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ABSTRACT
When collecting information, local differential privacy (LDP)

relieves the concern of privacy leakage from users’ perspec-

tive, as user’s private information is randomized before sent

to the aggregator. We study the problem of recovering the

distribution over a numerical domain while satisfying LDP.

While one can discretize a numerical domain and then apply

the protocols developed for categorical domains, we show

that taking advantage of the numerical nature of the domain

results in better trade-off of privacy and utility. We intro-

duce a new reporting mechanism, called the square wave

(SW) mechanism, which exploits the numerical nature in re-

porting. We also develop an Expectation Maximization with

Smoothing (EMS) algorithm, which is applied to aggregated

histograms from the SW mechanism to estimate the original

distributions. Extensive experiments demonstrate that our

proposed approach, SW with EMS, consistently outperforms

other methods in a variety of utility metrics.
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1 INTRODUCTION
Differential privacy [11] has been accepted as the de facto
standard for data privacy. Recently, techniques for satisfying

differential privacy (DP) in the local setting, which we call

LDP, have been studied and deployed. In the local setting for

DP, there are many users and one aggregator. Each user sends
randomized information to the aggregator, who attempts

to infer the data distribution based on users’ reports. LDP

techniques enable the gathering of statistics while preserving

privacy of every user, without relying on trust in a single

trusted third party. LDP techniques have been deployed by

companies like Apple [32], Google [14], and Microsoft [9].

Most existing work on LDP focuses on the situations col-

lecting categorical attributes. Existing research [1, 5, 14, 35,

41] has developed frequency oracle (FO) protocols for cate-
gorical domains, where the aggregator can estimate the fre-

quency of any chosen value in the specified domain (fraction

of users with that private value). We call these Categorical

Frequency Oracle (CFO) protocols.
Many attributes are ordinal or numerical in nature, e.g.,

income, age, the amount of time viewing a certain page, the

amount of communications, the number of times performing

a certain actions, etc. A numerical domain consists of values

that have a meaningful total order. One natural approach for

dealing with ordinal and numerical attributes under LDP is

to first apply binning and then use CFO protocols. That is,

one treats all values in a range as one categorical value when

reporting. This approach faces the challenge of finding the

optimal number of bins, which depends on both the privacy

parameter and the data distribution. One improvement over

this approach is to apply Hierarchical Histogram-based ap-

proaches [17, 27, 40], which uses multiple granularities at

the same time, and exploit the natural consistency relation-

ships between estimations at different granularities. Recently,

Kulkarni et al. [21] studied the accuracy of answering range

queries using this approach.

We note that the stronger privacy guarantee offered by

LDP (as compared with DP) comes with the cost of signifi-

cantly higher noises. As a result, many estimated frequencies
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will be negative. Existing approaches (such as [21]) do not

correct this, and are sub-optimal. We propose to apply Alter-

nating Direction Method of Multipliers (ADMM) optimiza-

tion [7] to improve Hierarchical Histograms, utilizing the

constraints that all estimations are non-negative and sum up

to 1. Experiments show that the improved version of hierar-

chy histogram, which we call HH-ADMM, has significantly

better utility.

The above methods still use CFO protocols in a blackbox

fashion, and existing CFO protocols ignore any semantic re-

lationship between different values. An intriguing research

question is whether one can design frequency oracle proto-

cols that directly utilize the ordered nature of the domain

and produce better estimations. In this paper, we answer

this affirmatively. We propose an approach that combines

what we call a Square Wave reporting mechanism with post-

processing using Expectation Maximization and Smoothing.

The key intuition under the Square Wave mechanism is

that given input v , one should report a value close to v with

higher probability than a value farther away from v . More

specifically, assuming the input domain of numerical values

is 𝒟 = [0, 1], the output domain of Square Wave mechanism

is
˜𝒟 = [−b, 1 + b], where b is a parameter depending on

the privacy parameter ϵ . A user with value v ∈ 𝒟 reports a

value ṽ randomly drawn from a distribution with probability

density functionMv . For any ṽ ∈ [v − b,v + b], probability
density isMv (ṽ) = p, and any ṽ ∈ [−b, 1+b] \ [v −b,v +b],
probability density is Mv (ṽ) = q, where

p
q = eϵ . We define

and study different wave shapes of GeneralWavemechanism

other than the above Square Wave, and conclude that Square

Wave has the best utility. We also study how to determine

the key parameter b, the width of the wave. We propose

to choose b to maximize the upper bound of mutual infor-

mation between the input and the output variable, and can

compute b when given the privacy parameter ϵ . Experiments

demonstrate the effectiveness of this approach.

Conceptually, the aggregator, after observing the reported

values, without any prior knowledge of the input distribu-

tion, should perform Maximum Likelihood Estimation (MLE)

to infer the input distribution, which can be carried out by

the Expectation Maximization (EM) algorithm. Through ex-

periments, we have observed that the result of applying EM

is highly sensitive to the parameter controlling terminating

condition. This is because the observed distribution is a com-

bination of the true distribution and the effect of random

noise. When EM terminates too early, the result does not fit

the true distribution well. When EM terminates too late, the

result fits both the true distribution and the effect of noises.

It is unclear how one can set the parameter so that one fits

the distribution, but not the noise, across different datasets

and privacy parameters.

To deal with this challenge, we propose to use smooth-

ing together with the EM algorithm. In each iteration, af-

ter the E step and the M step, we add an S (smoothing)

step, which averages each estimation with its nearest neigh-

bours, by binomial coefficients. The Expectation Maximiza-

tion with Smoothing approach was developed in the con-

text of positron emission tomography and image reconstruc-

tion [24, 30], and was shown to be equivalent to adding a

regularization term penalizing the spiky estimation [24]. In-

tuitively, EMS uses the prior knowledge that the observation

is affected by noise and prefer a smoother distribution to a

jagged one. In the experiment, we observe that EMS is stable

under different settings, and requires no parameter tuning.

To compare different algorithms for reconstructing dis-

tributions of numerical attributes, we first use two metrics

measuring the distance of reconstructed cumulative distribu-

tion from the true one, namely the Wasserstein distance and

Kolmogorov–Smirnov distance (KS distance). In addition,

we also consider accuracy for answering range queries, and

accuracy of estimations of different statistics from the recon-

structed distributions such as mean, variance and quantiles.

The contributions of this paper are as follows. (1) We de-

fine the problem of reconstructing distributions of numerical

attributes under LDP (with non-negativity and sum-up-to-

1 constraints) and propose multiple metrics for comparing

competing algorithms. (2) We introduce HH-ADMM, which

improves upon existing hierarchy histogram based methods.

(3)We introduce the method of combining SquareWave (SW)

reporting with Expectation Maximization and Smoothing

(EMS), and showed that Square Wave is preferable to other

wave shapes, and introduce techniques to choose the band-

width parameter b using mutual information. (4) We conduct

extensive experimental evaluations, comparing the proposed

methods with state-of-the-art methods (e.g., [21]). Results

demonstrate that SWwith EMS and HH-ADAM significantly

out-perform existing methods. In addition, SW with EMS

generally performs the best under a wide range of metrics,

and HH-ADMM performs better than SW-EMS on a very

spiking distribution under some of the metrics.

