

QT (F(M),C) : SELECT F(M) FROM T WHERE C (3)

• Aggregation F(M) isCOUNT(∗), SUM(M), or AVG(M). We
focus on SUM(M) in the main text (COUNT is a special
case and AVG can be derived from the other two).

• Predicate C consists of point constraints łDi = vi ž for
categorical dimensions, and range constraints łDi ∈ [li , ri]ž

for ordinal dimensions. We will first focus on conjunctions
(AND-only) of one or more such constraints.

Wewill introduce how to generalize our solution for the other
aggregate functions and AND-OR predicates in Section 7.

2.2 Local Differential Privacy (LDP)

A server collects tuples from users into T . In the application
scenarios introduced in Section 1, some dimensions are con-
sidered sensitive by users, and thus need to be collected in
a privacy-preserving way; measures are public or known to
the server (e.g., how much time a user spends on a service is
known to the service provider for the billing purpose).

Trust model of LDP. Users do not trust the server and re-
quire formal privacy guarantees before they are willing to
send their dimension values. We adopt the local model of dif-
ferential privacy (LDP) [13], which is also called randomized
response model [39], γ -amplification [17], or FRAPP [2]. Un-
der LDP, sensitive dimensions in a tuple t from each user are
encoded by a randomized algorithmA , and the outputA(t),
called an LDP report, is sent to the server. Intuitively, LDP
guarantees that, no matter what A(t) is, it is approximately
equally as likely to have come from t as any other t ′ differing
from t in one or more sensitive dimensions. Hence, if A(t),
instead of t , is collected, t ’s information on sensitive dimen-
sions is protected (to some degree measured by the privacy
budget ϵ). More formally, suppose D1, . . . ,Dd are sensitive
dimensions, we provide the following LDP guarantee:

Definition 1 (Local Differential Privacy [13]). A ran-
domized algorithm A is ϵ-locally differentially private or ϵ-
LDP, if for any pair of different tuples t and t ′, with t[Di] ,

t ′[Di] for at least one i ∈ {1, . . . ,d}, and anyO ⊆ Range(A),

Pr [A(t) ∈ O] ≤ eϵ · Pr [A(t ′) ∈ O] .

In comparison to previous work on LDP, we identify a sep-
aration between sensitive (but users volunteer to contribute
under LDP) and non-sensitive (e.g., measures that server will
always know), and utilize the non-sensitive information.

Example 2.1. The multi-dimensional data model in Table 1
has six attributes. D1 and D2 are ordinal dimensions; D3 and
D4 are categorical dimensions. There are also two numeric
measures M1 and M2. The query in Example 1.1 is an MDA
query with two range constraints on D1 and D2.
D1-D3 are sensitive dimensions, and thus need to be collected

under LDP. LDP guarantees that we cannot distinguish between
two users with (30, 50K, NY) and (40, 70K, NY) based on their
LDP reports, and thus, their dimension values are protected.

Sequential composability. An important property of DP,
sequential composability [26], also holds for LDP (consider-
ing a dataset with one row in the centralized model), and
will be used repeatedly in the rest of this paper.

Proposition 2 (Directly from [26]). Suppose A i satis-
fies ϵi -LDP, the algorithm A which simultaneously releases

A(t) = ⟨A 1(t), . . . ,Ak (t)⟩ satisfies
∑k

i=1 ϵi -LDP.

2.3 Private Multi-Dimensional Analytics

We study the task of private multi-dimensional analytics in
this paper. An LDP mechanism for this task is a pair (A , P̄).

Client side (LDP encoder A). Each user t runs an ϵ-LDP
algorithm Aϵ on her/his sensitive dimensions, and sends
the output Aϵ (t), i.e., the LDP report, to the server. If ϵ is
clear from the context, we simply write Aϵ as A .

Server side (estimation processor P̄). There are n users
whose tuples form a fact table T = {t1, . . . , tn}. The server
receives A(T) = {A(t1), . . . , A(tn)}. An MDA query q =

QT (F(M),C), in the form of (3), can be approximately an-
swered on LDP reports A(T) and other public attributes of T
using an estimation algorithm P̄. Let P̄(q) be the estimate.

An arbitrary number of MDA queries can be issued on the
server, since LDP is preserved for each user t on the report
A(t) and P̄ can be regarded as łpost-processingž of reports.

Error metric. Let q also denote the exact answer to an MDA
query. Let Err(P̄(q)) be the expected (over randomness in A)
squared error E[(P̄(q) − q)2] in P̄(q). If P̄(q) is an unbiased
estimator of q, Err(P̄(q)) = Var

[
P̄(q)

]
. Our goal is to bound

Err(P̄(q)) for the supported MDA queries.

3 WEIGHTED FREQUENCY ORACLE

We introduce building blocks used in our LDP mechanisms
for MDA. We first introduce weighted frequency queries and
their relationship to MDA. We present an LDP mechanism
(weighted frequency oracle) for such queries. We introduce
how to estimate weighted frequencies if a random sample
of users send their LDP reports ś this twist will be used
(in Sections 4-5) to boost the accuracy of MDA. Finally, a
marginal-based solution for answering MDA is presented.

3.1 Weighed Frequency Queries and MDA

In a multi-dim data model, each user t has a private dimen-
sion t[D] ∈ D and a public measure t[M] ∈ R. A weighted
frequency query asks, for a set of users S , what is the total
measure of users with a given dimension value v , i.e.,

f
M
S (v ;D) =

∑
t ∈S∧t [D]=v

t[M] (4)

⇔ SELECT SUM(M) FROM S WHERE D = v . (5)

We write fM
S
(v ;D) as fM

S
(v) if D is clear from the context.

3.2 An LDP Frequency Oracle (FO)

As t[D] is sensitive, each user uses an ϵ-LDP algorithmAFO

to encode t[D] as AFO(t[D]) before sending it to the server.

For a user set S , the server obtains an estimator f̄M
S
(v) of

f
M
S
(v) from the LDP reports AFO(S) = {AFO(t[D])}t ∈S and

the public measure M . An LDP weighted frequency oracle
refers to a pair of encoder and estimator (AFO, f̄

M).

3.2.1 Existing Unweighted FrequencyOracles (AFO, f̄). When
t[M] = 1 for all users, fM

S
(v) is equal to the (unweighted) fre-

quency of v , fS (v), which is equivalent to a COUNT query:

fS (v) =
∑

t ∈S∧t [D]=v

1 = | {t ∈ S | t[D] = v} |. (6)

There have been previous works, e.g., [4, 5, 9, 13, 35], on
LDP unweighted frequency oracles with asymptotically opti-
mal error. We use OLH (optimal local hashing) from [35]. It
maps t[D] from D to a smaller domain using a hash function
H randomly picked from a universal family, and randomly
perturb H (t[D]) to a different value y in the domain with
certain probability. AFO(t[D]) = ⟨H ,y⟩ is the LDP report
from t . It is ϵ-LDP as long as the perturbation distribution is
łflatž enough. For the completeness, we describe details about
AFO and the estimator f̄ in Algorithm 3 in Appendix A. We
state its asymptotically optimal error bound in Lemma 3.

Lemma 3 (OLH [35]). There is an ϵ-LDP frequency oracle
(AFO, f̄) (Algorithm 3). For any dimension value v ∈ D, f̄S (v)
is an unbiased estimator of fS (v), and we can bound its error:

Err(f̄S (v)) = E

[(
f̄S (v) − fS (v)

)2]
=

4|S |eϵ

(eϵ − 1)2
+ fS (v).

3.2.2 Our Weighted Frequency Oracle (AFO, f̄
M). We now

show how to generalize an unweighted frequency oracle into
a weighted frequency oracle. We use OLH [35] in our work.
Those in [4] can be also applied and analyzed similarly.

The idea behind (AFO, f̄
M) is to partition users into groups

by their measures. Let Sx = {t ∈ S | t[M] = x} be the group
of users in S with measure equal to x . For a dimension value
v , we establish the relationship between f and f

M via Sx :

f
M
S (v) =

∑
distinct x

f
M
Sx
(v) =

∑
distinct x

x · fSx (v). (7)

We use an unweighted frequency oracle (AFO, f̄Sx) to en-
code t[D] = v in each Sx . We can then approximate fM

S
(v)

with the estimator f̄M by combining the frequency estimates:

f̄
M
S (v) =

∑
distinct x

x · f̄Sx (v), (8)

Example 3.1. Consider such a query against T in Table 1:

SELECT SUM(Purchase) FROM T WHERE State = NY

The answer is 120 + 100 + 100 + We have defined S120 =
{t1} and S100 = {t2, t3, t4}. The frequency of łNYž in S120,
fS120 (NY) = 1, and, in S100, fS100 (NY) = 2. Thus, the answer
can be also calculated 120 × 1 + 100 × 2 + . . ., and to estimate
the answer, we can estimate fS120 (NY) and fS100 (NY) instead.

Proposition 4 (Weighted Frequency Oracle). Mechanism
(AFO, f̄

M) is ϵ-LDP. For a set of users S and a value v ∈ D,

f̄
M
S
(v) is an unbiased estimator of fM

S
(v). LetM2

S =
∑

t ∈S t[M]
2

andM2
S (v) =

∑
t ∈S∧t [D]=v t[M]

2. The error is

Err(f̄MS (v)) = E

[(
f̄
M
S (v) − f

M
S (v)

)2]
=

4M2
Se

ϵ

(eϵ − 1)2
+M2

S (v)

≤
M2

S (e
ϵ
+ 1)2

(eϵ − 1)2
= O

(
|S |∆2

ϵ2

)
when ϵ is small,

where ∆ is the range ofM , i.e., ∆ = max(M) −min(M). More-
over, estimation errors for two different values are additive:

Var
[
f̄
M
S (u) + f̄

M
S (v)

]
= Var

[
f̄
M
S (u)

]
+ Var

[
f̄
M
S (v)

]
.

Note that the above result does not depend on how large
or how small each Sx is; in an extreme case, even if every
distinct value of measureM appears only once (|Sx | = 1 for
each x), we still have the same expected error.

