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ABSTRACT

When collecting information, local differential privacy (LDP)
relieves the concern of privacy leakage from users’ perspec-
tive, as user’s private information is randomized before sent
to the aggregator. We study the problem of recovering the
distribution over a numerical domain while satisfying LDP.
While one can discretize a numerical domain and then apply
the protocols developed for categorical domains, we show
that taking advantage of the numerical nature of the domain
results in better trade-off of privacy and utility. We intro-
duce a new reporting mechanism, called the square wave
(SW) mechanism, which exploits the numerical nature in re-
porting. We also develop an Expectation Maximization with
Smoothing (EMS) algorithm, which is applied to aggregated
histograms from the SW mechanism to estimate the original
distributions. Extensive experiments demonstrate that our
proposed approach, SW with EMS, consistently outperforms
other methods in a variety of utility metrics.
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1 INTRODUCTION

Differential privacy [11] has been accepted as the de facto
standard for data privacy. Recently, techniques for satisfying
differential privacy (DP) in the local setting, which we call
LDP, have been studied and deployed. In the local setting for
DP, there are many users and one aggregator. Each user sends
randomized information to the aggregator, who attempts
to infer the data distribution based on users’ reports. LDP
techniques enable the gathering of statistics while preserving
privacy of every user, without relying on trust in a single
trusted third party. LDP techniques have been deployed by
companies like Apple [32], Google [14], and Microsoft [9].

Most existing work on LDP focuses on the situations col-
lecting categorical attributes. Existing research [1, 5, 14, 35,
41] has developed frequency oracle (FO) protocols for cate-
gorical domains, where the aggregator can estimate the fre-
quency of any chosen value in the specified domain (fraction
of users with that private value). We call these Categorical
Frequency Oracle (CFO) protocols.

Many attributes are ordinal or numerical in nature, e.g.,
income, age, the amount of time viewing a certain page, the
amount of communications, the number of times performing
a certain actions, etc. A numerical domain consists of values
that have a meaningful total order. One natural approach for
dealing with ordinal and numerical attributes under LDP is
to first apply binning and then use CFO protocols. That is,
one treats all values in a range as one categorical value when
reporting. This approach faces the challenge of finding the
optimal number of bins, which depends on both the privacy
parameter and the data distribution. One improvement over
this approach is to apply Hierarchical Histogram-based ap-
proaches [17, 27, 40], which uses multiple granularities at
the same time, and exploit the natural consistency relation-
ships between estimations at different granularities. Recently,
Kulkarni et al. [21] studied the accuracy of answering range
queries using this approach.

We note that the stronger privacy guarantee offered by
LDP (as compared with DP) comes with the cost of signifi-
cantly higher noises. As a result, many estimated frequencies
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will be negative. Existing approaches (such as [21]) do not
correct this, and are sub-optimal. We propose to apply Alter-
nating Direction Method of Multipliers (ADMM) optimiza-
tion [7] to improve Hierarchical Histograms, utilizing the
constraints that all estimations are non-negative and sum up
to 1. Experiments show that the improved version of hierar-
chy histogram, which we call HH-ADMM, has significantly
better utility.

The above methods still use CFO protocols in a blackbox
fashion, and existing CFO protocols ignore any semantic re-
lationship between different values. An intriguing research
question is whether one can design frequency oracle proto-
cols that directly utilize the ordered nature of the domain
and produce better estimations. In this paper, we answer
this affirmatively. We propose an approach that combines
what we call a Square Wave reporting mechanism with post-
processing using Expectation Maximization and Smoothing.

The key intuition under the Square Wave mechanism is
that given input v, one should report a value close to v with
higher probability than a value farther away from v. More
specifically, assuming the input domain of numerical values
is Z = [0, 1], the output domain of Square Wave mechanism
is 9 = [~b,1 + b], where b is a parameter depending on
the privacy parameter €. A user with value v € 2 reports a
value 0 randomly drawn from a distribution with probability
density function M,,. For any ¢ € [v — b, v + b], probability
density is M,,(0) = p, and any 0 € [-b, 1+ b]\ [v—b,v + b],
probability density is M (0) = g, where § = e°. We define
and study different wave shapes of General Wave mechanism
other than the above Square Wave, and conclude that Square
Wave has the best utility. We also study how to determine
the key parameter b, the width of the wave. We propose
to choose b to maximize the upper bound of mutual infor-
mation between the input and the output variable, and can
compute b when given the privacy parameter e. Experiments
demonstrate the effectiveness of this approach.

Conceptually, the aggregator, after observing the reported
values, without any prior knowledge of the input distribu-
tion, should perform Maximum Likelihood Estimation (MLE)
to infer the input distribution, which can be carried out by
the Expectation Maximization (EM) algorithm. Through ex-
periments, we have observed that the result of applying EM
is highly sensitive to the parameter controlling terminating
condition. This is because the observed distribution is a com-
bination of the true distribution and the effect of random
noise. When EM terminates too early, the result does not fit
the true distribution well. When EM terminates too late, the
result fits both the true distribution and the effect of noises.
It is unclear how one can set the parameter so that one fits
the distribution, but not the noise, across different datasets
and privacy parameters.

To deal with this challenge, we propose to use smooth-
ing together with the EM algorithm. In each iteration, af-
ter the E step and the M step, we add an S (smoothing)
step, which averages each estimation with its nearest neigh-
bours, by binomial coefficients. The Expectation Maximiza-
tion with Smoothing approach was developed in the con-
text of positron emission tomography and image reconstruc-
tion [24, 30], and was shown to be equivalent to adding a
regularization term penalizing the spiky estimation [24]. In-
tuitively, EMS uses the prior knowledge that the observation
is affected by noise and prefer a smoother distribution to a
jagged one. In the experiment, we observe that EMS is stable
under different settings, and requires no parameter tuning.

To compare different algorithms for reconstructing dis-
tributions of numerical attributes, we first use two metrics
measuring the distance of reconstructed cumulative distribu-
tion from the true one, namely the Wasserstein distance and
Kolmogorov-Smirnov distance (KS distance). In addition,
we also consider accuracy for answering range queries, and
accuracy of estimations of different statistics from the recon-
structed distributions such as mean, variance and quantiles.

The contributions of this paper are as follows. (1) We de-
fine the problem of reconstructing distributions of numerical
attributes under LDP (with non-negativity and sum-up-to-
1 constraints) and propose multiple metrics for comparing
competing algorithms. (2) We introduce HH-ADMM, which
improves upon existing hierarchy histogram based methods.
(3) We introduce the method of combining Square Wave (SW)
reporting with Expectation Maximization and Smoothing
(EMS), and showed that Square Wave is preferable to other
wave shapes, and introduce techniques to choose the band-
width parameter b using mutual information. (4) We conduct
extensive experimental evaluations, comparing the proposed
methods with state-of-the-art methods (e.g., [21]). Results
demonstrate that SW with EMS and HH-ADAM significantly
out-perform existing methods. In addition, SW with EMS
generally performs the best under a wide range of metrics,
and HH-ADMM performs better than SW-EMS on a very
spiking distribution under some of the metrics.