Roadmap. In Section 2, we review the LDP definition and

existing LDP protocols. In Section 3, we discuss metrics for

measuring the quality of the reconstructed distribution. We

describe CFOwith binning and HH-ADMM in Section 4. SW
reporting and EMS reconstruction are introduced in Section 5.

We show our experimental results in Section 6. We give an

overview of the related work in Section 7, and conclude in

Section 8.

2 BACKGROUND
Assume there are n users and one aggregator. Each user pos-

sesses a value v ∈ 𝒟 , and the aggregator wants to learn



Symbol Description

v Private input

ṽ Randomized output

𝒟 Domain of private input

˜𝒟 Domain of the randomized output

x True private input frequencies

x̂ Estimate of private input frequencies (normalized)

ṽ Randomized output frequencies (normalized)

P Cumulative distribution function (CDF)

Mv Probability density function given input v

Table 1: Notations.
the distribution of values from all users. To protect privacy,

each user randomizes the input value v using an algorithm

Ψ(·) : 𝒟 → ˜𝒟 , where
˜𝒟 is the set of all possible outputs,

and sends ṽ = Ψ(v) to the aggregator.

Definition 1 (ϵ-Local Differential Privacy). An al-
gorithm Ψ(·) : 𝒟 → ˜𝒟 satisfies ϵ-local differential privacy
(ϵ-LDP), where ϵ ≥ 0, if and only if for any input v1,v2 ∈ 𝒟 ,
we have

∀T ⊆ ˜𝒟 : Pr [Ψ(v1) ∈ T ] ≤ eϵ Pr [Ψ(v2) ∈ T ] ,

where ˜𝒟 denotes the set of all possible outputs of Ψ.

Since a user never reveals v to the aggregator and reports

only ṽ = Ψ(v), the user’s privacy is still protected even if

the aggregator is malicious.

Notational Conventions. Throughout the paper, we use
bold letters to denote vectors. For example, v = ⟨v1, . . . ,vn⟩
is all users’ values, and x = ⟨x1, . . . ,xd ⟩ is frequencies of all
values (i.e., xi = |{j | vj = i}|/n). If the notation is associated

with a tilde (e.g., ṽ), it is the value after LDP perturbation; and
a hat (e.g., x̂) denotes the value computed by the aggregator.

Capital bold letters denote matrices and functions that take

more than one input. Table 1 gives some of the frequently

used symbols.

2.1 Categorical Frequency Oracles
A frequency oracle (FO) protocol enables the estimation of the

frequency of any value v ∈ 𝒟 under LDP. Existing protocols

are designed for situations where 𝒟 is a categorical domain.

We call them categorical frequency oracle (CFO) protocols
in this paper. The following are two commonly used CFO
protocols.

Generalized Randomized Response (GRR). This CFO
protocol generalizes the randomized response technique [39],
and uses

˜𝒟 = 𝒟 . It uses as input perturbation function

GRR(·), where GRR(v) outputs the true value v with prob-

ability p = eϵ
eϵ+d−1 , and any value v ′ , v with probability

q =
1−p
d−1 =

1

eϵ+d−1 , where d = |𝒟 | is the domain size. To

estimate the frequency of v ∈ 𝒟 (i.e., the ratio of the users

who have v as private value to the total number of users),

one counts how many times v is reported, and denote the

count as C(v), and then computes

x̃v =
(C(v)/n) − q

p − q
,

where n is the total number of users. In [37], it is shown

that this is an unbiased estimate of the true count, and the

variance for this estimate is

Var[x̃v ] =
d − 2 + eϵ

(eϵ − 1)2 · n
. (1)

The variance given in (1) is linear to d ; thus when the domain

size d increases, the accuracy of this protocol is low.

Optimized LocalHashing (OLH) [37]. This protocol deals
with a large domain size d = |𝒟 | by first using a hash func-

tion to map an input value into a smaller domain of size д
(typically д ≪ |𝒟 |), and then applying randomized response

to the hashed value (which leads to p = eϵ
eϵ+д−1 ). In this

protocol, both the hashing step and the randomization step

result in information loss. The choice of the parameter д is

a tradeoff between losing information during the hashing

step and losing information during the randomization step.

In [37], it is found that the optimal choice of д that leads to

minimal variance is (eϵ + 1).
In OLH, one reports ⟨H ,GRR(H (v))⟩, where H is ran-

domly chosen from a family of hash functions that hash

each value in 𝒟 to {1 . . .д}, and GRR(·) is the perturbation
function for Generalized Randomized Response, while op-

erating on the domain {1 . . .д}. Let ⟨H j ,y j ⟩ be the report
from the j’th user. For each value v ∈ 𝒟 , to compute its

frequency, one first computes C(v) = |{j | H j (v) = y j }|, and
then transforms C(v) to its unbiased estimate

x̃v =
(C(v)/n) − (1/д)

p − 1/д
.

The approximate variance of this estimate is

Var[x̃v ] =
4eϵ

(eϵ − 1)2 · n
.

Compared with (1), the factor d − 2 + eϵ is replaced by 4eϵ .
This suggests that for smaller |𝒟 | (such that |𝒟 | − 2 < 3eϵ ),
GRR is better; but for large |𝒟 |, OLH is better and has a

variance that does not depend on |𝒟 |.

2.2 Handling Numerical Attributes
Twomethods have been proposed for mean estimation under

LDP for numerical attributes. Note that using these methods

one can estimate the mean, and not the distribution.

Stochastic Rounding (SR) [10]. The main idea of Stochas-

tic Rounding (SR) is that, no matter what is the input valuev ,



each user reports one of two extreme values, with probabili-

ties depending on v . Here we give an equivalent description

of the protocol. Following [10], we assume that the input

domain is [−1, 1]. Given a value v ∈ [−1, 1], let p = eϵ
eϵ+1 and

q = 1 − p = 1

eϵ+1 , the SR method outputs a random variable

v ′
, which takes the value −1 with probability q +

(p−q)(1−v)
2

and value 1 with probability q +
(p−q)(1+v)

2
. Since

E[v ′] = (−1)

(
q +

(p − q)(1 −v)

2

)
+ q +

(p − q)(1 +v)

2

= (p − q)v ,

let ṽ = v ′

p−q , we have E[ṽ] = v ; thus the mean of ṽ provides

an unbiased estimate of the mean for the distribution.

Piecewise Mechanism (PM) [33]. In the Piecewise Mech-

anism, the input domain is [−1, 1], and the output domain is

[−s, s], where s = eϵ/2+1
eϵ/2−1 . For each v ∈ [−1, 1], there is an as-

sociated range [ℓ(v), r (v)] where −s ≤ ℓ(v) < r (v) ≤ s , such
that with input v , a value in the range [ℓ(v), r (v)] will be re-
ported with higher probability than a value outside the range.

More precisely, we have ℓ(v) = eϵ/2 ·v−1
eϵ/2−1 and r (v) = eϵ/2 ·v+1

eϵ/2−1 .

The width of the range is r (v) − ℓ(v) = 2

eϵ/2−1 , and the center

is
ℓ(v)+r (v)

2
= eϵ/2

eϵ/2−1 · v . Specifically, PM works as follows:

Pr [PM(v) = ṽ] =
eϵ/2

2

·
eϵ/2 − 1

eϵ/2 + 1
if ṽ ∈ [ℓ(v), r (v)],

Pr [PM(v) = ṽ] =
1

2eϵ/2
·
eϵ/2 − 1

eϵ/2 + 1
otherwise.