3.3 Oracle Running on Random Samples

If we ask a random sample of users to report their private
values t[D] using AFO, we can still estimate the weighted
frequency of a value v in this sample using f̄

M , and then
scale the estimate up for the whole population ś what is the
accuracy loss in this procedure? This twist will be used in
our mechanisms to boost its performance.
More formally, for a set of users S , we first randomly

partition S into S1, . . . , Sk (each user in S randomly chooses
i ∈ {1, . . . ,k}, with equal probability 1/k , and joins Si). We
run the weighted frequency oracle (AFO, f̄

M) only on one
sample, say, S1. For a dimension value v , we can estimate its
weighted frequency f

M
S
(v) in S using f̄M on S1. Define

f̃
M
S ,1/k (v) = k · f̄

M
S1
(v), (9)

where S1 (or any of S1, . . . , Sk generated above) is a random
sample of S with sampling rate 1/k . f̃M

S ,1/k
(v) in (9) is an

unbiased estimator of weighted frequency f
M
S
(v), because

E
[
f̄
M
S1
(v)

]
= E

[
E
[
f̄
M
S1
(v)

�� S1]] = ES1

[
fS1 (v)

]
=

1

k
· fS (v).

The second equality is from the unbiasedness of f̄M and the
third one is due to the sampling process. The error in f̃M

S ,1/k
(v)

comes from two sources, one due to LDP noise and the other
due to sampling process. We can bound it as follows.

Proposition 5 (Accuracy Loss on Samples). f̃M
S ,1/k
(v) is

an unbiased estimator of fM
S
(v), and the error is bounded as

Err(f̃MS ,1/k (v)) =
4kM2

Se
ϵ

(eϵ − 1)2
+ (2k − 1)M2

S (v)

≤
2kM2

S (e
2ϵ
+ 1)

(eϵ − 1)2
= O

(
k |S |∆2

ϵ2

)
when ϵ is small,

where ∆ is the range ofM , i.e., ∆ = max(M) −min(M).

3.4 Answering MDA via LDP Marginals

Mechanisms to estimate LDP marginals [8, 30, 41] focus on
COUNT queries. However, they can be adapted to handle
MDA queries via a transition that is similar to (7).

(AMG, P̄MG): To answer an MDA query QT (F(M),C) in (3),
we first partition T by measureM into sub-tables Tx = {t ∈
T | t[M] = x}. We use marginals estimated under LDP to
count how many tuples inTx satisfy the predicate C as n̄x by
summing up cells in the marginal on dimensions in C. For a
SUM query QT , its answer can be estimated as

∑
x x · n̄x .

Let’s consider the SUM query in Example 1.1. We partition
T by Purchase. In a sub-table, e.g.,T$100, estimate themarginal

SELECT COUNT(∗) FROM T$100 GROUP BY Age, Salary.

Sum up (11 × 101) rows in the above 2-way marginal with
Age ∈ [30, 40] ∧ Salary ∈ [50K, 150K] to obtain n̄$100, which
contributes a term ($100 · n̄$100) in the estimated answer.

Error analysis.We can analyze errors in the abovemarginal-
based solution for data with one sensitive dimension using
Proposition 4. Let D be a sensitive ordinal dimension, and
we want to handle MDA queries with range constraints,

q : SELECT SUM(M) FROM T WHERE D ∈ [l, r].

WepartitionT byM . For each distinctx ∈ M , in the estimated
LDP marginal of Tx on the dimension D, we sum up rows
with D ∈ [l, r], each contributing x in the answer. Since a
1-way marginal can be optimally estimated with a frequency
oracle, the estimated answer to q is equivalent to:

∑
distinct x

©­«
∑

v ∈[l ,r]

x · f̄Tx (v)
ª®¬
=

∑
v ∈[l ,r]

f̄
M
T (v). (10)

The error now depends on how many distinct values of
D we have within [l, r]. If D has m distinct values, from
Proposition 4, the error of the above estimation is:

(r − l + 1) · Err(f̄MT) = Θ
(
m |T |∆2/ϵ2

)
(11)

with a linear dependency on r − l + 1 orm.
Suppose there are d sensitive dimensions, each with m

distinct values, the worst-case error in the above solution is
proportional tomd , as we may need to sum upmd marginal
rows under range constraints on these dimensions.
In Sections 4-5, we propose new mechanisms to remove

the linear/polynomial dependency onm in the error, via care-
ful query decomposition and privacy-budget partitioning.
Their error is poly-logarithmically dependent onm.

4 MDAWITH ONE PRIVATE DIMENSION

We first focus on one sensitive dimension, and will generalize
our solution for multi-dimensional MDA in Section 5.

7654

L
0

L1

L2

L
3

t1[D1] = 3 t2[D1] = 6

ID1

t1[L
j] t2[L

j] (j = 0, 1, 2, 3)

1 2 3 8

Figure 2: Hierarchy of intervals and HI mechanism

4.1 Hierarchical-Interval (HI) Mechanism

We propose amechanism (AHI, P̄HI), whose one-dimensional
version is inspired by the structure of a binary search tree,
to ensure that the error is sublinear inm. Similar structures
have also been used by previous work, e.g., [22, 28], to answer
range counting queries in the centralized DP setting.

Hierarchy of intervals. Suppose the ordinal dimension
D has m distinct values, in the order of z1, z2, . . . , zm . We
construct a hierarchical collections of intervals with a fan-
out b, which can be viewed as a perfect b-way tree: each node
corresponds to an interval, and has b children (except leaves),
corresponding to b equally sized subintervals. We assume
m = bh (if not, we can add some dummy values in D).

Level 0 in the hierarchy is L0
= {[z1, zm]}. [z1, zm] cor-

responds to the root, and is recursively partitioned into b

equally sized subintervals until we reach the leaves, i.e., in-
tervals with unit length Lh

= {[z1, z1], . . . , [zm, zm]}. There
are b j intervals on level j, each coveringm/b j values:

L j
= {[z(i−1)·m/b j+1, zi ·m/b j] | i = 1, 2, . . . ,b j }.

Let ID = {L0, . . . ,Lh} be the whole hierarchy (h = logbm).

Example 4.1. Consider an ordinal dimension D1 with 8

values. Figure 2 shows its hierarchical intervals (with b = 2).

Query rewritingwithHI. In a queryq = QT (SUM(M),D ∈

[l, r]), the interval [l, r] can be decomposed into 2(b−1) logbm
(or less) disjoint intervals, I 1, . . . , Ip , in the hierarchy ID . q
can be decomposed into sub-queries on these intervals. If
every user tells the server whether her/his dimension value
is in each interval in ID , in an LDP way, each sub-query
QT (SUM(M),D ∈ I

i) can be estimated (i = 1, 2, . . . ,p). The
query q can be answered by assembling estimates for the
p ≤ 2(b − 1) logbm sub-queries, and thus with a polyloga-
rithmic factor in the error. Following is a rewriting example.

Example 4.2. Assume that the ordinal dimension D1 in
Table 1 takes values in {1, 2, . . . , 8}. Consider the query

q1 : SELECT SUM(M1) FROM T WHERE D1 ∈ [2, 7].

[2, 7] is decomposed into 4 intervals (the blue ones in Figure 2);
correspondingly, q1 is rewritten as the sum of four queries with
łD1 ∈ [2, 2]ž, łD1 ∈ [3, 4]ž, łD1 ∈ [5, 6]ž, and łD1 ∈ [7, 7]ž.

In a naive implementation of the above strategy, each user
sends Θ(m) LDP reports (as there are Θ(m) intervals in ID).
We will show that, in fact, Θ(logm) LDP reports suffice.

The main idea is that the dimension value t[D] of a user
t belongs to exactly h + 1 intervals in ID , one on each level:
suppose t[D] belongs to I ∈ L j on level j, we let t[L j] =

I . We only need h frequency oracles, each encoding and
collecting the interval t[L j] on level j, for j = 1, . . . ,h.
In general, [l, r] is partitioned into p disjoint intervals:
[l, r] = I 1 ∪ . . . ∪ Ip ś suppose I i is on level Lki . We rewrite

QT (SUM(M),D ∈ [l, r]) =

p∑
i=1

QT (SUM(M),D ∈ I
i) (12)

where each sub-queryQT (SUM(M),D ∈ I
i) can be estimated

by the weighted frequency oracle on Lki as f̄M
T
(I i).

Example 4.3. In the hierarchy of D1 in Figure 2, a tuple t1
with t1[D1] = 3 belongs to one interval on each level (those
crossed by the dashed arrowed line): t1[L

3] = [3, 3], t1[L
2] =

[3, 4], t1[L
1] = [1, 4], and t1[L

0] = [1, 8]. The first three
intervals are encoded and collected using frequency oracles.
As in Example 4.2, q1 is decomposed into four sub-queries:

the one with łD1 ∈ [3, 4]ž can be estimated with f̄
M
T
([3, 4]).

HI mechanism (AHI, P̄HI). On the client side, the privacy

budget is partitioned evenly for the h levels L1, . . . ,Lh , and
the interval a tuple t belongs to on each level (i.e., t[Li]) is
encoded using AFO in a weighted frequency oracle.
On the server, for a query q, we estimate each sub-query

QT (SUM(M),D ∈ I
i) in (12) using the weighted frequency

estimator f̄M (I i), and sum them up as an estimation to q.

P̄HI(q) =

p∑
i=1

f̄
M
T (I

i). (13)

Theorem 6 (1D-HI). i)AHI satisfies ϵ-LDP. ii) P̄HI(q) is an
unbiased estimator of q, and the expected squared error

Err(P̄HI(q)) ≤ 2(b − 1) logbm ·M
2
T ·
(eϵ/logb m + 1)2

(eϵ/logb m − 1)2
(14)

= O

(
n∆2 log3m

ϵ2

)
when ϵ is small,

where n = |T | is the number of users, ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

4.2 Better Accuracy via Level Partitioning

In AHI, the privacy budget ϵ is partitioned evenly for the
h levels. An alternative is to randomly partition the users
into h groups instead of partitioning the privacy budget:
users in a group S j , corresponding to level j , can be regarded
as a random sample with sampling rate 1/h, and spend all
the privacy budget on only level j. A bit surprisingly, this

Client side: Encode private dimension t[D].

1: Randomly pick j ∈ {1, 2, . . . ,h} with equal prob.
2: Suppose t[D] is in interval I ∈ L j : t[L j] ← I ;
3: Create LDP report:

AHIO(t) ←
(
j,Aϵ

FO(t[L
j])

)
. (16)

Server side: MDA query q = QT (SUM(M),D ∈ [l, r]).

1: Let user groups S j ← ∅ for j = 1, . . . ,h.
2: For each user t . if we get

(
j,Aϵ

FO
(t[L j])

)
:

3: S j ← S j + {t};
4: Decompose [l, r] into p disjoint intervals I 1 ∈ Lk1 , I 2 ∈
Lk2 , . . . , Ip ∈ Lkp in the hierarchy ID .