Roadmap. In Section 2, we review the LDP definition and
existing LDP protocols. In Section 3, we discuss metrics for
measuring the quality of the reconstructed distribution. We
describe CFO with binning and HH-ADMM in Section 4. SW
reporting and EMS reconstruction are introduced in Section 5.
We show our experimental results in Section 6. We give an
overview of the related work in Section 7, and conclude in
Section 8.

2 BACKGROUND

Assume there are n users and one aggregator. Each user pos-
sesses a value v € ¥, and the aggregator wants to learn



Symbol ‘ Description

v Private input

0 Randomized output

9 Domain of private input

9 Domain of the randomized output

b True private input frequencies

X Estimate of private input frequencies (normalized)
v Randomized output frequencies (normalized)

P Cumulative distribution function (CDF)
M, Probability density function given input v

Table 1: Notations.

the distribution of values from all users. To protect privacy,
each user randomizes the input value v using an algorithm
() : 2 — 9, where 7 is the set of all possible outputs,
and sends 0 = ¥(v) to the aggregator.

DEFINITION 1 (e-LocAL DIFFERENTIAL PRIVACY). An al-
gorithm ¥(-) : 9 — 9 satisfies e-local differential privacy
(e-LDP), where € > 0, if and only if for any input vy, v, € 9,
we have

VT C2: Pr[¥(vr) € T] < e Pr[¥(vy) € 7],
where 9 denotes the set of all possible outputs of V.

Since a user never reveals v to the aggregator and reports
only ¢ = ¥(v), the user’s privacy is still protected even if
the aggregator is malicious.

Notational Conventions. Throughout the paper, we use
bold letters to denote vectors. For example, v = (vy, ..., v,)
is all users’ values, and x = (xy, . .., xg) is frequencies of all
values (i.e, x; = [{j | v; = i}|/n).If the notation is associated
with a tilde (e.g., V), it is the value after LDP perturbation; and
a hat (e.g., X) denotes the value computed by the aggregator.
Capital bold letters denote matrices and functions that take
more than one input. Table 1 gives some of the frequently
used symbols.

2.1 Categorical Frequency Oracles

A frequency oracle (FO) protocol enables the estimation of the
frequency of any value v € 2 under LDP. Existing protocols
are designed for situations where 7 is a categorical domain.
We call them categorical frequency oracle (CFO) protocols
in this paper. The following are two commonly used CFO
protocols.

Generalized Randomized Response (GRR). This CFO
protocol generalizes the randomized response technique [39],
and uses 4 = 2. It uses as input perturbation function
GRR(+), where GRR(v) outputs the true value v with prob-

ability p = and any value v’ # v with probability

_ 1-p _
9=3g31 =

et
e€+d-1°

#, where d = || is the domain size. To

estimate the frequency of v € Z (i.e., the ratio of the users
who have v as private value to the total number of users),
one counts how many times v is reported, and denote the
count as C(v), and then computes

__(Cw)n)-q

° pP-q
where n is the total number of users. In [37], it is shown
that this is an unbiased estimate of the true count, and the
variance for this estimate is

>

d—2+e€

Var[fcv] = m .

(1)
The variance given in (1) is linear to d; thus when the domain
size d increases, the accuracy of this protocol is low.

Optimized Local Hashing (OLH) [37]. This protocol deals
with a large domain size d = || by first using a hash func-
tion to map an input value into a smaller domain of size g
(typically g < |2]), and then applying randomized response
to the hashed value (which leads to p = #;_1). In this
protocol, both the hashing step and the randomization step
result in information loss. The choice of the parameter g is
a tradeoff between losing information during the hashing
step and losing information during the randomization step.
In [37], it is found that the optimal choice of g that leads to
minimal variance is (e€ + 1).

In OLH, one reports (H, GRR(H(v))), where H is ran-
domly chosen from a family of hash functions that hash
each value in Z to {1...g}, and GRR(:) is the perturbation
function for Generalized Randomized Response, while op-
erating on the domain {1...g}. Let (H/,y/) be the report
from the j’th user. For each value v € 2, to compute its
frequency, one first computes C(v) = |{j | H/(v) = ¢/}|, and
then transforms C(v) to its unbiased estimate

_ (C@)/n) -1/g)

v

p-1/g
The approximate variance of this estimate is
4e€
Var[%,] = ————.
(%l =

Compared with (1), the factor d — 2 + €€ is replaced by 4e€.
This suggests that for smaller || (such that |Z| — 2 < 3e€),
GRR is better; but for large |Z|, OLH is better and has a
variance that does not depend on |2|.

2.2 Handling Numerical Attributes

Two methods have been proposed for mean estimation under
LDP for numerical attributes. Note that using these methods
one can estimate the mean, and not the distribution.

Stochastic Rounding (SR) [10]. The main idea of Stochas-
tic Rounding (SR) is that, no matter what is the input value v,



each user reports one of two extreme values, with probabili-
ties depending on v. Here we give an equivalent description
of the protocol. Following [10], we assume that the input
domain is [-1,1]. Given a value v € [-1,1],letp = eﬁil and
q=1-p= ﬁ, the SR method outputs a random variable
w

v’, which takes the value —1 with probability q +

and value 1 with probability g + w. Since

E@q:04)q+<p—q§1—w +q+(p—q§1+w

=@p-qw,

leto = pvflq, we have E[0] = v; thus the mean of ¥ provides
an unbiased estimate of the mean for the distribution.
Piecewise Mechanism (PM) [33]. In the Piecewise Mech-
anism, the input domain is [—1, 1], and the output domain is
[=s,s], where s = % For each v € [—1, 1], there is an as-
sociated range [£(v), r(v)] where —s < £(v) < r(v) < s, such
that with input v, a value in the range [£(v), r(v)] will be re-
ported with higher probability than a value outside the range.
el2.p-1 /.41
e€/2—1 e€l2_1 *

The width of the range is r(v) — £(v) = eTzz_l’ and the center

js dor@) o e, Specifically, PM works as follows:

More precisely, we have £(v) = and r(v) =

2 e€/2—1
ee/Z ee/z -1
Pr [PM(U) = Z~1] = T . m ifo e [{’(v), r(v)],
1 e2-1

Pr[PM(v) = 9] = otherwise.