It is shown that ṽ is unbiased, and has better variance than

SR when ϵ is large [33].

3 UTILITY METRICS
When the private values are in a numerical domain, we need

utility metrics that are different from those in categorical

domains. In particular, the metrics should reflect the ordered

nature of the underlying domain.

3.1 Metrics based on Distribution Distance
Wewant a metric to measure the distance between the recov-

ered density distribution and the true distribution. However,

since the distribution is over a metric space, we do not want

to use point-wise distance metrics such as the L1 and L2 dis-
tance or the Kullback–Leibler (KL) divergence. For a simple

example, consider the case where 𝒟 = {1, 2, 3, 4}, the true
distribution is x = [0.7, 0.1, 0.1, 0.1]. The two estimations

x̂1 = [0.1, 0.7, 0.1, 0.1] and x̂2 = [0.1, 0.1, 0.1, 0.7] have the
same L1, L2, and KL distance from x, but the distance be-

tween x̂1 and x should be smaller than the distance between

x̂2 and x when we consider the numerical nature. To capture

this requirement, we propose to use two popular distribution

distances as metrics.

WassersteinDistance (aka. EarthMoverDistance). Wasser-

stein distance measures the cost of moving the probability

mass (or density) from distribution to another distribution.

In this paper, we use the one dimensional Wasserstein dis-

tance. For discrete domain, define the cumulative function

P : [0, 1]d × 𝒟 7→ [0, 1] that takes a distribution x and a

value v , and output P(x,v) =
∑v

i=1 xv . Let x and x̂ be two

distributions. The one dimensional Wasserstein distance is

the L1 difference between their cumulative distributions:

W1(x, x̂) =
∑
v ∈𝒟

|P(x,v) − P(x̂,v)| .

For continuous domain, x is the probability density func-

tion with support on [0, 1], P(x,v) =
∫ v
t=0 x(t)dt . The one

dimensional Wasserstein distance is

W1(x, x̂) =
∫
v ∈𝒟

|P(x,v) − P(x̂,v)| dv .

Kolmogorov-Smirnov (KS) Distance. KS distance is the
maximum absolute difference at any point between the cu-

mulative functions of two distributions:

dKS (x, x̂) = sup

v ∈𝒟
|P(x,v) − P(x̂,v)| .

Both of Wasserstein distance and KS distance can be consid-

ered as measures for the errors of answering prefix range

queries on numerical domains with constraints that the es-

timate must be non-negative and sum up to 1. Wasserstein

distance is the error of sum of all prefix queries; and the KS

distance is the maximum error of prefix queries.

3.2 Semantic and Statistical Quantities
Range queries have been used as the main utility metrics

for research in this area [17, 21, 36, 38]. Also, we consider

the basic statistics from the estimated data distributions and

check whether they are accurate.

Range Query. Define the range query function R(x, i,α) =
P(x, i+α)−P(x, i), where α specifies the range size. Given the

true distribution x and the estimated distribution x̂, range
queries reflect the quality of estimate with randomly sam-

pling i and calculating the following:

|R(x, i,α) − R(x̂, i,α)| .

Mean. We denote µ as the mean of the true distribution,

and µ̂ as the estimated mean. To measure mean accuracy, we

use the absolute value of the difference between these two,

i.e. |µ − µ̂ |.

Variance. We use σ 2
to denote the variance of the true dis-

tribution, and σ̂ 2
for the variance from the reconstructed



distribution. To measure variance accuracy, we use the abso-

lute value of the difference between these two, i.e. |σ 2 − σ̂ 2 |.

Quantiles. Quantiles are cut points dividing the range of

a probability distribution into intervals with equal proba-

bilities. Formally, Q(x, β) = argmaxv {P(x,v) ≤ β}. In the

experiment, define B = {10%, 20%, . . . , 90%}, we measure

the following:

1

|B |

∑
β ∈B

|Q(x, β) − Q(x̂, β)| .

4 USING CFO PROTOCOLS FOR
NUMERICAL DOMAINS

In this section, we present two approaches that use CFO pro-

tocols to reconstruct distributions over an discrete numerical

domain 𝒟 = {1, 2 · · · ,d}. Continuous numerical domains

can be buckized into discrete ones.

4.1 CFO with Binning
Given a numerical domain, one can make it discrete using

binning, and then have each user report which bin the pri-

vate value is in using a CFO protocol. For a given domain

size and privacy parameter ϵ , one chooses either OLH or

GRR, based on which one gives lower estimation variance.

After obtaining density estimations for all the bins, one com-

putes a density distribution for the domain by assuming

uniform distribution within each bin. However, some esti-

mated values may be negative, which does not lead to valid

cumulative distribution functions on the domain. In [38], it

is shown that a post-processing method called Norm-Sub

can be applied to improve estimation. Norm-sub converts

negative estimates to 0 and subtracts the same amount to

all the positive estimates so that they sum up to 1. If some

positive estimates become negative after the subtraction, the

process is repeated. This results in an estimation such that

each estimation is non-negative and all estimations sum up

to 1. It can thus be interpreted as a probability distribution.

Challenge of Choosing Bin Size. When using binning,

there are two sources of errors: noise and bias due to group-

ing values together. More bins lead to greater error due to

noises. Fewer bins lead to greater error due to biases. Choos-

ing the bin size is a trading-off of the above two sources of

errors, and the effect of each choice depends both on the

privacy parameter ϵ , and on property of the distribution. For

example, when a distribution is smooth, one would prefer

using less bins, as the bias error is small, and when a distri-

bution is spiky, using more bins would perform better. In

our experiments, we observe that even if we could choose

the optimal bin size empirically for each dataset and ϵ value

(which is infeasible to do in practice due to privacy), the

result would still be worse than the method to be proposed

in Section 5. We thus chose not to develop ways to choose

bin size based on ϵ , and just report results of this method

under several different bin sizes.

4.2 Hierarchy-based Methods
Hierarchy-based methods, including Hierarchy Histogram

(HH) in [17, 27] and Haar in [40], were first proposed in the

centralized setting of DP. In [21], Kulkarni et al. studied the

HH method and the Haar in the context of LDP. In order to

adapt Haar method to the local setting, they used Hadamard

random response (HRR) as the frequency oracle. HRR is sim-

ilar to Local Hashing method introduced in the Section 2.1,

but fixing д = 2 and using a Hadamard matrix as the family

of hash functions. To make it clear in the context, we call

the LDP version of Haar as HaarHRR.

HH in LDP. Given a positive integer β and a discrete, or-

dered domain with size d = |𝒟 |, one can construct a β-ary
tree with d leaves corresponding to values in 𝒟 . There are

(h + 1) layers in the tree, where h = logβ d (for simplicity,

we assume that logβ d is an integer). The (h + 1)-th layer is

the root. A user with value v chooses a layer ℓ ∈ {1, . . . ,h}
uniformly at random, and then reports ℓ as well as the per-
turbed value of v’s ancestor node at layer ℓ. For each node

in the tree, the aggregator can obtain an estimate of its fre-

quency. Assuming that the distribution differences among

the h groups are negligible, for each parent-child relation,

one expects that the sum of child estimations equals the

that of the parent. Constrained inference techniques [17] are

applied to ensure this property.