5: For each i = 1, 2, . . . ,p:
6: Estimate fM

T
(I i) as f̃M

T ,1/h
(I i) (using (9)):

f̃
M
T ,1/h(I

i) = h · f̄MSki
(I i); (17)

7: Output an estimation to q as:

P̄HIO(q) =

p∑
i=1

f̃
M
T ,1/h(I

i). (18)

Algorithm 1: 1D HI Optimized (AHIO, P̄HIO)

alternative has the accuracy boosted by orders of magnitude.
The intuition behind this is: we gain accuracy by spending
more privacy budget on each level, but lose accuracy as each
level is supported for a random sample of users (refer to
Proposition 5 in Section 3.3); as long as the accuracy gain
overcomes the loss, the overall accuracy can be boosted.
Query q = QT (SUM(M),D ∈ [l, r]) is decomposed in the

same way as (12). For a sub-query QT (SUM(M),D ∈ I
i) in

(12), where I i is on level ki , we refer to the user group Ski
that corresponds to level ki . As introduced in Section 3.3, we
can run frequency oracles on the random sample Ski , and
scale up the estimation f̄

M
Ski
(I i) by a factor of h, to approxi-

mate the sub-query’s answer. Based on the above idea, we
propose a mechanism (AHIO, P̄HIO) with details described in
Algorithm 1. Its error bound is given in Theorem 7.

Theorem 7 (1D-HIO). i) AHIO satisfies ϵ-LDP. ii) P̄HIO(q)
is an unbiased estimator of q with expected squared error

Err(P̄HI(q)) ≤ 4(b − 1) log2bm ·M
2
T ·
(e2ϵ + 1)

(eϵ − 1)2
(15)

= O

(
n∆2 log2m

ϵ2

)
when ϵ is small,

where n = |T |, ∆ is the range ofM , andM2
T =

∑
t ∈T t[M]

2.

The HIO mechanism boosts the accuracy by a factor of
logbm in comparison to the HImechanism (14).We useb = 5

in our implementation to minimize RHS of (15).

5 MULTIPLE PRIVATE DIMENSIONS

We now introduce how to handle multiple private dimen-
sions inMDAqueries.Wewill first focus on the casewhenwe
have multiple ordinal dimensions and range constraints in
an MDA query, for which we extend our HI/HIO mechanism
in Section 4 to a multi-dimensional one. We will then intro-
duce how to handle a combination of ordinal and categorical
dimensions. Finally, when there are many sensitive dimen-
sions in the data model and the worst-case error blows up,
we will introduce a split-and-conjunction mechanism which
is designed to handle low-dimensional queries.

5.1 Multiple Ordinal Dimensions

In order to extend our HI mechanism for multiple dimen-
sions, let’s first introduce a multi-dimensional hierarchy of
intervals, which naturally generalizes the one-dimensional
hierarchy in Section 4.1. An MDA query can be decomposed
into a polylogarithmic (in dimension cardinalities) number
of sub-queries in this hierarchy, and they together are aggre-
gated to answer the original MDA query without blowing
up the worst-case error. Similar user-partitioning techniques
as in Section 4.2 can be applied to boost the accuracy.

5.1.1 Multi-dimensional Hierarchical Intervals. Recall that
ID = {L

0
D
, . . . ,Lh

D
} is the hierarchy for dimension D: level

0 is L0
D
= {[z1, zm]} and L

j+1
D

is obtained by partitioning

each interval inL j
D
into b equally sized subintervals. W.l.o.g.,

assume each dimension has the same cardinalitym = bh (i.e.,
distinct values) for the simplicity of explanation.

Two-dimensional hierarchy. Let’s first focus on two di-
mensions. Define a 2-dim hierarchy to be:

ID1
⊗ ID2

=

{
L

j1
D1
× L

j2
D2

��� 0 ≤ j1, j2 ≤ h
}
.

Each L j1
D1
× L

j2
D2

is called a 2-dim level. There are a total of

(h + 1)2 2-dim levels in a 2-dim hierarchy. Each pair ⟨I1, I2⟩ ∈
L

j1
D1
×L

j2
D2

is called a 2-dim interval. We will write I1I2 . . . Id
as a shorthand for ⟨I1, I2, . . . , Id ⟩ in the rest part.
Consider a tuple t , for each j1 and j2, t[D1] and t[D2] be-

long to exactly one interval I j11 ∈ L
j1
D1

and one I j22 ∈ L
j2
D2
,

respectively. Conceptually, we augment t with a new dimen-

sion łL j1
D1
× L

j2
D2
ž for the corresponding 2-dim level: let

t[L
j1
D1
× L

j2
D2
] = I

j1
1 I

j2
2 ,

which means that t[D1] ∈ I
j1
1 ∧ t[D2] ∈ I

j2
2 . Indeed, we have

QT (SUM(M),D1 ∈ I
j1
1 ∧ D2 ∈ I

j2
2)

=QT (SUM(M),L
j1
D1
× L

j2
D2
= I

j1
1 I

j2
2) = f

M
T (I

j1
1 I

j2
2).

In an MDA query q = QT (SUM(M),D1 ∈ [l1, r1] ∧ D2 ∈

[l2, r2]), [l1, r1] can be decomposed intop1 disjoint intervals in

L0

D1

L1

D1

L2

D1

L3

D1

t[D1] = 3

L0

D2

L1

D2

L2

D2

L3

D2

⊗ L2

D1
L1

D2
×ID1

ID2

t[D2] = 5

t[L2

D1
× L1

D2
]

, L2

D1
× L2

D2
, . . . }= {. . . ,

×

1 2 3 4 5 6 7 8 81 2 3 4 5 6 7

Figure 3: 2D hierarchy of intervals, query decomposition, and HI mechanism

ID1
: [l1, r1] = I 11∪ . . .∪I

p1
1 , and similarly [l2, r2] = I 12∪ . . .∪I

p2
2 .

We can then decompose q into p1 × p2 sub-queries:

QT (SUM(M),D1 ∈ [l1, r1] ∧ D2 ∈ [l2, r2])

=

∑
1≤a≤p1,1≤b≤p2

QT (SUM(M),D1 ∈ I
a
1 ∧ D2 ∈ I

b
2)

=

∑
1≤a≤p1,1≤b≤p2

f
M
T (I

a
1 I

b
2). (19)

As p1,p2 ≤ 2(b − 1) logbm, there are O(log2m) sub-queries.
Each sub-query can be estimated as f̄M

T
(Ia1 I

b
2) using aweighted

frequency oracle on the corresponding 2-dim level, and then
we just need to sum up these estimates to answer q.

Example 5.1. Suppose the two ordinal dimensions D1 and
D2 take values in {1, 2, . . . , 8}. A 2-dim hierarchy on them
is shown in Figure 3. Their individual 1-dim hierarchies ID1

and ID2
are on the left, each with 4 levels. The 2-dim hierarchy

is a Cartesian product of the two, with 4 × 4 2-dim levels. In
particular, the 2-dim level, L2

D1
× L1

D2
, depicted on the right,

is a Cartesian product of two 1-dim interval sets L2
D1

and L1
D2
,

with 4 × 2 2-dim intervals, each of which is a pair of 1-dim
intervals, with one from L2

D1
and the other from L1

D2
. For

example, the 4th one (top-to-bottom) in the figure is [3, 4][5, 8].
Consider a tuple t with t[D1] = 3 and t[D2] = 5. It belongs

to the above 2-dim interval as t[D1] ∈ [3, 4] and t[D2] ∈ [5, 8].
Thus, the augmented dimension t[L2

D1
× L1

D2
] = [3, 4][5, 8].

Consider the following MDA query:

q2 :SELECT SUM(M1) FROM T

WHERE D1 ∈ [2, 7] AND D2 ∈ [3, 8]

As shown in Figure 3, [2, 7] can be partitioned into 4 intervals in
ID1

(blue ones), and [3, 8] partitioned into 2 in ID2
(green ones).

Thus, q2 can be decomposed into 4× 2 disjoint sub-queries that
are to be answered using weighted frequency oracles ś two are
on the 2-dim levelL2

D1
×L1

D2
: one with łD1 ∈ [3, 4] ANDD2 ∈

[5, 8]ž and one with łD1 ∈ [5, 6] AND D2 ∈ [5, 8]ž.

d-dim hierarchy. The construction of a 2-dim hierarchy
can be easily extended for more dimensions. Define:

ID1
⊗ . . . ⊗ IDd

=

{
L

j1
D1
× . . . × L

jd
Dd

��� 0 ≤ j1, j2, . . . , jd ≤ h
}

to be a hierarchy of d-dim levels (there are (h + 1)d levels).
Each I1I2 . . . Id ∈ L

j1
D1
× . . . × L

jd
Dd

is a d-dim interval.
An MDA query q = QT (SUM(M),D1 ∈ [l1, r1]∧ . . .∧Dd ∈

[ld , rd]) can be thus decomposed intop1×. . .×pd sub-queries:

QT (SUM(M),D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd])

=

∑
1≤i1≤p1, ...,1≤id ≤pd

f
M
T (I

i1
1 I

i2
2 . . . I

id
d
), (20)

where p1,p2, . . . ,pd ≤ 2(b − 1) logbm.

5.1.2 Multi-dimensional HI Mechanism (AHI, P̄HI). On the
client side, an augmented dimension tells which interval
a user belongs to in each d-dim level. We use AFO in a

weighted frequency oracle to encode the (h + 1)d augmented
dimensions, each of which uses a privacy budget of ϵ/(h+1)d .
On the server side, from how q is rewritten in (20), we can
estimate the weighted frequency of each d-dim interval and
sum up the estimates to approximate the answer to q:

P̄HI(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̄
M
T (I

i1
1 I

i2
2 . . . I

id
d
). (21)

It is formally described in Appendix B (Algorithm 4).

Theorem 8 (HI). i) AHI satisfies ϵ-LDP. ii) P̄HI(q) is an
unbiased estimator of q with expected squared error

Err(P̄HI(q)) ≤ (2(b − 1) logbm)
dqM2

T ·
(eϵ/(logb m+1)

d
+ 1)2

(eϵ/(logb m+1)
d
− 1)2

= O

(
n∆2 logdq+2d m

ϵ2

)
when ϵ is small, (22)

where n = |T | is the number of users, d (dq) is the number
of sensitive dimensions (in the query q), ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

5.1.3 Boosting Accuracy via User Partitioning. Similar to the
1-dim case in Section 4.2, HI’s accuracy can be boosted by ran-
domly partitioning users by levels. On the client, a user picks
one of the (h + 1)d d-dim levels randomly, and encodes only
the d-dim interval in this level with privacy budget ϵ . On the
server, we estimate the weighted frequency f

M
T
(I i11 I

i2
2 . . . I

id
d
)

in (20) with LDP reports in the corresponding level from a
random 1/(h + 1)d portion of users (as in Section 3.3).