2e€/2 e€l2 41
It is shown that o is unbiased, and has better variance than
SR when € is large [33].

3 UTILITY METRICS

When the private values are in a numerical domain, we need
utility metrics that are different from those in categorical
domains. In particular, the metrics should reflect the ordered
nature of the underlying domain.

3.1 Metrics based on Distribution Distance

We want a metric to measure the distance between the recov-
ered density distribution and the true distribution. However,
since the distribution is over a metric space, we do not want
to use point-wise distance metrics such as the L; and L, dis-
tance or the Kullback-Leibler (KL) divergence. For a simple
example, consider the case where 7 = {1, 2, 3, 4}, the true
distribution is x = [0.7,0.1,0.1,0.1]. The two estimations
%, = [0.1,0.7,0.1,0.1] and %, = [0.1,0.1,0.1,0.7] have the
same L, Ly, and KL distance from x, but the distance be-
tween X; and x should be smaller than the distance between
X, and x when we consider the numerical nature. To capture

this requirement, we propose to use two popular distribution
distances as metrics.

Wasserstein Distance (aka. Earth Mover Distance). Wasser-

stein distance measures the cost of moving the probability
mass (or density) from distribution to another distribution.
In this paper, we use the one dimensional Wasserstein dis-
tance. For discrete domain, define the cumulative function
P : [0,1]¢ x 2 — [0,1] that takes a distribution x and a
value v, and output P(x,v) = }7_; x,. Let x and X be two
distributions. The one dimensional Wasserstein distance is
the L, difference between their cumulative distributions:

Wix2) = ) [P(x.0) = P(x.0)] .
veg
For continuous domain, x is the probability density func-
tion with support on [0, 1], P(x,v) = /tz_—)O x(t)dt. The one
dimensional Wasserstein distance is

Wi(x, %) = / . |P(x,v) — P(x,v)| dv .

Kolmogorov-Smirnov (KS) Distance. KS distance is the
maximum absolute difference at any point between the cu-
mulative functions of two distributions:
dgs(x,%) = sup |[P(x,v) — P(%x,0)| .
veg

Both of Wasserstein distance and KS distance can be consid-
ered as measures for the errors of answering prefix range
queries on numerical domains with constraints that the es-
timate must be non-negative and sum up to 1. Wasserstein
distance is the error of sum of all prefix queries; and the KS
distance is the maximum error of prefix queries.

3.2 Semantic and Statistical Quantities

Range queries have been used as the main utility metrics
for research in this area [17, 21, 36, 38]. Also, we consider
the basic statistics from the estimated data distributions and
check whether they are accurate.

Range Query. Define the range query function R(x, i, a) =
P(x, i+a)—P(x, i), where « specifies the range size. Given the
true distribution x and the estimated distribution %, range
queries reflect the quality of estimate with randomly sam-
pling i and calculating the following:

IR(x,i,a) - R(X, i,a) .

Mean. We denote p as the mean of the true distribution,
and / as the estimated mean. To measure mean accuracy, we
use the absolute value of the difference between these two,
ie. |p—fl.

Variance. We use o to denote the variance of the true dis-
tribution, and &2 for the variance from the reconstructed



distribution. To measure variance accuracy, we use the abso-
lute value of the difference between these two, i.e. |o% — 62|.

Quantiles. Quantiles are cut points dividing the range of
a probability distribution into intervals with equal proba-
bilities. Formally, Q(x, ) = arg max, {P(x,v) < f}. In the
experiment, define B = {10%, 20%, . .., 90%}, we measure
the following:

1
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4 USING CFO PROTOCOLS FOR
NUMERICAL DOMAINS

In this section, we present two approaches that use CFO pro-
tocols to reconstruct distributions over an discrete numerical
domain Z = {1,2---,d}. Continuous numerical domains
can be buckized into discrete ones.

4.1 CFO with Binning

Given a numerical domain, one can make it discrete using
binning, and then have each user report which bin the pri-
vate value is in using a CFO protocol. For a given domain
size and privacy parameter €, one chooses either OLH or
GRR, based on which one gives lower estimation variance.
After obtaining density estimations for all the bins, one com-
putes a density distribution for the domain by assuming
uniform distribution within each bin. However, some esti-
mated values may be negative, which does not lead to valid
cumulative distribution functions on the domain. In [38], it
is shown that a post-processing method called Norm-Sub
can be applied to improve estimation. Norm-sub converts
negative estimates to 0 and subtracts the same amount to
all the positive estimates so that they sum up to 1. If some
positive estimates become negative after the subtraction, the
process is repeated. This results in an estimation such that
each estimation is non-negative and all estimations sum up
to 1. It can thus be interpreted as a probability distribution.

Challenge of Choosing Bin Size. When using binning,
there are two sources of errors: noise and bias due to group-
ing values together. More bins lead to greater error due to
noises. Fewer bins lead to greater error due to biases. Choos-
ing the bin size is a trading-off of the above two sources of
errors, and the effect of each choice depends both on the
privacy parameter €, and on property of the distribution. For
example, when a distribution is smooth, one would prefer
using less bins, as the bias error is small, and when a distri-
bution is spiky, using more bins would perform better. In
our experiments, we observe that even if we could choose
the optimal bin size empirically for each dataset and € value
(which is infeasible to do in practice due to privacy), the
result would still be worse than the method to be proposed

in Section 5. We thus chose not to develop ways to choose
bin size based on €, and just report results of this method
under several different bin sizes.

4.2 Hierarchy-based Methods

Hierarchy-based methods, including Hierarchy Histogram
(HH) in [17, 27] and Haar in [40], were first proposed in the
centralized setting of DP. In [21], Kulkarni et al. studied the
HH method and the Haar in the context of LDP. In order to
adapt Haar method to the local setting, they used Hadamard
random response (HRR) as the frequency oracle. HRR is sim-
ilar to Local Hashing method introduced in the Section 2.1,
but fixing g = 2 and using a Hadamard matrix as the family
of hash functions. To make it clear in the context, we call
the LDP version of Haar as HaarHRR.

HH in LDP. Given a positive integer  and a discrete, or-
dered domain with size d = | 2|, one can construct a f-ary
tree with d leaves corresponding to values in 2. There are
(h +1) layers in the tree, where h = log, d (for simplicity,
we assume that log, d is an integer). The (h + 1)-th layer is
the root. A user with value v chooses a layer € € {1,...,h}
uniformly at random, and then reports ¢ as well as the per-
turbed value of v’s ancestor node at layer £. For each node
in the tree, the aggregator can obtain an estimate of its fre-
quency. Assuming that the distribution differences among
the h groups are negligible, for each parent-child relation,
one expects that the sum of child estimations equals the
that of the parent. Constrained inference techniques [17] are
applied to ensure this property.