HaarHRR. Similar to HH, one can use a binary tree to

estimate distribution with Discrete Haar Transform [21].

Specifically, each leaf represents the frequency of a value.

Define the height of a leaf node as 0; and the height of an

inner nodes a is denotes as h(a). Each inner node now repre-

sents the Haar coefficient ca =
C (a)
l −C (a)

r

2
h(a)/2 , where C(a)

l (or C(a)
r )

is the sum of all leaves of left (or right) subtree of node a.
In the LDP setting, for a user with value v , the Haar co-

efficients on each layer has exactly one element equal to

−1 or 1, while others are all zeros. Similar to HH, each user

chooses a layer ℓ ∈ {1, . . . ,h} uniformly at random, then ap-

ply Hadamard randomized response (HRR) on layer ℓ which

depends on Hadamard matrix ϕ ∈ {−1, 1}2
h−ℓ×2h−ℓ

. With

HRR reports from users, the aggregator can calculate unbi-

ased estimates for the Haar coefficients on layer ℓ. Due the
limit of space, more details can be found in [21].

Difference from the Centralized Setting. When using

hierarchy-based method, there are two ways to ensure the

privacy constraint. One is to divide the privacy budget, where

one builds a single tree for all values. Since each value affects

the counts at every level, one splits the privacy budget among



the levels. The other is to divide the population among the

layers, where each value contributes to the estimation of

a single layer, and one can use the whole privacy budget

for each count. When dividing the population, the absolute

level of noise is less than the case of dividing privacy budget;

however, the total count also decreases, magnifying the im-

pact of noise. In addition, dividing the population introduces

sampling errors, as users are divided into different groups,

which may have different distribution from the global one.

In the centralized setting, because the amount of added

noise is low, it is better to divide the privacy budget, as

one avoids sampling errors. In [27], it was found that in the

centralized setting, the optimal branching factor for HH is

around 16. And this results in better performance than using

the Haar method, which can be applied only to a binary

hierarchy. In the LDP setting, because the amount of noise is

much larger, sampling errors can be mostly ignored, and it

is better to divide the population instead of privacy budget.

As a result, the optimal branching factor for HH is around 5,

making it similar to the Haar method. This was theoretically

proved and empirically demonstrated in [21, 36].

4.3 HH-ADMM
We note that there are other ways to improve hierarchy-

based mechanism in the LDP setting. First, the larger noise in

the LDP setting results in negative estimates. We can exploit

the prior knowledge that the true counts are non-negative to

improve the negative estimates. Second, the total true count

is known, as LDP protects privacy of reported values and

not the fact that one is reporting. These are not exploited in

[21]. We propose to use the Alternating Direction Method of

Multipliers (ADMM) algorithm [7] to post-process the hier-

archy estimation. The usage of ADMM was proposed in [22]

for the centralized setting. Our method applies this to LDP,

and has two additional differences from [22]. First, we use

L2 norm in the objective function because the noise by CFO
is well approximated by Gaussian noise, and minimizing L2
norm achieves MLE. In the centralized setting, Laplace noise

is used, and L1 norm is minimized in [22]. Second, we pose an

additional constraint that the estimates sum up to n, which
is known in LDP setting. In the setting considered in [22], n
is unknown.

The HH-ADMM Algorithm. Given a constant vector x̃,
ADMM is an efficient algorithm that aims to find x̂ that

satisfies the following optimization problem:

minimize

1

2

∥x̂ − x̃∥2
2

(2)

subject to Ax̂ = 0, x̂ ≽ 0, x̂0 = 1

In the hierarchy histogram case of LDP, x̃ represents the

concatenation of estimates from all the layers, where x̃0 is

the root. x̂ is the post-processed estimates. The hierarchical

constraints state that the estimate of each internal node

should be equal to the sum of estimates of its children nodes.

This can be represented by an equation Ax̂ = 0, where A
has one row for each internal node and one column for each

node, and ai j is defined as:

ai j =


1, if i = j

−1, node j is a child of node i

0, otherwise

The optimization problem (2) improves the estimation

by enforcing the non-negativity (x̂ ≽ 0) and sum-up-to-1

(x̂0 = 1) compared with [21]. Because of the limit of space, we

refer the readers who want to know the detail of derivation

to [22] for more information.

5 SQUAREWAVE AND EXPECTATION
MAXIMIZATIONWITH SMOOTHING

The methods we presented in Section 4 use CFO protocols

as black-boxes and do not fully exploit the ordered nature of

the domains. We propose a new approach that uses a Square

Wave reporting mechanism with post-processing conducted

using Expectation Maximization with Smoothing (EMS).

5.1 General Wave Reporting
We first study a family of randomized reporting mechanisms

that we call General Wave mechanisms. The intuition behind

this approach is to try to increase the probability that a noisy

reported value carries meaningful information about the

input. This is also the implicit goal driving the development

of CFO protocols beyond GRR. In GRR, one reports a value
in 𝒟 . Intuitively, if the reported value is the true value, then

the report is a “useful signal”, as it conveys the extract correct

information about the true input. If the reported value is not

the true value, the report is in some sense noise that needs to

be removed. The probability that a useful signal is generated

is p = eϵ
eϵ+d−1 , where d = |𝒟 | is the size of the domain.

When d is large, p is small, and GRR performs poorly. The

essence of OLH and other CFO protocols is that one reports

a randomly selected set of values, where one’s true value

has a higher probability of being selected than other values.

In some sense, each “useful signal” is less sharp, since it is a

set of values, but there is a much higher probability that a

useful signal is transmitted.

Exploiting the ordinal nature of the domain, we note that a

report that is different from but close to the true value v also

carries useful information about the distribution. Therefore,

given input v , we can report values closer to v with a higher

probability than values that are farther away from v .
Without loss of generality, we assume that 𝒟 = [0, 1]

consists of floating point numbers between 0 and 1. The



random reporting mechanism can be defined by a family of

probability density functions (PDF) over the output domain,

with one PDF for each input value. We denote the output

probability density function for v as Mv (ṽ) = Pr [Ψ(v) = ṽ].
Following the above intuition, we wantMv (ṽ) to satisfy

the property that Mv (ṽ) = q when |ṽ − v | > b, and q ≤

Mv (ṽ) ≤ eϵq when |ṽ − v | ≤ b, where b is a parameter

to be chosen. To ensure that for values close to the two

ends, the range of near-by values is the same, we enlarge the

output domain
˜𝒟 = [−b, 1 + b]. We formalize the idea as the

following general wave mechanism.

Definition 2 (General Wave Mechanism (GW) ). With
input domain 𝒟 = [0, 1] and output domain ˜𝒟 = [−b, 1 + b],
a randomization mechanism Ψ : 𝒟 → ˜𝒟 is an instance of
general wave mechanism if for all v ∈ 𝒟 , there is a wave
functionW : R → [q, eϵq] with constants q > 0 and ϵ > 0,
such that the output probability density function Mv (ṽ) =
W (ṽ −v) :

(1) W (z) = q for |z | > b ;
(2)

∫ b
−bW (z) dz = 1 − q .