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: Randomly pick (j1, . . . , jd) ∈ {0, 1, . . . ,h}d .
2: Suppose t[Di] is in interval Ii ∈ L

ji
Di

(i = 1, . . . ,d):

let t[L j1
D1
× . . . × L

jd
Dd
] ← I1I2 . . . Id .

3: Create LDP report:

AHIO(t) ←
(
(j1, . . . , jd),A

ϵ
FO(t[L

j1
D1
× . . . × L

jd
Dd
])
)
. (23)

Server side: MDA query q = QT (SUM(M),

D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: Let S(j1, ..., jd) ← ∅ for each (j1, . . . , jd) ∈ {0, 1, . . . ,h}
d .

2: For each user t , if we get ((j1, . . . , jd),Aϵ
FO
(·)):

3: S(j1, ..., jd) ← S(j1, ..., jd) + {t};
4: For i = 1 to d do:
5: Decompose [li , ri] intopi disjoint intervals [li , ri] →

I 1i ∪ I
2
i ∪ . . . ∪ I

pi
i in the hierarchy IDi

;
6: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:
7: Estimate fM

T
(I i11 I

i2
2 . . . I

id
d
) as (suppose I ik

k
∈ L

jk
Dk

):

f̃
M
T ,1/(h+1)d

(I i11 I
i2
2 . . . I

id
d
)

= (h + 1)d · f̄MS(j1 , . . ., jd)
(I i11 I

i2
2 . . . I

id
d
); (24)

8: Output an estimation to q as:

P̄HIO(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̃
M
T ,1/(h+1)d

(I i11 I
i2
2 . . . I

id
d
). (25)

Algorithm 2: d-dim HI Optimized (AHIO, P̄HIO)

The resulting mechanism (AHIO, P̄HIO) is in Algorithm 2.
Theorem 9 shows that the gain from a larger privacy budget
spent on the picked level per user overcomes the error due
to running weighted frequency oracles on samples. P̄HIO has
a significant accuracy boost over P̄HI.

Theorem 9 (HIO). i) AHIO satisfies ϵ-LDP. ii) P̄HIO(q) is
an unbiased estimator of q with expected squared error

Err(P̄HIO(q)) (26)

≤(2(b − 1)(logbm + 1))
dq (logbm + 1)

dM2
T ·
(e2ϵ + 1)

(eϵ − 1)2

=O

(
n∆2 logdq+d m

ϵ2

)
when ϵ is small,

where n = |T | is the number of users, d (dq) is the number
of sensitive dimensions (in the query q), ∆ is the range of M ,
M2

T =
∑

t ∈T t[M]
2, and the constant b is the fan-out.

5.2 Ordinal and Categorical Dimensions

A categorical dimension D can be regarded as a hierarchy
with two levels: L0

D
= {∗} and L1

D = {[v1], [v2], . . . , [vc]},

where ‘∗’ means ‘anything’, andv1,v2, . . . ,vc are distinct val-
uesD. As there are only point constraints onD, e.g., łD = vi ž,
all the intermediate levels are unnecessary. Such a categorical
hierarchy can be incorporated into the multi-dimensional
hierarchy of intervals introduced in Section 5.1.1. Refer to
Appendix C for how our HIO mechanism is extended.

5.3 Split-and-Conjunction: When the
Dimensionality is High

HI and HIO mechanisms have errors exponentially depend-
ing on both the number of dimensions in the query (dq) and
the total number of sensitive dimensions in the data model
(d). On the client side, they partition privacy budget ϵ or
users into Θ(logd m) portions, one for each d-dim level, and
thus may introduce too much LDP noise for large d . When
dq ≪ d , there is room for improvement: whether it is possi-
ble to remove the exponential dependency on d .

We introduce our split-and-conjunction (SC) mechanism in
this section. Instead of encoding a tuple on the d-dim hierar-
chy, a user maintains d one-dim hierarchies, on which the d
dimensions are encoded and reported independently. The pri-
vacy budget ϵ is thus partitioned into Θ(d logm) portions (d
dimensions each withΘ(logm) one-dim levels). The question
is, while all dimensions are reported independently, whether
we can estimate how many rows have, e.g., t[D1] = v1 and
t[D2] = v2 conjunctively. To this end, we will first intro-
duce a new class of estimators in frequency oracles, called
conjunctive estimators as a building block of SC.

5.3.1 Conjunctive Estimators f̂ and f̂
M . Let D1 and D2 be

two sensitive dimensions. A conjunctive weighted frequency
query asks, for a set of users S , and v1 ∈ D1 and v2 ∈ D2, the
total measure of users with t[D1] = v1 and t[D2] = v2, i.e.,
weighted frequency f

M
S
(v1v2) =

∑
t ∈S∧t [D1]=v1∧t [D2]=v2

t[M]

of ⟨v1,v2⟩ on the domain D1 ×D2, or unweighted frequency
fS (v1v2) = | {t ∈ S | t[D1] = v1 ∧ t[D2] = v2} |.
Given two sets of independently-generated LDP reports
{AFO(t[D1])}t ∈S and {AFO(t[D2])}t ∈S , we want to estimate
f
M
S
(v1v2), for any v1 ∈ D1 and v2 ∈ D2. More generally, we

can estimate fM
S
(v1 . . .vk) from reports on k dimensions. For

this purpose, we introduce conjunctive estimators f̂ and f̂
M .

States and transition.Recall that an LDP reportAFO(t[Di])

= ⟨H ,y⟩ is a pair of a randomhash functionH and a randomly
perturbed value y (refer to Section 3.2.1 and Appendix A).
We define two indicator variables for the query term vi :

input state: Bi (t) =

{
0, if t[Di] , vi

1, if t[Di] = vi
and (27)

output state: Ai (t) =

{
0, if H (vi) , y

1, if H (vi) = y
(for i = 1, 2). (28)

Input state Bi (t) is deterministic and depends onvi ; output
state Ai (t) is a random variable and depends on both vi and
randomness in AFO. We can define the following transition
probabilities (with their values calculated in Appendix A):

Pb→a , Pr [Ai (t) = a | Bi (t) = b] (for a,b ∈ {0, 1}).

A tuple with two dimensions has 4 possible 2-dim input
states: ł11ž (meaning B1(t) = 1 ∧ B2(t) = 1), ł01ž, ł10ž, and
ł00ž. After applyingAFO, the LDP report has 4 possible 2-dim
output states ł11ž (meaning A1(t) = 1 ∧A2(t) = 1), ł01ž, ł10ž,
and ł00ž. We can derive 2-dim transition probabilities:

Pb1b2→a1a2 (for a1,a2,b1,b2 ∈ {0, 1})

, Pr [A1(t) = a1 ∧A2(t) = a2 | B1(t) = b1 ∧ B2(t) = b2]

= Pb1→a1 · Pb2→a2 (as A1(t) and A2(t) are independent),

since dimensions are encoded independently.

Estimation via transition matrix. For a set S of users and
their LDP reports {AFO(t[D1])}t ∈S and {AFO(t[D2])}t ∈S , we
observe the frequency of each 2-dim output state. With them,
we can estimate the frequencies of input states via transition
probabilities, and in particular, the frequency of 2-dim input
state ł11ž is equal to unweighted frequency fS (v1v2).

The frequencies of input states are, forb1b2 = 11, 01, 10, 00:

bS (b1b2) = |{t ∈ S | B1(t) = b1 ∧ B2(t) = b2}|.

And those of output states are, for a1a2 = 11, 01, 10, 00:

aS (a1a2) = |{t ∈ S | A1(t) = a1 ∧A2(t) = a2}|.

Consider the corresponding frequency vectors of input
and output states, b = [bS (11), bS (01), bS (10), bS (00)]⊤ and
a = [aS (11), aS (01), aS (10), aS (00)]

⊤. We can establish the
relationship between b and a through transition matrix P:

P·b ,

©­­­«

P11→11 P01→11 P10→11 P00→11

P11→01 P01→01 P10→01 P00→01

P11→10 P01→10 P10→10 P00→10

P11→00 P01→00 P10→00 P00→00

ª®®®¬
©­­­«

bS (11)

bS (01)

bS (10)

bS (00)

ª®®®¬
= E[a] ,

from the property of P and the linearity of expectation. By
observing the frequency vector a, we can estimate b as:

b̂ = [b̂S (11), b̂S (01), b̂S (10), b̂S (00)]
⊤
= P
−1 · a (29)

and, in particular, f̂S (v1v2) = b̂S (11). (30)

From the linearity of expectation, we have E[b̂] = P
−1 ·E[a] =

P
−1
P · b = b, and thus E[f̂S (v1v2)] = bS (11) = fS (v1v2).
Similar to (8), for the weighted case, we can derive

f̂
M
S (v1v2) =

∑
distinct x

x · f̂Sx (v1v2), (31)

where Sx = {t ∈ S | t[M] = x}. Its unbiasedness is from f̂ ’s.

In order to extend f̂ and f̂
M from two dimensions to d

dimensions, we extend 2-dim input/output states to d-dim
input/output states. Correspondingly, their frequencies are:

bS (b1 . . .bd) = |{t ∈ S | B1(t) = b1 ∧ . . . ∧ Bd (t) = bd }|,

aS (a1 . . . ad) = |{t ∈ S | A1(t) = a1 ∧ . . . ∧Ad (t) = ad }|.

The transition matrix P is a 2d ×2d one, as there are 2d states.
The errors in f̂ and f̂

M can be bounded as follows.

Proposition 10 (Conjunction of Oracles). Run an ϵ-LDP
encoderAϵ

FO
on each of the d dimensions independently (over-

all, the procedure is (dϵ)-LDP). For anyk dimensions and values

v1, . . . , vk on them, we have unbiased estimators f̂S and f̂M
S

of
conjunctive unweighted and weighted frequencies, respectively,

with error Err(f̂S (v1 . . .vk)) = O
(
|S |/ϵ2k

)
and

Err(f̂MS (v1 . . .vk)) = O
(
|S |∆2/ϵ2k

)
,

where ∆ = max(M) −min(M). If we guarantee ϵ-LDP across
all the d dimensions, each dimension gets a privacy budget

ϵ/d , and thus, the error of f̂M
S

is O
(
|S |∆2/(ϵ/d)2k

)
.