HaarHRR. Similar to HH, one can use a binary tree to
estimate distribution with Discrete Haar Transform [21].
Specifically, each leaf represents the frequency of a value.
Define the height of a leaf node as 0; and the height of an

inner nodes a is denotes as h(a). Each inner node now repre-
(@)_ (@)
. -C
sents the Haar coefficient ¢, = ~Ly—, where C;“) (or C9)

is the sum of all leaves of left (or right) subtree of node a.

In the LDP setting, for a user with value v, the Haar co-
efficients on each layer has exactly one element equal to
—1 or 1, while others are all zeros. Similar to HH, each user
chooses a layer ¢ € {1, ..., h} uniformly at random, then ap-
ply Hadamard randomized response (HRR) on layer ¢ which
depends on Hadamard matrix ¢ € {-1, 132702" With
HRR reports from users, the aggregator can calculate unbi-
ased estimates for the Haar coefficients on layer €. Due the
limit of space, more details can be found in [21].

Difference from the Centralized Setting. When using
hierarchy-based method, there are two ways to ensure the
privacy constraint. One is to divide the privacy budget, where
one builds a single tree for all values. Since each value affects
the counts at every level, one splits the privacy budget among



the levels. The other is to divide the population among the
layers, where each value contributes to the estimation of
a single layer, and one can use the whole privacy budget
for each count. When dividing the population, the absolute
level of noise is less than the case of dividing privacy budget;
however, the total count also decreases, magnifying the im-
pact of noise. In addition, dividing the population introduces
sampling errors, as users are divided into different groups,
which may have different distribution from the global one.

In the centralized setting, because the amount of added
noise is low, it is better to divide the privacy budget, as
one avoids sampling errors. In [27], it was found that in the
centralized setting, the optimal branching factor for HH is
around 16. And this results in better performance than using
the Haar method, which can be applied only to a binary
hierarchy. In the LDP setting, because the amount of noise is
much larger, sampling errors can be mostly ignored, and it
is better to divide the population instead of privacy budget.
As a result, the optimal branching factor for HH is around 5,
making it similar to the Haar method. This was theoretically
proved and empirically demonstrated in [21, 36].

4.3 HH-ADMM

We note that there are other ways to improve hierarchy-
based mechanism in the LDP setting. First, the larger noise in
the LDP setting results in negative estimates. We can exploit
the prior knowledge that the true counts are non-negative to
improve the negative estimates. Second, the total true count
is known, as LDP protects privacy of reported values and
not the fact that one is reporting. These are not exploited in
[21]. We propose to use the Alternating Direction Method of
Multipliers (ADMM) algorithm [7] to post-process the hier-
archy estimation. The usage of ADMM was proposed in [22]
for the centralized setting. Our method applies this to LDP,
and has two additional differences from [22]. First, we use
Ly norm in the objective function because the noise by CFO
is well approximated by Gaussian noise, and minimizing L,
norm achieves MLE. In the centralized setting, Laplace noise
is used, and L; norm is minimized in [22]. Second, we pose an
additional constraint that the estimates sum up to n, which
is known in LDP setting. In the setting considered in [22], n
is unknown.

The HH-ADMM Algorithm. Given a constant vector X,
ADMM is an efficient algorithm that aims to find % that
satisfies the following optimization problem:

1 -
minimize 2 [|x — x||22 (2)
subjectto Ax =0, x>0,

)A(():l

In the hierarchy histogram case of LDP, X represents the
concatenation of estimates from all the layers, where Xy is

the root. x is the post-processed estimates. The hierarchical
constraints state that the estimate of each internal node
should be equal to the sum of estimates of its children nodes.
This can be represented by an equation Ax = 0, where A
has one row for each internal node and one column for each
node, and a;; is defined as:

1, ifi=j
ajj = {—1, node jis a child of node i
0, otherwise

The optimization problem (2) improves the estimation
by enforcing the non-negativity (x > 0) and sum-up-to-1
(%o = 1) compared with [21]. Because of the limit of space, we
refer the readers who want to know the detail of derivation
to [22] for more information.

5 SQUARE WAVE AND EXPECTATION
MAXIMIZATION WITH SMOOTHING

The methods we presented in Section 4 use CFO protocols
as black-boxes and do not fully exploit the ordered nature of
the domains. We propose a new approach that uses a Square
Wave reporting mechanism with post-processing conducted
using Expectation Maximization with Smoothing (EMS).

5.1 General Wave Reporting

We first study a family of randomized reporting mechanisms
that we call General Wave mechanisms. The intuition behind
this approach is to try to increase the probability that a noisy
reported value carries meaningful information about the
input. This is also the implicit goal driving the development
of CFO protocols beyond GRR. In GRR, one reports a value
in 9. Intuitively, if the reported value is the true value, then
the report is a “useful signal”, as it conveys the extract correct
information about the true input. If the reported value is not
the true value, the report is in some sense noise that needs to
be removed. The probability that a useful signal is generated
isp = #;_1, where d = || is the size of the domain.
When d is large, p is small, and GRR performs poorly. The
essence of OLH and other CFO protocols is that one reports
a randomly selected set of values, where one’s true value
has a higher probability of being selected than other values.
In some sense, each “useful signal” is less sharp, since it is a
set of values, but there is a much higher probability that a
useful signal is transmitted.

Exploiting the ordinal nature of the domain, we note that a
report that is different from but close to the true value v also
carries useful information about the distribution. Therefore,
given input v, we can report values closer to v with a higher
probability than values that are farther away from v.

Without loss of generality, we assume that 2 = [0, 1]
consists of floating point numbers between 0 and 1. The



random reporting mechanism can be defined by a family of
probability density functions (PDF) over the output domain,
with one PDF for each input value. We denote the output
probability density function for v as M, (9) = Pr[¥(v) = 7].

Following the above intuition, we want M, (0) to satisfy
the property that M,(0) = q when |0 — v| > b, and q <
M, (0) < e°q when |0 — v| < b, where b is a parameter
to be chosen. To ensure that for values close to the two
ends, the range of near-by values is the same, we enlarge the
output domain 9 = [-b, 1+ b]. We formalize the idea as the
following general wave mechanism.

DEFINITION 2 (GENERAL WAVE MECHANISM (GW)). With
input domain 9 = [0, 1] and output domain 9 = [-b,1 + b],
a randomization mechanism¥ : 9 — & is an instance of
general wave mechanism if for allv € 9, there is a wave
function W: R — [q, e°q] with constants q¢ > 0 and € > 0,
such that the output probability density function M,(0) =
W@ —v):

(1) W(z) = q for|z| > b;

b
@ [, W()dz=1-q .