Theorem 1. GW satisfies ϵ-LDP.

Proof. For any two possible input value v1,v2 ∈ 𝒟 and

any set of possible outputT ⊆ ˜𝒟 ofGW, we have
Pr[GW(v1)∈T ]
Pr[GW(v2)∈T ]

=∫
ṽ∈T Mv

1
(ṽ)dṽ∫

ṽ∈T Mv
2
(ṽ)dṽ

. By definition for all v1,v2 ∈ 𝒟 and T ⊂ ˜𝒟

we have
Pr[GW(v1)∈T ]
Pr[GW(v2)∈T ]

≤

∫
ṽ∈T eϵq dṽ∫
ṽ∈T q dṽ

= eϵ . □

5.2 The Square Wave mechanism
GW can have different wave shapes. An intriguing question

is what shape should be used. Following the same intuition

in [1], given different values v , v ′
, if Mv and Mv ′ are

identical, then there is no way to distinguish those different

input values. Therefore, the hope is that the farther apart

Mv and Mv ′ are, the easier it is to tell them apart. We use

the difference between two output distributions, Wasserstein

(a.k.a., earth-mover) distance as the utility metric. Based on

this, we find the Square Wave mechanism, where supports

for [v −b,v +b] are the same, is optimal. We also empirically

compare GW of other shapes with Square Wave mechanism

in Section 6.4. The experimental results support our intuition.

Specification of Square Wave Reporting. The Square

Wave mechanism SW is defined as:

∀v ∈ 𝒟 , ṽ ∈ ˜𝒟 , Mv (ṽ)=

{
p, if |v − ṽ | ≤ b ,
q, otherwise .

(3)

By maximizing the difference between p and q while sat-

isfying the total probability adds up to 1, the values p,q can

be derived as:

p =
eϵ

2beϵ + 1
, q =

1

2beϵ + 1
.

For each input v , the probability mass distribution for the

perturbed output looks like a square wave, with the high

plateau region centered around v . We thus call it the Square

Wave (SW) reporting mechanism.

Theorem 2. For any fixed b and ϵ , the SW is the GW that
maximizes the Wasserstein distance between any two output
distributions of two different inputs.

Theorem 2 can be proved by using the following Lemma 1

and Lemma 2.

Lemma 1. Givenv1,v2 ∈ 𝒟 as inputs to general wave mech-
anism, where v2 > v1 and let ∆ = v2 − v1 > 0, the Wasser-
stein distance between the output distributions of general wave
mechanism is ∆(1 − (2b + 1)q).

Proof. Given two different input values v1 and v2 which
satisfy v2 −v1 = ∆ > 0, letMv1

andMv2
are the correspond-

ing output distributions. Define a function diff(z) as the
following:

diff(z) =


0 , if z ≤ −b

1 − (2b + 1)q , if z ≥ b∫ z
−b (W (z ′) − q) dz ′ , otherwise.

The cumulative function of SW can be written as

P(Mv , ṽ) = (b + ṽ)q + DIFF(ṽ −v)

Therefore,∫
1+b

−b
P(Mv , ṽ)dṽ =

q

2

(1 + 2b)2 +

∫ b

−b
DIFF(z)dz

+ (1 − (2b + 1)q)(1 −v) .

Following the definition of Wasserstein distance of one di-

mensional data with ℓ1 norm in Section 3, and as P(Mv1
, ṽ) ≥

P(Mv2
, ṽ) for all ṽ , it follows that

W1(Mv1
,Mv2

) =

∫
˜𝒟
|P(Mv1

, ṽ) − P(Mv2
, ṽ)|dṽ

=

∫
1+b

−b

(
P(Mv1

, ṽ) − P(Mv2
, ṽ)

)
dṽ

= (1 − (2b + 1)q)∆ .

□

Lemma 1 shows that we need to minimize q if we want to

maximize the Wasserstein distance between any two output

distributions. Thus, we have the following lemma.

Lemma 2. For any fixed b and ϵ , the minimum q for general
wave mechanism is q = 1

2beϵ+1 , which can be achieved if and
only if the mechanism is SW.



Proof. By criteria of the definition of GW, we have

1 = q +

∫ b

−b
W (z)dz ≤ 1 + (2b)eϵq

⇒ q ≥
1

2beϵ + 1

We have equality iff Mv (ṽ) = eϵq for all ṽ ∈ [v − b,v + b],
which turns out to be SW. □

Comparison with PM Mechanism. Square Wave (SW)

reporting is similar to the Piecewise Mechanism (PM) for

mean estimation [33] (see Section 2.2). PM directly sums up

the randomized reports to estimate the mean of distribution,

while the outputs of SW are used to reconstruct the whole

distribution (the reconstruction method will be described in

Subsection 5.5). Driven by the different focus, the reporting

mechanisms are also different. PM has to be unbiased for

mean estimation, so the input values are not always at the

center of high probability region. For example, given input

v = −1, the high probability range in PM is [− eϵ/2+1
eϵ/2−1 ,−1].

Communication cost. With SW, each report consists of

a single floating point number. The communication cost is

thus a small constant for each user, similar to protocols such

as GRR and OLH.

5.3 Choosing b
An important parameter to choose for the Square Wave re-

porting mechanism is b. In Square Wave reporting, a value

that is within b of true input is reported with a probability

that is eϵ times the probability that a “far” value is reported.

The optimal choice of b depends on the privacy parameter

ϵ . For a larger ϵ , a smaller b is preferred. When ϵ goes to

infinity, a value of b → 0 leads to total recovery of input

distribution, and any b > 0 leads to information loss. Intu-

itively, the optimal choice of b also depends on the input

distribution. For a distribution with probability density con-

centrated at one point, one would prefer smaller b. For a
distribution with more or less evenly distributed probability

density, one would prefer a larger b. However, since we do
not know the distribution of the private values, we want to

choose a b value independent of the distribution, but can

perform reasonably well over different distributions.

In this paper, we choose b to maximize the upper bound

of mutual information between the input and output of the

Square Wave reporting. We also empirically study the effect

of varying b (see Section 6.4). The experimental results show

that choosing b by this method results in optimal or close to

optimal choices of b.
Let V and Ṽ be the input and output random variables

representing the input and output of SW, respectively. The

mutual information between V and Ṽ can be represented by

the difference between differential entropy and conditional

differential entropy of V and Ṽ :

I (V , Ṽ ) = h(V ) − h(V |Ṽ ) = h(Ṽ ) − h(Ṽ |V ) .

The quantity I (V , Ṽ ) depends on the input distribution, which

we want to avoid. Therefore, we consider an upper bound of

I (V , Ṽ ), which is achieved when Ṽ is uniformly distributed

on
˜𝒟 . Let U be the random variable that is uniformly dis-

tributed in
˜𝒟 . Because h(Ṽ ) ≤ h(U ), we have:

I (V , Ṽ ) ≤ h(U ) − h(Ṽ |V ). (4)

In (4), the first term of RHS is

h(U ) = log(2b + 1).

The second term of RHS only depends on SW:

h(Ṽ |V ) = −

∫
v
Pr [V = v] (2bp logp + q logq)

= −(2bp logp + q logq)

= −
2bϵeϵ

2beϵ + 1
+ log(2beϵ + 1) .