5.3.2 Split-and-Conjunction (SC) Mechanism. We describe
our SC mechanism (ASC, P̄SC) formally in Algorithm 5 in
Appendix D. On the client side, a user reports each one-
dim interval s/he belongs to (one per level) in each one-
dim hierarchy IDi

using AFO independently, with a privacy
budget of ϵ/(dh). The estimator on the server side is the same
as the one in HI mechanism, except that, instead of f̄M , the
conjunctive estimator f̂M (from Section 5.3.1) is used as we
have no access to the (LDP version of) d-dim hierarchy. Error
in the estimated answer to an MDA query is exponentially
dependent on only dq (number of private dimensions in q).

Theorem 11 (SC). i) ASC satisfies ϵ-LDP. ii) P̄SC(q) is an
unbiased estimator of q with expected squared error

Err(P̄SC(q)) = O

(
n∆2d2dq log3dq m

ϵ2dq

)
when ϵ is small, (32)

where n = |T | is the number of users, d (dq) is the number of
sensitive dimensions (in the query q), and ∆ is the range ofM .

5.4 Performance Comparison

The accuracy of mechanisms introduced depends on some
parameters, e.g., number/sizes of dimensions, in different
ways. We can identify the analytical turning points of their
performance, which will be verified experimentally later.

Marginal/FO v.s. HIO. Worst-case errors in the marginal
or FO-based solution (introduced in Section 3.4) depend on ϵ ,
|T |, and ∆ in the same way as errors in HIO asymptotically.
Consider the marginal with all the dimensions in the pred-

icate. Define the volume vol(q) of a query q to be the ratio of

marginal rows satisfying its predicate to all marginal rows.
A 1-dim query with a range constraint D ∈ [l, r] has volume
vol(q) = (r−l+1)/m, From (11) in Section 3.4 and Theorem 7,
HIO is better than the marginal/FO-based solution if

(r − l + 1) ≥ Θ(log2m) ⇔ vol(q) ≥ Θ(log2m/m). (33)

If there are d sensitive dimensions, from Section 3.4 and
Theorem 9, HIO is better than the marginal-based solution if

vol(q) ≥ Θ(log2d m/md) (when dq = d). (34)

HIO v.s. SC. Comparing Theorem 11 to Theorem 9, SC re-
moves d from the power of logm in the error, but incurs an
additional term d2dq . Only when (from Theorems 9 and 11)

(d logm/ϵ)2dq ≤ Θ(logd m/ϵ2), (35)

i.e., dq is small enough relative to d , SC is better than HIO.
Please refer to Appendix F for a comparison of comlexity

of different mechanisms we have introduced so far.

6 EVALUATION

We evaluate our mechanisms in various settings. HIO per-
forms the best most of time, with a normalized absolute error
less than 5% in most queries, and a relative error less than
5% if the predicate is not too selective; SC performs better
in high-dimensional settings if the number of dimensions in
the query is much less than the total number of dimensions.
We also conduct a case study in an e-commerce application.
Mechanisms are implemented in Python and evaluated on
an Intel Xeon E5 2682 v4 PC with 64GB memory.

Datasets. We conduct experiments on three datasets:
• Adult [11]: A dataset from the UCI ML repository with
around 45 thousand tuples after removing missing values.
• IPUMS [31]:AUS census dataset from the IPUMS repository.
It contains around 3 million records.
• A real dataset with 150million records from an e-commerce
application. Details are deferred to Section 6.2.3.

Experiment settings. We compare the four mechanisms:
•MG: Processing MDA queries with the state-of-the-art LDP
marginal-releasing technique [41] (described in Section 3.4).
• HI: Hierarchical-interval mechanism (AHI, P̄HI).
• HIO: HI Optimized (AHIO, P̄HIO).
• SC: Split-and-conjunction (SC) mechanism (ASC, P̄SC).
We use fan-out b = 5 for HI, HIO, and SC.
We test SUM/COUNT/AVG queries (SUM by default).

Error measures.We use two error measures:
• Mean Normalized Absolute ErrorMNAE = AVGq(

|P̄(q)−q |

ΣS
),

where the absolute error is normalized by ΣS =
∑

t |t[M]| to
[0, 1]. It is used for SUM queries, and measures how large
errors are relative to the maximum possible answer (ΣS).

• Mean Relative Error MRE = AVGq(
|P̄(q)−q |

|P̄(q) |
). It is used for

SUM/COUNT/AVG queries, and measures how large the
error is relative to the true answer for each query.
In Section 6.1, we use MNAE for SUM queries to verify

theoretical results and compare the mechanisms, as they all
have theoretical guarantees about absolute errors, which are
independent of (or not dominated by) query sizes/answers.
In Section 6.2, we use relative errorMRE to demonstrate

the utility of ourmechanisms for SUM/COUNT/AVG queries.
Queries are partitioned into groups by selectivity of their
predicates: in each group, queries have similar sizes and an-
swers, and thus MRE’s for different queries are comparable.
For each data point in every figure, we test 30 random

queries and plot their MNAE or MRE (Y-axis) with 1-std.

6.1 Experimental Comparison

We compare different mechanisms for varying factors that
potentially influence the accuracy: i) query volume vol(q)
(defined in Section 5.4), ii) number of dimensions, iii) domain
sizes (cardinalities of dimensions), iv) data size, and v) ϵ .

6.1.1 One Ordinal Dimension. We start from MDA queries
with one sensitive ordinal dimension: q = QT (SUM(M),D ∈

[l, r]). We create the ordinal dimension with sizem = 1024

by bucketizing a numeric column of the table.

Varying query volume. Figures 4(a)-4(b) show the MNAE
for different query volumes onAdult and IPUMS (1M sample).
The interval [l, r] is generated randomly with r − l + 1 =

m · vol(q). The accuracy of MG deteriorates quickly as vol(q)
increases. Only when vol(q) is as small as 0.01, MG is better
than HIO (the errors of both are small, too); vol(q) = 0.1

is the break-even point, which conforms with our analysis
in Section 5.4; when vol(q) = 0.8, error of MG is ∼ 3× that
of HIO. The performance of different methods on IPUMS is
better than that on Adult, because the data size is larger.

Varying data size. We sample 0.1, 0.2, 0.5, 2 and 3 million
rows from IPUMS (without replacement), and test queries
with volume 0.25. As can be seen in Figure 4(c), the larger
the dataset, the better the estimation accuracy, which is con-
sistent with our theorems. HIO always performs best.

Varying privacy budget ϵ . Figure 5 shows performance of
different mechanisms on IPUMS for varying ϵ . All methods
benefit from larger ϵ , with HIO performing the best.
In the rest of Section 6.1, we will use vol(q) = 0.25, data

size |T | = 1 million, and ϵ = 2, as their default values.

6.1.2 Two Ordinal Dimensions. We create two ordinal di-
mensions on IPUMS with sizesm1 andm2 by bucketizing
numeric columns. Two configurations ofm1 ×m2 are tested:

(a) Adult: vary vol(q) (b) IPUMS 1M: vary vol(q) (c) IPUMS: vary |T | (million)
Figure 4: Comparing different mechanisms: vary query volume and data size (ϵ = 2 and d = 1)

Figure 5: IPUMS 1M: vary ϵ (d = 1)
(a) m1 ×m2 = 256 × 256: vary ϵ (b) m1 ×m2 = 256× 256: vary |T | (million)

Figure 6: Two sensitive ordinal dimensions: vary ϵ and data size (d = 2)

(a) m1 ×m2 = 256 × 256: vary vol(q) (b) m1 ×m2 = 1024 × 64: vary vol(q)

Figure 7: Two sensitive dimensions: vary query volume (ϵ = 2 and d = 2)

Figure 8: Three sensitive dimensions:

vary query volume (ϵ = 2 and d = 3)

256 × 256 and 1024 × 64. The query predicate is the conjunc-
tion of two range constraints: D1 ∈ [l1, r1] ∧ D2 ∈ [l2, r2],
with volume vol(q) = (r1 − ℓ1 + 1) × (r2 − ℓ2 + 1)/(m1 ×m2).

Figures 6-7 shows the results of different mechanisms
for the two configurations, when varying ϵ , |T |, and vol(q).
When vol(q) ≤ 0.01, MG is better, which is consistent with
our analysis in Section 5.4; otherwise, MG is much worse
than HIO for varying ϵ and |T |, as an MDA query with two
range constraints can be decomposed into toomanymarginal
cells, whose errors accumulate when being aggregated.

6.1.3 Three Ordinal Dimensions. We create three sensitive
ordinal dimensions on IPUMS with sizes 256 × 256 × 64.
The query predicate is the conjunction of the two range
constraints. Errors in HI are much larger than those in HIO,
so we omit it here. Figure 8 shows the results of HIO and
MG, when varying vol(q). Errors in MG highly depend on
vol(q), which is consistent with our analysis in Sections 3.4
and 5.4. On the other hand, although more challenging, HIO
can still work, with consistently better estimations than MG.
When vol(q) ≥ 0.5, HIO is at least 3× more accurate.

6.2 Relative Error and Practical Usage

We now focus on the utility of our mechanisms in more
real settings and conduct a case study. We will report their
relative errors (MRE). We consider data models with four or

more sensitive dimensions, but MDA queries may or may not
contain all of them. When there are more than two sensitive
dimensions, HI and MG already give much worse accuracy
than HIO does. Thus, their performances are not reported
here. We will evaluate HIO and SC, as their benefit is more
pronounced when there are more sensitive attributes.

6.2.1 Two Ordinal and Two Categorical Dimensions. We start
with four dimensions in IPUMS (m = 54 by default ś we can
change domain sizes via finer or looser bucketization).

Sample queries on with varying ϵ . Three sample queries
Q1-Q3 (listed in Appendix G) are processed using HIO, and
their estimated/true answers shown in Figure 9. The relative
errors of estimations are within 5% most of the time. Q3
has the most selective predicate, and error in its estimated
answers is also the largest among the three.

Varying selectivity of predicate. Since our theorems give
guarantees on absolute errors for COUNT and SUM queries
(e.g., Theorem 9), relative errors are highly impacted by sizes
of query answers, which in-turn depend on the selectivities
of predicates. We test COUNT, SUM, and AVG queries with
four types of predicates, 1+0, 1+1, 2+0, and 2+2 (a+b means
a ordinal dimensions and b categorical dimensions), and vary-
ing selectivities. We plot the results in Figure 10 (COUNT

queries have very similar trends to SUM). Their relative er-
ror decreases with increasing selectivity. AVG is estimated

ϵ = 0.5 1 2 5 true

Q1 26.29 24.36 26.81 26.07 26.32

Q2 36.97 32.36 33.77 32.79 33.11

Q3 27.07 34.69 24.22 26.68 27.01

Figure 9: One-run estimations (using HIO)

of sample AVG queries and true answers
(a) SUM queries (b) AVG queries

Figure 10: Relative error of HIO: vary selectivity

(a) ϵ = 2: vary domain size (b) ϵ = 5: vary domain size
Figure 11: Relative error of HIO on 2 (ordinal) + 2 (categorical) dimen-

sions: vary domain sizes and query types (SUM queries)

Figure 12: Relative error of HIO and

SC on 4 (ordinal) + 4 (categorical) di-

mensions: vary query types (ϵ = 5)

ϵ = 0.5 1 2 5 true selectivity

Q4 0.185 0.154 0.178 0.167 0.168 0.049
rel. err. 0.102 0.081 0.061 0.005 - -

Q5 0.157 0.148 0.160 0.170 0.171 0.011
rel. err. 0.086 0.138 0.066 0.008 - -

Table 2: One-run estimated answers in the case study

as SUM/COUNT, and thus, its relative error has a similar
trend. We get reasonable relative errors for both ϵ = 2 and 5.