THEOREM 1. GW satisfies e-LDP.

Proor. For any two possible input value vy, v, € Z and
PriGW(vy)eT]

any set of possible output T C 2 of GW, we have PIICW(0s)eT] =

Jocy My (9142
Joer Moy (913

PIGW(v)eT] _ foer €S9 d0 _ ¢
< =
we have POWoeT] = T g do ec . O

. By definition for all v;,v, € Z and T C 9

5.2 The Square Wave mechanism

GW can have different wave shapes. An intriguing question
is what shape should be used. Following the same intuition
in [1], given different values v # v’, if M, and M., are
identical, then there is no way to distinguish those different
input values. Therefore, the hope is that the farther apart
M, and M,, are, the easier it is to tell them apart. We use
the difference between two output distributions, Wasserstein
(a.k.a., earth-mover) distance as the utility metric. Based on
this, we find the Square Wave mechanism, where supports
for [v—b, v+ b] are the same, is optimal. We also empirically
compare GW of other shapes with Square Wave mechanism
in Section 6.4. The experimental results support our intuition.

Specification of Square Wave Reporting. The Square
Wave mechanism SW is defined as:

Yoe D,0€ 9, Mv({)):{P, iflo-9|<b, )

q, otherwise .

By maximizing the difference between p and g while sat-
isfying the total probability adds up to 1, the values p, g can

be derived as:

e _ 1
2bec+1° 17 2bec w1

For each input v, the probability mass distribution for the
perturbed output looks like a square wave, with the high
plateau region centered around v. We thus call it the Square
Wave (SW) reporting mechanism.

p:

THEOREM 2. For any fixed b and e, the SW is the GW that
maximizes the Wasserstein distance between any two output
distributions of two different inputs.

Theorem 2 can be proved by using the following Lemma 1
and Lemma 2.

LEMMA 1. Givenvy,v; € P as inputs to general wave mech-
anism, where v, > vy and let A = vy, — vy > 0, the Wasser-
stein distance between the output distributions of general wave
mechanism is A(1 — (2b + 1)q).

Proor. Given two different input values v; and v; which
satisfy v, —v; = A > 0, let M, and M, are the correspond-
ing output distributions. Define a function DIFF(z) as the
following:

0, ifz<-b
DIFF(z) ={1—(2b + 1)q, ifz>b
fj}(W(z’) —q)dz’, otherwise.

The cumulative function of SW can be written as

P(M,,, ) = (b + 0)q + DIFF(0 — v)
Therefore,

1+b q b
/ P(M,, 9)do :5(1 +2b)% + / DIFF(z)dz
b -b

+(1-2b+1)g)(1-v).

Following the definition of Wasserstein distance of one di-
mensional data with £; norm in Section 3, and as P(M,,, ) >
P(M,,, 9) for all 0, it follows that

Wi(My,, My,) = / |[P(My,,0) — P(My,, 0)|d0
2

1+b
= / (P(My,,?) — P(My,,,0)) do
-b
=(1-(2b+1)gA.
O

Lemma 1 shows that we need to minimize q if we want to
maximize the Wasserstein distance between any two output
distributions. Thus, we have the following lemma.

LEMMA 2. For any fixed b and €, the minimum q for general
wave mechanism is q = 2he—1€+1’ which can be achieved if and
only if the mechanism is SW.



Proor. By criteria of the definition of GW, we have

b
1=gq +/ W(z)dz < 1+ (2b)eq
-b

1
=q> ———
1= 2be€ +1
We have equality iff M,,(0) = e°q for all © € [v — b,v + b],
which turns out to be SW. O

Comparison with PM Mechanism. Square Wave (SW)
reporting is similar to the Piecewise Mechanism (PM) for
mean estimation [33] (see Section 2.2). PM directly sums up
the randomized reports to estimate the mean of distribution,
while the outputs of SW are used to reconstruct the whole
distribution (the reconstruction method will be described in
Subsection 5.5). Driven by the different focus, the reporting
mechanisms are also different. PM has to be unbiased for
mean estimation, so the input values are not always at the

center of high probability region. For example, given input

e€/241
e€/2_1° _1]

v = —1, the high probability range in PM is [—

Communication cost. With SW, each report consists of
a single floating point number. The communication cost is
thus a small constant for each user, similar to protocols such
as GRR and OLH.

5.3 Choosing b

An important parameter to choose for the Square Wave re-
porting mechanism is b. In Square Wave reporting, a value
that is within b of true input is reported with a probability
that is e€ times the probability that a “far” value is reported.
The optimal choice of b depends on the privacy parameter
€. For a larger €, a smaller b is preferred. When € goes to
infinity, a value of b — 0 leads to total recovery of input
distribution, and any b > 0 leads to information loss. Intu-
itively, the optimal choice of b also depends on the input
distribution. For a distribution with probability density con-
centrated at one point, one would prefer smaller b. For a
distribution with more or less evenly distributed probability
density, one would prefer a larger b. However, since we do
not know the distribution of the private values, we want to
choose a b value independent of the distribution, but can
perform reasonably well over different distributions.

In this paper, we choose b to maximize the upper bound
of mutual information between the input and output of the
Square Wave reporting. We also empirically study the effect
of varying b (see Section 6.4). The experimental results show
that choosing b by this method results in optimal or close to
optimal choices of b.

Let V and V be the input and output random variables
representing the input and output of SW, respectively. The
mutual information between V and V can be represented by

the difference between differential entropy and conditional
differential entropy of V and V:

I(V,V) = h(V) = h(V|V) = h(V) - h(V|V) .
The quantity I(V, V) depends on the input distribution, which
we want to avoid. Therefore, we consider an upper bound of
I(v, Y), which is achieved when V is uniformly distributed

on 2. Let U be the random variable that is uniformly dis-
tributed in . Because h(V) < h(U), we have:

I(V,V) < h(U) — h(V|V). ()
In (4), the first term of RHS is
h(U) = log(2b + 1).
The second term of RHS only depends on SW:

hVIV) = —/ Pr[V = ov](2bplogp + qlogq)

= —(2bplogp + qlogq)
2bee .
= —m + log(2be + 1) .

So the mutual information is determined by a function of b,
) 2b+1 N 2bee®
0
& 2be€ +1

2be€ +1°
By making its derivative to 0, we get

_eef—e+1

C 2e€(e€—1—¢€)
Note that b is a non-increasing function with e. When € goes
to oo, b goes to 0. When € goes to 0, b goes to 1/2, which
leads to an output domain that doubles the size of the input
domain, and for each input value, half of the output domain
are considered “close” to the input value.