So the mutual information is determined by a function of b,

log

(
2b + 1

2beϵ + 1

)
+

2bϵeϵ

2beϵ + 1
.

By making its derivative to 0, we get

b =
ϵeϵ − eϵ + 1

2eϵ (eϵ − 1 − ϵ)
.

Note that b is a non-increasing function with ϵ . When ϵ goes
to ∞, b goes to 0. When ϵ goes to 0, b goes to 1/2, which

leads to an output domain that doubles the size of the input

domain, and for each input value, half of the output domain

are considered “close” to the input value.

5.4 Bucketizing
The aggregator receives perturbed reports from users and

needs to reconstruct the distribution on 𝒟 . Our approach

performs this reconstruction on a discretized domain, i.e.,

histograms over the domain. The bucketization step can be

performed either before or after applying the randomization

step. We discuss the two approaches below. In experiments,

we use the “randomize before bucketize” approach.

“Randomize before bucketize” (R-B). Here each user pos-
sesses a floating point number in

˜𝒟 = [0, 1], applies the
Square Wave mechanism in Section 5.2, and sends the re-

sult to the aggregator. The aggregator receives values in

˜𝒟 = [−b, 1 + b], discretizes the reported values into
˜d buck-

ets in
˜𝒟 , and constructs a histogram with

˜d bins. Using the

method in Section 5.5, the aggregator can reconstruct an

estimated input histogram of d bins. In experiments, we set

˜d = d for simplicity.



We compare the results of choosing different
˜d in Sec-

tion 6.4, and found that the results are similar so long as
˜d

does not deviate far from

√
N .

“Bucketize before randomize” (B-R) or discrete input
domain. Alternatively, a user can perform the discretiza-

tion step first, and then perform randomization. The SW
mechanism can be naturally applied in a discrete domain

as well. Assume input domain size is d = |𝒟 |, discrete SW
mechanism has output domain size

˜d = | ˜𝒟 | = d + 2b, and
randomizes input values as the following:

∀v ∈ 𝒟 , ṽ ∈ ˜𝒟 , Pr [SW(v) = ṽ]=

{
p, if |v − ṽ | ≤ b
q, otherwise,

where p = eϵ
(2b+1)eϵ+d−1 and q = 1

(2b+1)eϵ+d−1 . In this case,

one can set b =
⌊

ϵeϵ−eϵ+1
2eϵ (eϵ−1−ϵ )d

⌋
.

The above discrete SW mechanism can also be applied

when the input domain is already discrete (e.g., age). We

conducted experiments comparing doing R-B versus B-R,

and found that they are very similar. Detailed results are

omitted due to space limitation.

5.5 Estimating Distribution from Reports
The aggregator receives perturbed values and faces an esti-

mation problem. Note that post-processing of the output of a

mechanism that satisfies differential privacy (the perturbed

values from users) does not affect its privacy guarantee [12].

Without relying on any prior knowledge of the actual

distribution, the natural approach is to conduct Maximum

Likelihood Estimation (MLE). We use a
˜d × d matrix M to

characterize the randomization process. More specifically,

the matrixM ∈ [0, 1]
˜d×d

denotes the transformation proba-

bilities, whereMj,i represents the probability of output value

falling in bucket B̃j , j ∈ [ ˜d], given input in bucket Bi , i ∈ [d],
(assuming the input data fall uniformly at random within

bucket Bi ). Each column of M sums up to 1.

Expectation-Maximization (EM) Algorithm. Given the

probabilitymatrixM as defined above, we can use an Expectation-

Maximization (EM) algorithm to reconstruct the distribution.

The aggregator receives n randomized values from users,

which are denoted as ṽ = {ṽ1, . . . , ṽn}, and finds x̂ that

maximizes the log-likelihood L(x̂) = lnPr [ṽ|x̂].
Let nj be the number of values in B̃j is reported. The EM

algorithm for post-processing the square wave reporting is

shown in Algorithm 1. Note that there are existing works

that use EM to post-process results of CFO (e.g., [16, 28]),

but our proposed EM algorithm takes aggregated results and

is thus more efficient. Because of limitation of space, we omit

the derivation of EM algorithm.

Theorem 3. The EM algorithm converges to the maximum-
likelihood (ML) estimator of the true frequencies x.

Algorithm 1 Post-processing EM algorithm

Input: M, ṽ
Output: x̂
while not converge do
E-step: ∀i ∈ {1, ...,d},

Pi = x̂i
∑
j ∈[ ˜d ]

nj
Pr

[
ṽ ∈ B̃j |v ∈ Bi , x̂

]
Pr

[
ṽ ∈ B̃j |x̂

]
= x̂i

∑
j ∈[ ˜d ]

nj
Mj,i∑d

k=1 Mj,k x̂k

M-step: ∀i ∈ {1, ...,d},

x̂i =
Pi∑d

k ′=1 Pk ′

end while
Return x̂

Proof. To prove EM algorithm converges to the max-

imum likelihood estimator, it is enough to show the log-

likelihood function is concave [6]. In the context of our prob-

lem

L(x) = lnPr [ṽ|x] = ln

n∏
k=1

Pr [ṽk |x]

=

n∑
k=1

ln

(
d∑
i=1

xiPr [ṽk |v ∈ Bi ]

)
,

wherePr [ṽk |v ∈ Bi ] are constants determined by SWmethod.

Thus, L(x) is a concave function. □

StoppingCriteria. Through experiments, we have observed

that the result of applying EM is highly sensitive to the pa-

rameter controlling terminating condition. If EM terminates

too early, the reconstructed distribution is still far from the

true one. If EM terminates too late, while the reconstructed

distribution does fit the observation better (higher likeli-

hood), it is also getting farther away from the true distri-

bution to fit the noise. One of the most common stopping

criteria for EM algorithm is checking whether the relative

improvement of log-likelihood is small [16]. Namely, when��L(x̂(t+1)) − L(x̂(t ))
�� < τ for some small positive number τ ,

EM algorithm stops. The choice of τ depends onmany factors,

including the smoothness of distribution and the amount

of noise added by the square wave distribution. Empirically,

we find that if we set τ proportional to eϵ , EM algorithm

generally performs better than the one using a fixed τ . How-
ever, on some datasets that have a smoother distribution,

the recovered result still over-fits the noise. Several of our



attempts at finding a stopping condition that make EM per-

form well consistently did not succeed. This motivates us to

apply smoothing in EM.

EMS Algorithm. Using prior knowledge in estimation

can make results less sensitive to the noise and more ac-

curate than MLE solution. By the nature of numerical do-

main, adjacent numerical values’ frequencies should not vary

dramatically. With this observation, we can add a smooth-

ing step after the M-step in the EM algorithm, boosting

the accuracy with prior knowledge. We call the EM algo-

rithm with smoothing steps as EMS algorithm. The idea

of adding smoothing step into EM algorithm dates back to

1990s [24, 30] in the context of positron emission tomogra-

phy and image reconstruction. The authors showed that a

simple local smoothing method, the weight average with bi-

nomial coefficients of a bin value and the values of its nearest

neighbours, could improve the estimation dramatically. We

adopt this smoothing method. That is, after the M-step, the

smoothing step will average each estimate with its adjacent

ones with binomial coefficients (1, 2, 1):

x̂i =
1

2

x̂i +
1

4

(x̂i−1 + x̂i+1) .
It was proved that adding the smoothing step is equiv-

alent to adding a regularization term penalizing the spiky

estimation [24], which can be viewed as applying Bayesian

inference with a prior that prefers smoother distribution to

jagged ones [26]. In more recent work, the idea of EMS is

also applied to spatial data [15] and biophysics data [18].