Varying query type and domain size. For varying domain
sizes and different types of predicates, we evaluate HIO and
SC on queries with selectivity around 0.1. SC is worse in
almost all types (refer to Figure 14 in Appendix G). Errors of
HIO are reported in Figure 11. The errors are larger when the
domains are larger due to the logm term in the error bounds.
Also, queries of types 1+0 and 1+1 can be answered more
accurately than 2+0 and 2+2 queries, which is consistent
with Theorems 9 and 11 ś the error increases as dq increases.

6.2.2 Four Ordinal and Four Categorical Dimensions. We
evaluate HIO and SC in the 8-dim setting, for different query
types, and report the results in Figure 12. In this high-dim
setting, according to Section 5.4, SC should give better esti-
mations for queries with fewer dimensions in the predicates.
Empirically, SC performs better than HIO for the almost
all the query types except 2+1. This is consistent with our
analytical results and is the purpose of introducing SC.

6.2.3 Case Study: E-Commerce Analytics. We test HIO for a
real-world e-commerce application, where wewant to collect
delivery information from users in a privacy-preserving way.
The tableT collected via HIO contains more than 150million
users with four attributes. Attributes about each user’s loca-
tion (Region) and the product s/he bought (Category, Price)
are sensitive dimensions, and the postage fee (Postage) is a
public measure attribute. Suppose we want to analyze the

postage distribution for certain group of users and products
(Q4-Q5 listed in Appendix G), Table 2 gives the answers es-
timated by HIO for different ϵ . With the a large number of
users, the accuracy is much improved.

7 EXTENSIONS AND DISCUSSION

Other space partitioning techniques. Frequency oracles
can be combined with QuadTree to handle MDA queries: in-
tuitively, a user can encode the tree nodes containing her/his
tuple locally via frequency oracles. However, QuadTree in-
curs larger errors, because, to answer a 2D range query, in
the worst case, the entire QuadTree needs to be traversed
and thus too many noisy counts (the number is linear in the
domain size) are added up which amplifies the error.
Coefficients in wavelet transforms (used in Privelet [40])

can be encoded using frequency oracles. Each user randomly
selects a level in the decomposition tree of the wavelet trans-
form, and reports his location on that level. However, as each
level has a different weight in the estimation, it is unclear
how to partition users across levels to optimize the utility.

In general, the idea proposed in this paper can also be used
in other space partitioning techniques. Basically, each user
has a local view of the data structure (with one data point),
and report this structure under LDP. This can be optimized
by having each user randomly select a sub-structure that
has a fixed sensitivity (e.g., a level). The server collects and
adds up the LDP data structure from users, and then uses
the result to answer queries. It is interesting future work to
customize frequency oracles for different space partitioning
techniques and compare them systematically.

Non-sensitive + private dimensions in predicates. If an
MDA query has both private and public dimensions in the
predicate, the server can evaluate the public part first, and,
process the remaining rows/users with estimation processor

P̄ in our mechanisms. For example, in Table 1, the query

SELECT SUM(Purchase) FROM T WHERE

Age ∈ [30, 40] AND OS =Win; ⇔ can be evaluated as:

Tpub = SELECT ∗ FROM T WHERE OS =Win;

SELECT SUM(Purchase) FROM Tpub WHERE Age ∈ [30, 40];

whereTpub can be evaluated using a normal query processor,
and the last line is processed with P̄ in our mechanisms.

Handling other aggregation functions. As long as the
aggregation function can be rewritten as SUM() functions,
our mechanisms can be extended to handle it. For example,
STDEV(M) can be computed from SUM(M2), SUM(M), and
COUNT. We can also support aggregations on multiple mea-
sures, e.g., SUM(a ·M1 + b ·M2), as long as M1 and M2 are
public (conceptually, defineM ′ = a ·M1 + b ·M2).

AND-OR expressions.AnMDA query with OR in the pred-
icate can be rewritten as sub-queries with only AND using
the inclusion-exclusion principle. For example,

SELECT SUM(Purchase) FROM T

WHERE Age ∈ [30, 40] OR Salary ∈ [50K, 150K]

can be rewritten as three sub-queries: ł. . .Age ∈ [30, 40]ž +
ł. . . Salary ∈ [50K, 150K]ž− ł. . .Age ∈ [30, 40]ANDSalary ∈

[50K, 150K]ž, each to be estimated using P̄ in our mechanisms.
More generally, an AND-OR expression can be converted
into a disjunctive normal form, and we apply the inclusion-
exclusion principle over clauses as in the above example.

8 RELATED WORK

We review related topics in both the centralized setting of
differential privacy (DP) [15] and its local model (LDP).

LDPmechanisms. There have been several LDP frequency
oracles [1, 4, 5, 9, 13, 16, 35] proposed. They rely on tech-
niques like hashing (e.g., [35]) and Hadamard transform (e.g.,
[1, 4]) for good utility. LDP frequency oracle is also used in
other tasks, e.g., finding heavy hitters [4, 6, 36], frequent item-
set mining [29, 37], and histogram estimation [24, 34, 38].
LDP mean/median estimation is another relevant line of

works [9, 12, 13], as we also support AVG aggregation func-
tion in MDA queries. However, the settings are different and
orthogonal: we assume that the attribute to be aggregated is
public while the dimensions in the predicate are private.

Releasing marginals privately. Releasing marginal tables
can be viewed as a special case of MDA queries (with only
COUNT aggregations and equality constraints). This task
has been studied exhaustively in the central setting of DP.
Laplace noise [14] can be injected to marginal tables to

ensure DP. There are two ways to boost the accuracy of
released marginal following this line. One is to inject noise
to transformations of the data, e.g., Fourier transform [3] or

wavelet [40], and then reverse the transformations. Consis-
tency across marginals is automatically enforced in this way.
Another one is to carefully select a subset of marginals to in-
ject Laplace noise and compute the rest marginals from them,
with the goal of minimizing the max error in a workload
[10]. There are also approaches based on, e.g., multiplicative
weights [19ś21], Chebyshev polynomials [33], maximum
entropy estimation [27], and sampling [7].
There have been several works on releasing marginals

under LDP [8, 30, 41]. [30] generalizes the Expectation Max-
imization algorithm for estimating joint distribution of two
attributes [18] to handle multiple attributes in a marginal.
[8] refines and analyzes how to release marginals via trans-
formations under LDP. [41] adapts the ideas of consistency
enforcement and maximum entropy estimation from mar-
ginal release in the centralized setting [27] to LDP.

Answering range queries. Range counting queries are sup-
ported in the centralized setting of DP via, e.g., hierarchical
intervals [22] (one-dim range queries) or via wavelet [40]
(multi-dimensional range queries). [28] optimizes the hier-
archical intervals in [22] by choosing a proper branching
factor. McKenna et al. [25] propose a method to collectively
optimize errors in high-dimensional queries of a given work-
load under the centralized setting of DP. It will be interesting
to design such workload-dependent techniques under LDP.
In both marginal release and range queries, it has been

noticed that constrained inference could boost the accuracy
while enforcing the consistency across different marginal
tables and intervals (e.g., [3, 10, 22, 28]). Since it is a post-
processing step, all the consistency enforcement techniques
in the centralized setting of DP can be potentially used in
the LDP setting. We leave exploration on how to adapt such
techniques for MDA under LDP to future work.

9 CONCLUSIONS

We study the problem of answering multi-dimensional ana-
lytical (MDA) queries under local differential privacy. Our
approaches do not require a trusted data collector. Sensitive
dimensions are encoded locally to preserve LDP. With LDP
encoders and estimation algorithms, our approaches can an-
swer a class of MDA queries with tight error bounds and
scale well with a large number of dimensions.

Acknowledgments. We thank the anonymous reviewers
for their helpful comments that improved the quality of the
paper. Somesh Jha was partially supported by NSF grants
CCF-FMitF-1836978 and SaTC-Frontiers-1804648 and CCF-
1652140 and ARO grant numberW911NF-17-1-0405. Ninghui
Li was partially supported by NSF grant SaTC-1640374. Any
opinions, findings, conclusions, and recommendations ex-
pressed herein are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES
[1] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. 2018. Hadamard

Response: Estimating Distributions Privately, Efficiently, and with
Little Communication. CoRR abs/1802.04705 (2018).

[2] Shipra Agrawal and Jayant R. Haritsa. 2005. A Framework for High-
Accuracy Privacy-Preserving Mining. In ICDE.

[3] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank
McSherry, and Kunal Talwar. 2007. Privacy, accuracy, and consistency
too: a holistic solution to contingency table release. In PODS.

[4] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha
Thakurta. 2017. Practical Locally Private Heavy Hitters. In NIPS.

[5] Raef Bassily and Adam D. Smith. 2015. Local, Private, Efficient Proto-
cols for Succinct Histograms. In STOC.

[6] Mark Bun, Jelani Nelson, and Uri Stemmer. 2018. Heavy hitters and
the structure of local privacy. In PODS.

[7] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differen-
tially private high-dimensional data publication via sampling-based
inference. In KDD.

[8] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Mar-
ginal Release Under Local Differential Privacy. In SIGMOD.

[9] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting
Telemetry Data Privately. In NIPS.

[10] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011.
Differentially private data cubes: optimizing noise sources and consis-
tency. In SIGMOD.

[11] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml

[12] John C. Duchi, Michael I. Jordan, andMartin J. Wainwright. 2013. Local
Privacy and Statistical Minimax Rates. In FOCS.

[13] John C. Duchi, Martin J. Wainwright, andMichael I. Jordan. 2013. Local
Privacy and Minimax Bounds: Sharp Rates for Probability Estimation.
In NIPS.