5.4 Bucketizing

The aggregator receives perturbed reports from users and
needs to reconstruct the distribution on %. Our approach
performs this reconstruction on a discretized domain, i.e.,
histograms over the domain. The bucketization step can be
performed either before or after applying the randomization
step. We discuss the two approaches below. In experiments,
we use the “randomize before bucketize” approach.

“Randomize before bucketize” (R-B). Here each user pos-
sesses a floating point number in # = [0, 1], applies the
Square Wave mechanism in Section 5.2, and sends the re-
sult to the aggregator. The aggregator receives values in
2 = [-b,1 + b], discretizes the reported values into d buck-
ets in 2, and constructs a histogram with d bins. Using the
method in Section 5.5, the aggregator can reconstruct an
estimated input histogram of d bins. In experiments, we set
d = d for simplicity.



We compare the results of choosing different d in Sec-
tion 6.4, and found that the results are similar so long as d
does not deviate far from VN.

“Bucketize before randomize” (B-R) or discrete input
domain. Alternatively, a user can perform the discretiza-
tion step first, and then perform randomization. The SW
mechanism can be naturally applied in a discrete domain
as well. Assume input domain size is d = ||, discrete SW
mechanism has output domain size d= |.@| =d + 2b, and
randomizes input values as the following:

. o | p iflo=0|<Db
Yv e P,0e€ P, PriSW(v) = 7] —{ 7 otherwise,

— e€ _ 1 :
Where p = m and q = m. In thlS case,

ce—e+1
2e€(e€—1— e)d

The above discrete SW mechanism can also be applied
when the input domain is already discrete (e.g., age). We
conducted experiments comparing doing R-B versus B-R,
and found that they are very similar. Detailed results are
omitted due to space limitation.

one can set b =

5.5 Estimating Distribution from Reports

The aggregator receives perturbed values and faces an esti-
mation problem. Note that post-processing of the output of a
mechanism that satisfies differential privacy (the perturbed
values from users) does not affect its privacy guarantee [12].

Without relying on any prior knowledge of the actual
distribution, the natural approach is to conduct Maximum
Likelihood Estimation (MLE). We use a d x d matrix M to
characterize the randomization process. More specifically,
the matrix M € [0, 1]%*? denotes the transformation proba-
bilities, where M; ; represents the probability of output value
falling in bucket B;,j € [d], given input in bucket B;, i € [d],
(assuming the input data fall uniformly at random within
bucket B;). Each column of M sums up to 1.

Expectation-Maximization (EM) Algorithm. Given the

Algorithm 1 Post-processing EM algorithm

Input: M, v

Output: X

while not converge do
E-step: Vi € {1, ...,d},

Pr [27 € Ej|v € Bi,f(]

Pl‘ = )A(i = =
orz Pr [v € Bj|x]
. M;i
TN LS M
jeld) k=1 TURTE

M-step: Vi € {1, ...,d},
bk
Zk/ Pk/

end while
Return x

Proor. To prove EM algorithm converges to the max-
imum likelihood estimator, it is enough to show the log-
likelihood function is concave [6]. In the context of our prob-

lem
In 1_[ Pr [0k |x]

= Zln (Zx,Pr [Ok|v € B; ])

where Pr [0 |v € B;] are constants determined by SW method.
Thus, L(x) is a concave function. O

L(x) = InPr[v|x] =

Stopping Criteria. Through experiments, we have observed
that the result of applying EM is highly sensitive to the pa-
rameter controlling terminating condition. If EM terminates
too early, the reconstructed distribution is still far from the

probability matrix M as defined above, we can use an Expectation- true one. If EM terminates too late, while the reconstructed

Maximization (EM) algorithm to reconstruct the distribution.
The aggregator receives n randomized values from users,
which are denoted as v = {0y,...,0,}, and finds X that
maximizes the log-likelihood L(X) = In Pr [v|%].

Let n; be the number of values in Bj is reported. The EM
algorithm for post-processing the square wave reporting is
shown in Algorithm 1. Note that there are existing works
that use EM to post-process results of CFO (e.g., [16, 28]),
but our proposed EM algorithm takes aggregated results and
is thus more efficient. Because of limitation of space, we omit
the derivation of EM algorithm.

THEOREM 3. The EM algorithm converges to the maximum-
likelihood (ML) estimator of the true frequencies x.

distribution does fit the observation better (higher likeli-
hood), it is also getting farther away from the true distri-
bution to fit the noise. One of the most common stopping
criteria for EM algorithm is checking whether the relative
improvement of log-likelihood is small [16]. Namely, when
|L(f((t+1)) - L(f(([))| < 1 for some small positive number 7,
EM algorithm stops. The choice of 7 depends on many factors,
including the smoothness of distribution and the amount
of noise added by the square wave distribution. Empirically,
we find that if we set 7 proportional to e, EM algorithm
generally performs better than the one using a fixed 7. How-
ever, on some datasets that have a smoother distribution,
the recovered result still over-fits the noise. Several of our



attempts at finding a stopping condition that make EM per-
form well consistently did not succeed. This motivates us to
apply smoothing in EM.

EMS Algorithm. Using prior knowledge in estimation
can make results less sensitive to the noise and more ac-
curate than MLE solution. By the nature of numerical do-
main, adjacent numerical values’ frequencies should not vary
dramatically. With this observation, we can add a smooth-
ing step after the M-step in the EM algorithm, boosting
the accuracy with prior knowledge. We call the EM algo-
rithm with smoothing steps as EMS algorithm. The idea
of adding smoothing step into EM algorithm dates back to
1990s [24, 30] in the context of positron emission tomogra-
phy and image reconstruction. The authors showed that a
simple local smoothing method, the weight average with bi-
nomial coefficients of a bin value and the values of its nearest
neighbours, could improve the estimation dramatically. We
adopt this smoothing method. That is, after the M-step, the
smoothing step will average each estimate with its adjacent
ones with binomial coefficients (1, 2, 1):
Xi = oXi + 5 (Xio1 + Xiv)

It was proved that adding the smoothing step is equiv-
alent to adding a regularization term penalizing the spiky
estimation [24], which can be viewed as applying Bayesian
inference with a prior that prefers smoother distribution to
jagged ones [26]. In more recent work, the idea of EMS is
also applied to spatial data [15] and biophysics data [18].

6 EXPERIMENTS
6.1 Experimental Setup

Datasets. We use the following datasets to conduct our
experiments. One of them is synthetic, and the other three
are real world datasets. All of them consist of numerical
values. For CFO based methods, we discretize the values
to the same granularity as the output of SW with EMS/EM
method. Also, in order to compare with HH and HH-ADMM,
which have optimal branching factor close to 4 [21], we
choose the granularity (number of buckets in histogram) to
be power of 4.