6 EXPERIMENTS
6.1 Experimental Setup

Datasets. We use the following datasets to conduct our

experiments. One of them is synthetic, and the other three

are real world datasets. All of them consist of numerical

values. For CFO based methods, we discretize the values

to the same granularity as the output of SW with EMS/EM

method. Also, in order to compare with HH and HH-ADMM,

which have optimal branching factor close to 4 [21], we

choose the granularity (number of buckets in histogram) to

be power of 4.

Synthetic Beta(5, 2) dataset. Originally, the distribution

is in the continuous domain [0, 1]. One hundred thousand

samples are generated. In experiments, we reconstruct the

histogram with 256 buckets for all methods.

Taxi dataset’s attribute pick-up time. Taxi pickup time

dataset comes from 2018 January New York Taxi data [31].

Originally, the dataset contains the pickup time in a day (in

seconds). We map the values into [0, 1]. There are 2, 189, 968
samples in the dataset. In experiments, all estimated his-

tograms have 1024 buckets.

Methods

Metrics Wasserstein

and KS

distance

Range

Query

Mean &

Variance

Quantile

SW with EMS/EM

(this paper)

✓ ✓ ✓ ✓

HH-ADMM

(this paper)

✓ ✓ ✓ ✓

CFO binning ✓ ✓ ✓ ✓

HH [21] and

HaarHRR [21]

✓

PM [33] and SR [10] ✓

Table 2: Methods and evaluated metrics.

Income dataset. We use the income information of the

2017 American Community Survey [29]. The data range

is [0, 1563000). We extract the values that are smaller than

524288 (i.e., 2
19
) andmap them into [0, 1]. There are 2, 308, 374

samples after pre-processing. We choose to set the estimated

histograms with 1024 buckets.

Retirement dataset. The San Francisco employee retire-

ment plans data [25] contains integer values from −28, 700
to 101, 000. We extract values that are non-negative and

smaller than 60, 000, and map them into [0, 1]. There are

178, 012 samples after post-processing. In experiments, we

reconstruct the histogram with 1024 buckets for all methods.

The income dataset is spiky because many people tend

to report with precision up to hundreds or thousands (e.g.,

people are more likely to report $3000 instead of more precise

value like $3050 or $2980.)

Competitors. In the experiments, we consider several ex-

isting methods, including methods that obtain mean (PM,

SR) and Hierarchy-based Methods (HH, HaarHRR). We also

consider CFO with binning methods, our proposed method

HH-ADMM, and SWwith EMS/EM. To the more specific, we

summarize the methods and metrics evaluated in Table 2.

• Piecewise Mechanism (PM) and Stochastic Rounding

(SR) (See Section 2.2) are only evaluated for mean

and variance. They were designed for mean, and we

adapted them to also estimate variance.

• For CFO with binning, we partition 𝒟 into c con-

secutive, non-overlapping chunks. We consider c =
16, 32, 64, which are the best performing c values.

• For HH, HaarHRR and HH-ADMM, similar to [21], we

use a branching factor of 4. HH and HaarHRR are only

evaluated for range queries as they produce estima-

tion results with negative values, which are not valid

probability distributions. Other metrics are defined for

probability distributions.

• For SW with EM and EMS as post-processing, we set

τ = 10
−3eϵ for EM and τ = 10

−3
for EMS.
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Figure 1: Normalized frequencies of datasets for experiments.
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Figure 2: Results of distribution distances (first row: Wasserstein distance, second row: KS distance), varying ϵ .
As a brief overview of the experiment results, SW with

EMS performs best with different privacy budgets and differ-

ent metrics. HH-ADMM performs best on the income dataset

under some of the metrics. We also experimentally demon-

strate the better utility of SW over other wave shapes in GW
and the near-optimal choice of b for SW.

Evaluationmethodology. The algorithms are implemented

using Python 3.6 and Numpy 1.15; the experiments are con-

ducted on a server with Intel Xeon 4108 and 128GB memory.

For each dataset and each method, we repeat the experiment

100 times and take the mean.

6.2 Distribution Distance
We first evaluate metrics that capture the quality of the re-

covered distributions. Note that HH and haarHRR are not

included (but HH-ADMM is) because HH or haarHRR does

not result in valid distributions.

Wasserstein Distance. Figure 2(a)-2(d) shows the Wasser-

stein distanceW1 of reconstructed distribution and the true

distribution. In most cases, SW with EMS performs best, fol-

lowed by EM andHH-ADMM. For theCFO-binningmethods,

when ϵ is small, larger binning sizes (i.e., fewer number of

bins) tend to give better performance. The lines for larger

binning sizes flatten as ϵ increases, showing that the errors

are dominated by biases due to binning. When ϵ becomes

larger, CFO-binning with smaller bin sizes (i.e., more bins)

becomes better. We observe that even if we could choose the

optimal bin size empirically for each dataset and ϵ value, the

result would still be worse than SW with EMS.

KS Distance. Figure 2(e)-2(h) show the K-S distance. For

Beta, taxi pickup time and retirement datasets, SWwith EMS

generally performs the best, followed by EM. For the income

dataset, HH-ADMMperforms better than EM and EMS under

this metric, especially under larger ϵ values. This is because

the income dataset is more spiky, due to the fact that people

tend to report income using round numbers. HH-ADMM is

better at preserving some of the spikes in the distribution,

whereas SW with EM or EMS will smooth the spikes. Since

KS distance measures maximum difference at one point in

CDF, HH-ADMM results in lower errors under KS distance,

even though it produces higher error under Wasserstein

Distance. For similar reason, CFO with larger bin size also

perform poorly on the income dataset under KS distance.

6.3 Semantic and Statistical Quantities
We compare the results of different methods using the range

query and statistic quantities includingmean, variance, quan-

tiles. For mean and variance, we also consider the SR and

PM, which were designed for mean estimations. All results

are measured by Mean Absolute Error (MAE).
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Figure 3: MAE of random range query with range α = 0.1 (first row) and α = 0.4 (second row).

Range Query. The queries are randomly generated, but

with fixed range sizes. Denote the left and right of the range

as i and i + α , we randomly generate i ∈ [0, 1 − α] with
α = 0.1 and 0.4. The results in Figure 3 shows that SW
with EMS outperforms HH and HaarHRR [21]. In fact, it

is the best in most cases, except when α = 0.1 in the taxi

pickup time dataset and in low privacy region of income

dataset. However, SW with EMS has performance similar

to CFO-binning-64 when α = 0.1 and still outperforms all

the hierarchy-based approaches in taxi pickup time dataset.

For the income dataset, EM and EMS performs well in high

privacy range (i.e., ϵ ≤ 2), while HH-ADMM performs best

in low privacy range, followed by EM and EMS.