[14] Cynthia Dwork, FrankMcSherry, Kobbi Nissim, and Adam Smith. 2006.
Calibrating noise to sensitivity in private data analysis. In TCC.

[15] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations
of Differential Privacy. Foundations and Trends in Theoretical Computer

Science 9, 3-4 (2014). https://doi.org/10.1561/0400000042
[16] Úlfar Erlingsson, Vasyl Pihur, andAleksandra Korolova. 2014. RAPPOR:

Randomized Aggregatable Privacy-Preserving Ordinal Response. In
CCS.

[17] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant.
2003. Limiting privacy breaches in privacy preserving data mining. In
PODS.

[18] Giulia C. Fanti, Vasyl Pihur, and Úlfar Erlingsson. 2016. Building a RAP-
POR with the Unknown: Privacy-Preserving Learning of Associations
and Data Dictionaries. PoPETs 2016, 3 (2016).

[19] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. 2013.
Privately Releasing Conjunctions and the Statistical Query Barrier.
SIAM J. Comput. 42, 4 (2013).

[20] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A Simple and
Practical Algorithm for Differentially Private Data Release. In NIPS.

[21] Moritz Hardt and Guy N. Rothblum. 2010. A Multiplicative Weights
Mechanism for Privacy-Preserving Data Analysis. In FOCS.

[22] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010.
Boosting the Accuracy of Differentially Private Histograms Through
Consistency. PVLDB 3, 1 (2010).

[23] Noah M. Johnson, Joseph P. Near, and Dawn Song. 2018. Towards
Practical Differential Privacy for SQL Queries. PVLDB 11, 5 (2018).

[24] Peter Kairouz, Keith Bonawitz, and Daniel Ramage. 2016. Discrete
Distribution Estimation under Local Privacy. In ICML.

[25] RyanMcKenna, GeromeMiklau, Michael Hay, and AshwinMachanava-
jjhala. 2018. Optimizing error of high-dimensional statistical queries
under differential privacy. PVLDB 11, 10 (2018).

[26] Frank McSherry. 2009. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. In SIGMOD.

[27] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2014. Priview: prac-
tical differentially private release of marginal contingency tables. In
SIGMOD.

[28] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. 2013. Understand-
ing Hierarchical Methods for Differentially Private Histograms. PVLDB
6, 14 (2013).

[29] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren.
2016. Heavy hitter estimation over set-valued data with local differen-
tial privacy. In CCS.

[30] Xuebin Ren, Chia-Mu Yu,Weiren Yu, Shusen Yang, Xinyu Yang, Julie A.
McCann, and Philip S. Yu. 2018. LoPub: High-Dimensional Crowd-
sourced Data Publication With Local Differential Privacy. IEEE Trans.

Information Forensics and Security 13, 9 (2018).
[31] Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin

Meyer, Jose Pacas, and Matthew Sobek. 2019. IPUMS USA: Version 9.0
[dataset].

[32] Apple Differential Privacy Team. 2017. Learning with Privacy at Scale.
[33] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. 2012. Faster

Algorithms for Privately Releasing Marginals. In ICALP.
[34] Shaowei Wang, Liusheng Huang, Pengzhan Wang, Yiwen Nie, Hongli

Xu, Wei Yang, Xiang-Yang Li, and Chunming Qiao. 2016. Mutual
Information Optimally Local Private Discrete Distribution Estimation.
CoRR abs/1607.08025 (2016).

[35] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017.
Locally Differentially Private Protocols for Frequency Estimation. In
USENIX Security.

[36] Tianhao Wang, Ninghui Li, and Somesh Jha. 2017. Locally Differen-
tially Private Heavy Hitter Identification. CoRR abs/1708.06674 (2017).

[37] Tianhao Wang, Ninghui Li, and Somesh Jha. 2018. Locally Differen-
tially Private Frequent Itemset Mining. In SP.

[38] Yue Wang, Xintao Wu, and Donghui Hu. 2016. Using Random-
ized Response for Differential Privacy Preserving Data Collection.
In EDBT/ICDT Workshops.

[39] Stanley L. Warner. 1965. Randomized response: A survey technique
for eliminating evasive answer bias. J. Amer. Statist. Assoc. 60, 309
(1965).

[40] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2010. Differen-
tial privacy via wavelet transforms. In ICDE.

[41] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen.
2018. CALM: Consistent Adaptive Local Marginal for Marginal Release
under Local Differential Privacy. In CCS.

A UNWEIGHTED FREQUENCY ORACLE

Details of (AFO, f̄), i.e., OLH from [35], are in Algorithm 3.

Transition probabilities. Consider the input and output
states defined in (27)-(28). From (36), we have

P1→1 , Pr [Ai (t) = 1 | Bi (t) = 1] =
eϵ

eϵ + д − 1
.

From universal hashing and (36), we have

P0→1 , Pr [Ai (t) = 1 | Bi (t) = 0]

= Pr [H (vi) = H (t[Di]) ∧ stay | t[Di] , vi]

+ Pr [H (vi) , H (t[Di]) ∧ flip | t[Di] , vi] ,

Client side: Encode private dimension t[D].
Parameters: Privacy budget ϵ and hashing parameter д.

1: A user chooses a hash function H ∈ H uniformly at
readom, where H is a universal hash function family
such that every H outputs a value in [д] = {1, 2, . . . ,д}.

2: (Hashing) Let x ← H (t[D]).
3: (Perturbing) Draw y ∈ [д] from the distribution:

Pr [y = i] =

{
eϵ

eϵ+д−1
, for i = x (stay)

1
eϵ+д−1

, for i , x (flip)
. (36)

4: Send AFO(t[D]) ← ⟨H ,y⟩.

Server side: Collect {AFO(t[D])}t ∈S from S .
Answer frequency query fS (v).

1: θ ← 0.
2: For each t ∈ S : suppose AFO(t[D]) = ⟨H ,y⟩

3: If H (v) = y then θ ← θ + 1;
4: Output an estimation to fS (v) as

f̄S (v) =

(
θ −
|S |

д

)
·
(eϵ + д − 1)д

eϵд − eϵ − д + 1
(37)

=

2(eϵ + 1)θ

(eϵ − 1)
−

2|S |

eϵ − 1
when д = eϵ + 1. (38)

Algorithm 3: Unweighted frequency oracle OLH [35]

where łstayž and łflipž are the two events in (36), and thus,

P0→1 =
1

д
·

eϵ

eϵ + д − 1
+

д − 1

д
·

1

eϵ + д − 1
=

1

д
.

Indeed, we have P1→0 = 1 − P1→1 and P0→0 = 1 − P0→1.

B MORE DETAILS OF HI MECHANISM

Our hierarchical-interval (HI) mechanism is in Algorithm 4.

C HI WITH CATEGORICAL DIMENSIONS

For an MDA query with łD = vi ž in the predicate, we would
refer to multi-dim intervals with [vi] from L1

D ; if D is not in
the predicate, we refer to those with ∗ from L0

D
.

Example C.1. Figure 13 shows a 2-dim hierarchy with an
ordinal dimension D1 and a categorical one D3 (State). There
are 4 × 2 2-dim levels. Each 2-dim interval is a pair of an
interval on D1 and a value (or ∗) on D3. Two 2-dim levels,
L2
D1
× L0

D2
and L2

D1
× L1

D2
, are depicted on the right, with

4 × 1 and 4 × 4 2-dim intervals, respectively. Tuple t with
t[D1] = 3 and t[D3] =WA has t[L2

D1
× L0

D2
] = ([3, 4]∗) and

t[L2
D1
×L1

D2
] = ([3, 4]WA) on the two augmented dimensions.

Consider the following MDA query to be processed:

q3 :SELECT SUM(M1) FROM T

WHERE D1 ∈ [2, 7] AND D3 =WA

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: For each (j1, . . . , jd) ∈ {0, 1, . . . ,h}d do:
2: Suppose t[Di] is in interval I jii ∈ L

ji
Di

(i = 1, . . . ,d):

let t[L j1
D1
× . . . × L

jd
Dd
] ← I

j1
1 I

j2
2 . . . I

jd
d
;

3: Create LDP report with (h + 1)d instances ofAϵ ′

FO
where

ϵ ′ = ϵ/(h + 1)d , one for each d-dim level:

AHI(t) ←
〈
Aϵ ′

FO(t[L
j1
D1
× . . . × L

jd
Dd
])
〉
(j1, j2, ..., jd)∈

{0,1, ...,h }d

(39)

Server side: MDA query q = QT (SUM(M),

D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: For i = 1 to d do:
2: Decompose [li , ri] intopi disjoint intervals [li , ri] →

I 1i ∪ I
2
i ∪ . . . ∪ I

pi
i in the hierarchy IDi

;
3: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:
4: Estimate fM

T
(I i11 I

i2
2 . . . I

id
d
) as f̄M

T
(I i11 I

i2
2 . . . I

id
d
);

5: Output an estimation to q as:

P̄HI(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̄
M
T (I

i1
1 I

i2
2 . . . I

id
d
). (40)

Algorithm 4: d-dim HI Mechanism (AHI, P̄HI)

which can be decomposed into 4 sub-queries. On the levelL2
D1
×

L1
D2

there are two, with łD1 ∈ [3, 4] AND D3 = WAž and

łD1 ∈ [5, 6] AND D3 = WAž, respectively. Again, we can
use LDP weighted frequency oracles to encode the augmented
dimensions and approximate these sub-queries.

When analyzing error bounds, we only need to note that
categorical hierarchies have only two levels (h = 1).

Corollary 12. Suppose there are d1 categorical dimensions
and d2 (dq) ordinal ones (in the query q), when ϵ is small,

Err(P̄HI(q)) = O

(
n∆222d1 logdq+2d2 m

ϵ2

)
and

Err(P̄HIO(q)) = O

(
n∆22d1 logdq+d2 m

ϵ2

)
.

D MORE DETAILS OF SC MECHANISM

Our split-and-conjunction (SC) mechanism is in Algorithm 5.
On the client side, each one-dim level of all the dimensions is
encoded using an independent weighted frequency oracle
(lines 3 and 4), with equal privacy budget ϵ/(dh). On the
server side, under the same query decomposition scheme, its
estimation process is almost identical to that of HI, except
that conjunctive estimators f̂M on query dimensions (instead
of estimated weighted frequencies f̄M as in Algorithm 4) are
assembled as the estimated answer to q (lines 4 and 5).