Synthetic Beta(5, 2) dataset. Originally, the distribution
is in the continuous domain [0, 1]. One hundred thousand
samples are generated. In experiments, we reconstruct the
histogram with 256 buckets for all methods.

Taxi dataset’s attribute pick-up time. Taxi pickup time
dataset comes from 2018 January New York Taxi data [31].
Originally, the dataset contains the pickup time in a day (in
seconds). We map the values into [0, 1]. There are 2, 189, 968
samples in the dataset. In experiments, all estimated his-
tograms have 1024 buckets.

Metrics | Wasserstein Range | Mean & | Quantile
and KS | Query | Variance
Methods distance
SW Wl'th EMS/EM v v v v
(this paper)
HH-ADMM
(this paper) v v v 4
CFO binning ‘ v ‘ v ‘ v ‘ v
HH [21] and v
HaarHRR [21]
PM [33] and SR [10] | | | v |

Table 2: Methods and evaluated metrics.

Income dataset. We use the income information of the
2017 American Community Survey [29]. The data range
is [0, 1563000). We extract the values that are smaller than
524288 (i.e., 2!%) and map them into [0, 1]. There are 2, 308, 374
samples after pre-processing. We choose to set the estimated
histograms with 1024 buckets.

Retirement dataset. The San Francisco employee retire-
ment plans data [25] contains integer values from —28, 700
to 101,000. We extract values that are non-negative and
smaller than 60, 000, and map them into [0, 1]. There are
178,012 samples after post-processing. In experiments, we
reconstruct the histogram with 1024 buckets for all methods.

The income dataset is spiky because many people tend
to report with precision up to hundreds or thousands (e.g.,
people are more likely to report $3000 instead of more precise
value like $3050 or $2980.)

Competitors. In the experiments, we consider several ex-
isting methods, including methods that obtain mean (PM,
SR) and Hierarchy-based Methods (HH, HaarHRR). We also
consider CFO with binning methods, our proposed method
HH-ADMM, and SW with EMS/EM. To the more specific, we
summarize the methods and metrics evaluated in Table 2.

e Piecewise Mechanism (PM) and Stochastic Rounding
(SR) (See Section 2.2) are only evaluated for mean
and variance. They were designed for mean, and we
adapted them to also estimate variance.

e For CFO with binning, we partition & into ¢ con-
secutive, non-overlapping chunks. We consider ¢ =
16, 32, 64, which are the best performing c¢ values.

e For HH, HaarHRR and HH-ADMM, similar to [21], we
use a branching factor of 4. HH and HaarHRR are only
evaluated for range queries as they produce estima-
tion results with negative values, which are not valid
probability distributions. Other metrics are defined for
probability distributions.

e For SW with EM and EMS as post-processing, we set
T = 107%¢€ for EM and 7 = 1073 for EMS.
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Figure 1: Normalized frequencies of datasets for experiments.
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Figure 2: Results of distribution distances (first row: Wasserstein distance, second row: KS distance), varying e.

As a brief overview of the experiment results, SW with
EMS performs best with different privacy budgets and differ-
ent metrics. HH-ADMM performs best on the income dataset
under some of the metrics. We also experimentally demon-
strate the better utility of SW over other wave shapes in GW
and the near-optimal choice of b for SW.

Evaluation methodology. The algorithms are implemented
using Python 3.6 and Numpy 1.15; the experiments are con-
ducted on a server with Intel Xeon 4108 and 128GB memory.
For each dataset and each method, we repeat the experiment

100 times and take the mean.

6.2 Distribution Distance

We first evaluate metrics that capture the quality of the re-
covered distributions. Note that HH and haarHRR are not
included (but HH-ADMM is) because HH or haarHRR does
not result in valid distributions.

Wasserstein Distance. Figure 2(a)-2(d) shows the Wasser-
stein distance W; of reconstructed distribution and the true
distribution. In most cases, SW with EMS performs best, fol-
lowed by EM and HH-ADMM. For the CFO-binning methods,
when € is small, larger binning sizes (i.e., fewer number of
bins) tend to give better performance. The lines for larger
binning sizes flatten as € increases, showing that the errors
are dominated by biases due to binning. When € becomes

larger, CFO-binning with smaller bin sizes (i.e., more bins)
becomes better. We observe that even if we could choose the
optimal bin size empirically for each dataset and € value, the
result would still be worse than SW with EMS.

KS Distance. Figure 2(e)-2(h) show the K-S distance. For
Beta, taxi pickup time and retirement datasets, SW with EMS
generally performs the best, followed by EM. For the income
dataset, HH-ADMM performs better than EM and EMS under
this metric, especially under larger € values. This is because
the income dataset is more spiky, due to the fact that people
tend to report income using round numbers. HH-ADMM is
better at preserving some of the spikes in the distribution,
whereas SW with EM or EMS will smooth the spikes. Since
KS distance measures maximum difference at one point in
CDF, HH-ADMM results in lower errors under KS distance,
even though it produces higher error under Wasserstein
Distance. For similar reason, CFO with larger bin size also
perform poorly on the income dataset under KS distance.

6.3 Semantic and Statistical Quantities

We compare the results of different methods using the range
query and statistic quantities including mean, variance, quan-
tiles. For mean and variance, we also consider the SR and
PM, which were designed for mean estimations. All results
are measured by Mean Absolute Error (MAE).
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Range Query. The queries are randomly generated, but
with fixed range sizes. Denote the left and right of the range
as i and i + a, we randomly generate i € [0,1 — «] with
a = 0.1 and 0.4. The results in Figure 3 shows that SW
with EMS outperforms HH and HaarHRR [21]. In fact, it
is the best in most cases, except when « = 0.1 in the taxi
pickup time dataset and in low privacy region of income
dataset. However, SW with EMS has performance similar
to CFO-binning-64 when « = 0.1 and still outperforms all
the hierarchy-based approaches in taxi pickup time dataset.
For the income dataset, EM and EMS performs well in high
privacy range (i.e., € < 2), while HH-ADMM performs best
in low privacy range, followed by EM and EMS.

Mean Estimation. Results for mean estimation are showed
in Figure 4(a)-4(d). SR performs better than PM when € is
small, but worse when € is larger. This is consistent with
the analysis in [33]. Note that SR and PM devote all privacy
budget to estimate mean. While SW with EMS can estimate
the full distribution, it performs comparable to the best of
SR and PM for estimating the mean. We also see that HH-
ADMM has better performances than all other CFO-binning
methods, but is still inferior to SW with EMS.

Variance Estimation. Although SR and PM are proposed
for mean estimation, they can be modified to support vari-
ance estimation as well. Specifically, we randomly sample
50% of users to estimate mean first. The estimated mean is
then broadcast to the remaining users. Then each user com-
pares his secret value and the received estimated mean, and
reports the squared difference (i.e., (v; — i)?) to the server,
who averages them to obtain variance.