Mean Estimation. Results for mean estimation are showed

in Figure 4(a)-4(d). SR performs better than PM when ϵ is

small, but worse when ϵ is larger. This is consistent with

the analysis in [33]. Note that SR and PM devote all privacy

budget to estimate mean. While SW with EMS can estimate

the full distribution, it performs comparable to the best of

SR and PM for estimating the mean. We also see that HH-

ADMM has better performances than all other CFO-binning

methods, but is still inferior to SW with EMS.

Variance Estimation. Although SR and PM are proposed

for mean estimation, they can be modified to support vari-

ance estimation as well. Specifically, we randomly sample

50% of users to estimate mean first. The estimated mean is

then broadcast to the remaining users. Then each user com-

pares his secret value and the received estimated mean, and

reports the squared difference (i.e., (vi − µ̃)2) to the server,

who averages them to obtain variance.

The experimental results are showed in Figure 4(e)- 4(h).

As we can see, the error of SR and PM is larger than EM

or EMS in most cases. One reason is that only half of the

users are used for variance estimation (the other half is nec-

essary for mean estimation). The relative performance of

other methods are similar to previous experiments.

Quantile Estimation. Experimental results are shown in

Figure 4(i)-4(l). Ignoring the spiky income dataset for now,

our proposed SW with EMS performs best. Moreover, we

observe that SW with EM sometimes performs better but is

not stable, because it is sensitive to parameters. HH-ADMM

performs worse than SW, but close to the best of CFO with

binning. For CFO with binning, because of the trade-off

between estimation noise and the bias within the bins, larger

bin sizes typically perform better in smaller ϵ ranges, while

the smaller bin sizes narrows the gap as ϵ increases.

For the spiky income dataset, even for ϵ = 0.5, larger bin
sizes give worse utility (1 to 2 orders of magnitude) than

other mechanisms. This also demonstrates that the optimal

bin size is data-dependent. HH-ADMM successfully captures

the spikiness of the dataset and thus performs the best.

6.4 Wave Shapes and Parameters
Here we compare the different shapes of General Wave (GW)

with SW, and different parameters of SW.

Different shapes of wave in GW. In Section 5.2, we an-

alytically show that SW is preferred because it maximizes

the Wasserstein distance between output distributions. We

empirically compare SW with other wave forms. We con-

sider 5 other GWmechanism with different shape, including

4 trapezoid shapes and one triangle shape. The upper side to
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Figure 4: MAE for estimating mean (first row), variance (second row), and quantiles (third row).

bottom side length ratio of trapezoid wave are 0.2, 0.4, 0.6
and 0.8. The experimental results in Figure 5 show when

ϵ = 1, SW gives the best estimated distributions in terms

of Wasserstein distance, no matter how we change b. As
the ratio decreases, the recovery accuracy also degrades in

general. The results support our intuition in Section 5.2.

SW with different b. In Section 5.3, we propose to use

bSW =
ϵeϵ−eϵ+1

2eϵ (eϵ−1−ϵ ) . Figure 6 reports experimental results with

different b. Our choice of bSW, which is indicated as the

vertical dotted line, is among the ones that provide best

utility. We have also evaluated b on other metrics; the results

give similar conclusion, and are omitted because of space

limitation.

Bucketization granularity. To see what is the optimal

bucketization granularity on different datasets, we choose 4

different numbers of buckets (256, 512, 1024 and 2048) then

compare the Wasserstein distance between the estimated

distributions and the true distributions. For simplicity, we use

same number of buckets for both
˜𝒟 and𝒟 . The experimental

results in Figure 7 show different datasets have different

optimal bucketization granularity. For Beta(5,2), we have

best result when the number of buckets is 256. For the other

3 datasets, dividing 𝒟 into 1024 buckets can give us best

performance in most cases.

7 RELATEDWORK
Differential privacy has been the de facto notion for pro-

tecting privacy. In the local setting, we have seen real world

deployments: Google Chrome extension [14], spelling predic-

tion of Apple [32] and telemetry collection by Microsoft [9].

Categorical Frequency Oracle. One basic mechanism in

LDP is to estimate frequencies of values. There have been

several mechanisms [1, 4, 5, 9, 14, 35] proposed for this task.

Among them, [35] introduces OLH, which achieves low es-

timation errors and low communication costs. Our paper

develop new frequency oracles for numerical attributes.

Handling Ordinal/Numerical Data. When the data is or-

dinal, the straightforward approach is to bucketize the data

and apply categorical frequency oracles. [34] considers dis-

tribution estimation, but with a strictly weaker privacy defi-

nition. There are also mechanisms that can handle numerical

setting, but focusing on the specific task of mean estimation,

i.e. SR [9, 10] and PM [33]. These two approaches have been

discussed in Section 2 and compared in the experiments.

Post-processing. Given the result of a privacy-preserving

algorithm, one can utilize the structural information to post-

process it so that the utility can be improved. In the setting of

centralized DP, Hay et al. [17] propose an efficient hierarchi-

cal method to minimize L2 difference between the original
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Figure 7: Wasserstein distance between estimated and true distribution with different bucketization granularity.
result and the processed result. Besides that, the authors

of [22] also consider the non-negativity constraint and pro-

pose to use ADMM to obtain result that achieves maximal

likelihood. As ADMM is not efficient for high dimensional

case, a gradient descent based algorithm is proposed [23].

In the LDP setting, [33] and [21] also consider the hierar-

chy structure and apply the technique of [17]. We propose

to use ADMM instead of [17], which improves utility.

Without using the hierarchical constraint (only consider

CFO), Jia et al. [19] propose to utilize external information

about the dataset (e.g., assume it follows a power-law distri-

bution), and Wang et al. [38] consider the constraints that

the distribution is non-negative and sum up to 1. Bassily [3]

and Kairouz et al. [20] study the post-processing for some

CFO with MLE. Compared with those existing methods, our

work is also a post-processing method but is applied to a

new Square Wave reporting method and requires different

techniques (such as EMS algorithm).

Shuffling. Recently, shuffle-DP [2, 8, 13] is introduced as

an intermediate framework between centralized DP and LDP.

By assuming there is a trusted third party who shuffles the re-

ports of a ϵ-LDP protocol before sending them to the aggrega-

tor, it is proved in [2] that the output of those shuffled reports

will satisfy (ϵ ′,δ )-DP, for some ϵ ′ = O((1∧ϵ)eϵ
√
log(1/δ )/n).

Our SW mechanism is fully compatible with shuffling, and

its privacy amplification effects can be analyzed by the same

tools introduced in [2].

8 CONCLUSIONS
We have studied the problem of reconstructing the distri-

bution of a numerical attribute under LDP. We introduce

HH-ADMM as an improvement to existing hierarchy-based

methods. Most importantly, we propose the method of com-

bining Square Wave reporting with Expectation Maximiza-

tion and Smoothing. We show that Square Wave mechanism

has the best utility among general wave mechanisms, and

introduce techniques to choose the bandwidth parameter

b by maximizing an upper bound of mutual information.

Extensive experimental evaluations demonstrate that SW
with EMS generally performs the best under a wide range

of metrics. We expect these protocols and findings to help

improving the deployment of LDP protocols to collect and

analyse numerical information.
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