L0
D1

L1
D1

L2
D1

L3
D1

t[D1] = 3

L0
D3

L1
D3

⊗ID1
ID3

t[D3] = WA

. . . }= {. . . ,

NY WA CA FL

*

L2
D1

× L0
D3
, L2

D1
× L1

D3
,

...

t[L2
D1

×L0
D3
] t[L2

D1
×L1

D3
]1 2 3 4 5 6 7 8

*

*

*

*

*

NY

NY

NY

NY

WA

WA

WA

WA

Figure 13: 2D hierarchy on ordinal+categorical dimensions, query decomposition, and HI mechanism

Client side: Encode dimensions t[D1], . . . , t[Dd].

1: For each i = 1 to d do:
2: For each j = 1 to h do:
3: Suppose t[Di] is in interval I ji ∈ L

j
Di
:

let t[L j
Di
] ← I

j
i ;

4: Create LDP report with dh instances of Aϵ/(dh)
FO

:

ASC(t) ←
〈
A

ϵ/(dh)
FO

(t[L
j
Di
])
〉
i=1, ...,d
j=1, ...,h

(41)

Server side: MDA query q = QT (SUM(M),

D1 ∈ [l1, r1] ∧ . . . ∧ Dd ∈ [ld , rd]).

1: For i = 1 to d do:
2: Decompose [li , ri] intopi disjoint intervals [li , ri] →

I 1i ∪ I
2
i ∪ . . . ∪ I

pi
i in the hierarchy IDi

;
3: For each (i1, . . . , id) ∈ {1, . . . ,p1} × . . . × {1, . . . ,pd }:
4: Estimate fM

T
(I i11 I

i2
2 . . . I

id
d
) as f̂M

T
(I i11 I

i2
2 . . . I

id
d
);

5: Output an estimation to q as:

P̄SC(q) =
∑

1≤i1≤p1, ...,1≤id ≤pd

f̂
M
T (I

i1
1 I

i2
2 . . . I

id
d
). (42)

Algorithm 5: d-dim SC Mechanism (ASC, P̄SC)

E PROOFS

Proof of Proposition 4:

From (7) and the linearity of expectation,

E
[
f̄
M
S (v)

]
=

∑
x

x · E
[
f̄Sx (v)

]
=

∑
x

x · fSx (v) = fS (v),

as f̄Sx is unbiased from Lemma 3. The squared error is:

Var
[
f̄
M
S (v)

]
=

∑
distinct x

x2 · Var
[
f̄Sx (v)

]

=

∑
x

x2 ·

(
4|Sx |e

ϵ

(eϵ − 1)2
+ fSx (v)

)
=

4M2
Se

ϵ

(eϵ − 1)2
+M2

S (v), (43)

where (43) is from the fact that AFO is used by each user
independently, and the error bound of f̄S in Lemma 3.
Var[f̄M

S
(u) + f̄

M
S
(v)] = Var[f̄M

S
(u)] + Var[f̄M

S
(v)] is from

Var[f̄S (u)+ f̄S (v)] = Var[f̄S (u)]+Var[f̄S (v)] (f̄S (u) and f̄S (v)

are not independent but their covariance is 0, which can be
verified though careful calculations) and (43).

Proof of Proposition 5:

The unbiasedness has been proved. We can decompose the

error Err(f̃M
S ,1/k
(v)) = Var

[
f̃
M
S ,1/k
(v)

]
into three parts:

Var

[
f̃
M
S ,1/k (v)

]
= E

[(
k f̄MS1 (v) − f

M
S (v)

)2]

=E

[(
(k f̄MS1 (v) − kf

M
S1
(v)) + (kfMS1 (v) − f

M
S (v))

)2]

=k2E

[(
f̄
M
S1
(v) − fMS1 (v)

)2]
+ E

[(
kfMS1 (v) − f

M
S (v)

)2]
+

2kE
[
(f̄MS1 (v) − f

M
S1
(v)) · (kfMS1 (v) − f

M
S (v))

]
. (44)

Using conditional expectation and Proposition 4, we have

E

[(
f̄
M
S1
(v) − fMS1 (v)

)2]
= E

[
E

[(
f̄
M
S1
(v) − fMS1 (v)

)2 ���� S1
]]

=E

[
M2

S1
·

4eϵ

(eϵ − 1)2
+M2

S1
(v)

]
=

4M2
Se

ϵ

k(eϵ − 1)2
+

M2
S (v)

k
. (45)

And from the standard analysis on sampling process,

E

[(
kfMS1 (v) − f

M
S (v)

)2]
= (k − 1)M2

S (v). (46)

For the rest term, we can show

E
[
(f̄MS1 (v) − f

M
S1
(v)) · (kfMS1 (v) − f

M
S (v))

]
=E

[
(f̄MS1 (v) − f

M
S1
(v)) · kfMS1 (v)

]
(as E[f̄M

S1
(v)] = E[fM

S1
(v)] and f

M
S
(v) is a constant)

=kE
[
E
[
(f̄MS1 (v) − f

M
S1
(v)) · fMS1 (v)

�� S1]] = 0. (47)

(as for a fixed S1, E[f̄MS1 (v)] = E[fM
S1
(v)])

Putting (45)-(47) back to (44), we can derive the variance.

Proof of Theorem 6:

The privacy guarantee, ϵ-LDP of AHI, follows directly from
the sequential composability of DP (ϵ is partitioned on h

levels and the change in t[D] can affect all the h levels).

Any interval [l, r] on D can be decomposed into p ≤

2(b − 1) logbm disjoint intervals I 1, . . . , Ip . The unbiased-
ness is from the fact that each sub-query in (12) is equivalent
to fM

T
(I i) and f̄M

T
(I i) is an unbiased estimator of it. The error

follows from Proposition 4 (about each f̄
M
T
(I i)’s error).

Proof of Theorem 7:

AHIO is ϵ-LDP because each user applies AFO on one level
with privacy budget ϵ . Unbiasedness is because each esti-
mator f̃M

T ,1/h
(I i) in line 6 is an unbiased estimator of fM

T
(I i)

from Proposition 5. Again, from Proposition 5, we know

Err(f̃MT ,1/h(I
i)) ≤

2hM2
T (e

2ϵ
+ 1)

(eϵ − 1)2
.

We have h = logbm in HIO and there are p ≤ 2(b − 1) logbm

sub-queries. Therefore, the error upper bound follows.

Proof of Theorem 8:

The analysis for 1D HI (Theorem 6) naturally extends here.
The privacy budget is partitioned for (h+1)d = (logbm+1)

d

instances of AFO. Unbiasedness of P̄HI is from the unbi-
asedness of f̄M . And the query q can be answered from
(2(b − 1) logbm)

dq or less sub-queries.

Proof of Theorem 9:

Similar to the proof of Theorem 7. The term (2(b−1)(logbm+
1))dq is the upper bound of the number of sub-queries q is
decomposed into. The term (logbm + 1)d is from running
weighted frequency oracles on random samples.

Proof of Proposition 10:

The unbiasedness is from the fact that P · b = E[a], which
we have discussed in Section 5.3.1 for the 2-dim case. The k-
dim case is similar. Error bounds follow from the property of
an inversed transition matrix P−1 and the (co)variance of a.

Proof of Theorem 11:

ϵ-LDP is straightforward from the above discussion. Unbi-
asedness of P̄SC is from unbiasedness of f̂M (Proposition 10).
For the worst-case error, since there are O(logdq m) sub-
queries, each of which is approximated by a conjunctive
estimator with an error (from Proposition 10)

O

(
n∆2

(ϵ/d logm)2dq

)
.

Putting them together, it concludes the proof.

F COMPLEXITY ANALYSIS

Table 3 is a summary about complexity of mechanisms (A , P̄)
we have introduced. Here, n is the total number of users, d

Mechanism Encoder time/space Worst-case query pro-
per user on client -cessing time on server

(A
MG
, P̄MG) O(1) O

(
n +md

)
(A

HI
, P̄HI) O

(
logd m

)
O

(
n logdq m

)
(A

HIO
, P̄HIO) O(1) O

(
n + logdq m

)
(A

SC
, P̄SC) O(d logm) O

(
(ndq + 4

dq) logdq m
)

Table 3: Complexity of different LDP mechanisms

Figure 14: HIO and SC on 2 (ordinal) + 2 (categorical)

dimensions: vary query types (ϵ = 5 andm = 52)

is the total number of dimensions, and dq is the number of
dimension in an MDA query. Assume that all dimensions are
ordinal with the max range equal tom.
łEncode space per userž is the size of an LDP report en-

coded byA and sent to the server from each user (in words).
The time taken by A per user is linear in the size, and thus
they are listed in the same column in Table 3. łQuery pro-
cessing timež is the time taken by P̄ to estimate the answer of
a query. The proofs are straightforward and thus are omitted
here: we just need to count how many augmented dimen-
sions each user reports in different mechanisms, and how
many sub-queries an MDA query is decomposed into.

G MORE DETAILS OF EXPERIMENTS

Q1 : SELECT AVG(weekly_work_hour) FROM IPUMS

WHERE marital_status = Married;

Q2 : SELECT AVG(weekly_work_hour) FROM IPUMS

WHERE marital_status = Married AND age ∈ [40, 60];

Q3 : SELECT AVG(Postage) FROM Transactions

WHERE Price ≤ 50 AND Region = State_X;

Q4 : SELECT AVG(Postage) FROM Transactions

WHERE Price ≤ 50 AND Category = 52001;

Comparing SC with HIO on four dimensions. Under
the setting of Section 6.2.1, we compare SC with HIO for
different types of queries and report the results in Figure 14.
For the low-dimensional predicates ł1+0ž and ł1+1ž, they
have comparable accuracy; otherwise, HIO is much better.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi Dimensional Model and Analytics
	2.2 Local Differential Privacy (LDP)
	2.3 Private Multi-Dimensional Analytics

	3 Weighted Frequency Oracle
	3.1 Weighed Frequency Queries and MDA
	3.2 An LDP Frequency Oracle (FO)
	3.3 Oracle Running on Random Samples
	3.4 Answering MDA via LDP Marginals

	4 MDA with One Private Dimension
	4.1 Hierarchical-Interval (HI) Mechanism
	4.2 Better Accuracy via Level Partitioning

	5 Multiple Private Dimensions
	5.1 Multiple Ordinal Dimensions
	5.2 Ordinal and Categorical Dimensions
	5.3 Split-and-Conjunction: When the Dimensionality is High
	5.4 Performance Comparison

	6 Evaluation
	6.1 Experimental Comparison
	6.2 Relative Error and Practical Usage

	7 Extensions and Discussion
	8 Related Work
	9 Conclusions
	References
	A Unweighted Frequency Oracle
	B More Details of HI Mechanism
	C HI with Categorical Dimensions
	D More Details of SC Mechanism
	E Proofs
	F Complexity Analysis
	G More Details of Experiments