-3¢ CFO-binning-16

- HH

-~ HH-ADMM HaarHRR

(h) Retirement o = 0.4
Figure 3: MAE of random range query with range a = 0.1 (first row) and « = 0.4 (second row).

(g) Income a = 0.4

The experimental results are showed in Figure 4(e)- 4(h).
As we can see, the error of SR and PM is larger than EM
or EMS in most cases. One reason is that only half of the
users are used for variance estimation (the other half is nec-
essary for mean estimation). The relative performance of
other methods are similar to previous experiments.

Quantile Estimation. Experimental results are shown in
Figure 4(i)-4(1). Ignoring the spiky income dataset for now,
our proposed SW with EMS performs best. Moreover, we
observe that SW with EM sometimes performs better but is
not stable, because it is sensitive to parameters. HH-ADMM
performs worse than SW, but close to the best of CFO with
binning. For CFO with binning, because of the trade-off
between estimation noise and the bias within the bins, larger
bin sizes typically perform better in smaller € ranges, while
the smaller bin sizes narrows the gap as € increases.

For the spiky income dataset, even for € = 0.5, larger bin
sizes give worse utility (1 to 2 orders of magnitude) than
other mechanisms. This also demonstrates that the optimal
bin size is data-dependent. HH-ADMM successfully captures
the spikiness of the dataset and thus performs the best.

6.4 Wave Shapes and Parameters

Here we compare the different shapes of General Wave (GW)
with SW, and different parameters of SW.

Different shapes of wave in GW. In Section 5.2, we an-
alytically show that SW is preferred because it maximizes
the Wasserstein distance between output distributions. We
empirically compare SW with other wave forms. We con-
sider 5 other GW mechanism with different shape, including
4 trapezoid shapes and one triangle shape. The upper side to
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bottom side length ratio of trapezoid wave are 0.2,0.4,0.6
and 0.8. The experimental results in Figure 5 show when
€ = 1, SW gives the best estimated distributions in terms
of Wasserstein distance, no matter how we change b. As
the ratio decreases, the recovery accuracy also degrades in
general. The results support our intuition in Section 5.2.
SW with different b. In Section 5.3, we propose to use
bsw = % Figure 6 reports experimental results with
different b. Our choice of bsy, which is indicated as the
vertical dotted line, is among the ones that provide best
utility. We have also evaluated b on other metrics; the results
give similar conclusion, and are omitted because of space
limitation.

Bucketization granularity. To see what is the optimal
bucketization granularity on different datasets, we choose 4
different numbers of buckets (256,512, 1024 and 2048) then
compare the Wasserstein distance between the estimated
distributions and the true distributions. For simplicity, we use
same number of buckets for both & and 2. The experimental
results in Figure 7 show different datasets have different
optimal bucketization granularity. For Beta(5,2), we have
best result when the number of buckets is 256. For the other
3 datasets, dividing & into 1024 buckets can give us best
performance in most cases.
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Figure 4: MAE for estimating mean (first row), variance (second row), and quantiles (third row).

7 RELATED WORK
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Differential privacy has been the de facto notion for pro-
tecting privacy. In the local setting, we have seen real world
deployments: Google Chrome extension [14], spelling predic-
tion of Apple [32] and telemetry collection by Microsoft [9].

Categorical Frequency Oracle. One basic mechanism in
LDP is to estimate frequencies of values. There have been
several mechanisms [1, 4, 5, 9, 14, 35] proposed for this task.
Among them, [35] introduces OLH, which achieves low es-
timation errors and low communication costs. Our paper
develop new frequency oracles for numerical attributes.

Handling Ordinal/Numerical Data. When the data is or-
dinal, the straightforward approach is to bucketize the data
and apply categorical frequency oracles. [34] considers dis-
tribution estimation, but with a strictly weaker privacy defi-
nition. There are also mechanisms that can handle numerical
setting, but focusing on the specific task of mean estimation,
i.e. SR [9, 10] and PM [33]. These two approaches have been
discussed in Section 2 and compared in the experiments.

Post-processing. Given the result of a privacy-preserving
algorithm, one can utilize the structural information to post-
process it so that the utility can be improved. In the setting of
centralized DP, Hay et al. [17] propose an efficient hierarchi-
cal method to minimize L, difference between the original
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result and the processed result. Besides that, the authors
of [22] also consider the non-negativity constraint and pro-
pose to use ADMM to obtain result that achieves maximal
likelihood. As ADMM is not efficient for high dimensional
case, a gradient descent based algorithm is proposed [23].

In the LDP setting, [33] and [21] also consider the hierar-
chy structure and apply the technique of [17]. We propose
to use ADMM instead of [17], which improves utility.

Without using the hierarchical constraint (only consider
CFO), Jia et al. [19] propose to utilize external information
about the dataset (e.g., assume it follows a power-law distri-
bution), and Wang et al. [38] consider the constraints that
the distribution is non-negative and sum up to 1. Bassily [3]
and Kairouz et al. [20] study the post-processing for some
CFO with MLE. Compared with those existing methods, our
work is also a post-processing method but is applied to a
new Square Wave reporting method and requires different
techniques (such as EMS algorithm).

Shuffling. Recently, shuffle-DP [2, 8, 13] is introduced as
an intermediate framework between centralized DP and LDP.
By assuming there is a trusted third party who shuffles the re-
ports of a e-LDP protocol before sending them to the aggrega-
tor, it is proved in [2] that the output of those shuffled reports

will satisfy (e’, §)-DP, for some €’ = O((1A€)e€+/log(1/5)/n).

- Bucket number=1024

Bucket number=2048

0.5 1.0 1.5 2.0 25

&
(d) Retirement

&
(c) Income
Figure 7: Wasserstein distance between estimated and true distribution with different bucketization granularity.

Our SW mechanism is fully compatible with shuffling, and
its privacy amplification effects can be analyzed by the same
tools introduced in [2].

8 CONCLUSIONS

We have studied the problem of reconstructing the distri-
bution of a numerical attribute under LDP. We introduce
HH-ADMM as an improvement to existing hierarchy-based
methods. Most importantly, we propose the method of com-
bining Square Wave reporting with Expectation Maximiza-
tion and Smoothing. We show that Square Wave mechanism
has the best utility among general wave mechanisms, and
introduce techniques to choose the bandwidth parameter
b by maximizing an upper bound of mutual information.
Extensive experimental evaluations demonstrate that SW
with EMS generally performs the best under a wide range
of metrics. We expect these protocols and findings to help
improving the deployment of LDP protocols to collect and
analyse numerical information.
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