
Improving Utility and Security of the Shuffler­based
Differential Privacy

Tianhao Wang
Purdue University

tianhaowang@purdue.edu

Bolin Ding
Alibaba Group

bolin.ding@alibaba-inc.com

Min Xu
University of Chicago

xum@cs.uchicago.edu

Zhicong Huang
Alibaba Group

zhicong.huang@alibaba-inc.com

Cheng Hong
Alibaba Group

vince.hc@alibaba-inc.com

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba-inc.com

Ninghui Li
Purdue University

ninghui@cs.purdue.edu

Somesh Jha
University of Wisconsin

jha@cs.wisc.edu

ABSTRACT

When collecting information, local differential privacy (LDP) alle-

viates privacy concerns of users because their private information

is randomized before being sent it to the central aggregator. LDP

imposes large amount of noise as each user executes the randomiza-

tion independently. To address this issue, recent work introduced

an intermediate server with the assumption that this intermediate

server does not collude with the aggregator. Under this assump-

tion, less noise can be added to achieve the same privacy guarantee

as LDP, thus improving utility for the data collection task.

This paper investigates this multiple-party setting of LDP. We

analyze the system model and identify potential adversaries. We

then make two improvements: a new algorithm that achieves a bet-

ter privacy-utility tradeoff; and a novel protocol that provides better

protection against various attacks. Finally, we perform experiments

to compare different methods and demonstrate the benefits of using

our proposed method.

PVLDB Reference Format:

Tianhao Wang, Bolin Ding, Min Xu, Zhicong Huang, Cheng Hong, Jin-
gren Zhou, Ninghui Li, Somesh Jha. Improving Utility and Security of the
Shuffler-based Differential Privacy. PVLDB, 13(13): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/3424573.3424576

1. INTRODUCTION
To protect data privacy in the context of data publishing, differ-

ential privacy (DP) [26] is proposed and widely accepted as the

standard of formal privacy guarantee. DP mechanisms allow a

server to collect users’ data, add noise to the aggregated result, and

publish the result. More recently, local differential privacy (LDP)

has been proposed [25]. LDP differs from DP in that random noise

is added by each user before the data is sent to the central server.

Thus, users do not need to trust the server. This desirable feature

of LDP has led to wider deployment by industry [31, 1, 23, 53].

Meanwhile, DP is still deployed in settings where the centralized

server can be trusted (e.g., the US Census Bureau deployed DP for

the 2020 census [4]). However, removing the trusted central party

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 13
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3424573.3424576

comes at the cost of utility. Since every user adds some indepen-

dently generated noise, the effect of noise adds up when aggregat-

ing the result. As a result, while noise of scale (standard deviation)

Θ(1) suffices for DP, LDP has noise of scale Θ(
√
n) on the aggre-

gated result (n is the number of users). This gap is fundamental

for eliminating the trust in the centralized server, and cannot be

removed by algorithmic improvements [18].

Recently, researchers introduced settings where one can achieve

a middle ground between DP and LDP, in terms of both privacy and

utility. This is achieved by introducing an additional party [19, 30,

9, 20]. The setting is called the shuffler model. In this model, each

user adds LDP noise to data, encrypt it, and then send it to the new

party called the shuffler. The shuffler permutes the users’ reported

data, and then sends them to the server. Finally the server decrypts

the reports and obtains the result. In this process, the shuffler only

knows which report comes from which user, but does not know

the content. On the other hand, the server cannot link a user to a

report because the reports are shuffled. The role of the shuffler is

to break the linkage between the users and the reports. Intuitively,

this anonymity can provide some privacy benefit. Therefore, users

can add less noise while achieving the same level of privacy.

In this paper, we study this new model from two perspectives.

First, we examine from the algorithmic aspect, and make improve-

ment to existing techniques. More specifically, in [9], it is shown

the essence of the privacy benefit comes from a “noise” whose dis-

tribution is independent of the input value, also called privacy blan-

ket. While existing work leverages this, it only works well when

each user’s value is drawn from a small domain. To obtain a simi-

lar privacy benefit when the domain is large, we propose to use the

local hashing idea (also considered in the LDP setting [12, 52, 11,

5]). That is, each user selects a random hash function, and uses

LDP to report the hashed result, together with the selected hash

function. By analyzing the utility and optimizing the parameters

with respect to the utility metric (mean squared error), we present

an algorithm that achieves accuracy orders of magnitude better than

existing method. We call it Shuffler-Optimal Local Hash (SOLH).

We then work from the security aspect of the model. We re-

view the system setting of this model and identify two types of

attack that were overlooked: collusion attack and data-poisoning

attack. Specifically, as there are more parties involved, there might

exist collusions. While existing work assumes non-collusion, we

explicitly consider the consequences of collusions among different

parties and propose a protocol Private Encrypted Oblivious Shuf-

fle (PEOS) that is safer under these colluding scenarios. The other

attack considers the setting where the additional party introduces

calibrated noise to bias the result or break the privacy protection.

To overcome this, our protocol PEOS takes advantage of crypto-

graphic tools to prevent the shufflers from adding arbitrary noise.

To summarize, we provide a systematic analysis of the shuffler-

based DP model. Our main contributions are:

• We improve the utility of the model and propose SOLH.

• We design a protocol PEOS that provides better trust guarantees.

• We provide implementation details and measure utility and ex-

ecution performance of PEOS on real datasets. Results from our

evaluation are encouraging.

2. BACKGROUND
We assume each user possesses a value v from a finite, discrete

domain D , and the goal is to estimate frequency of v ∈ D .

2.1 Differential Privacy
Differential privacy is a rigorous notion about individual’s pri-

vacy in the setting where there is a trusted data curator, who gathers

data from individual users, processes the data in a way that satis-

fies DP, and then publishes the results. Intuitively, the DP notion

requires that any single element in a dataset has only a limited im-

pact on the output.

DEFINITION 1 (DIFFERENTIAL PRIVACY). An algorithm A

satisfies (ε, δ)-DP, where ε, δ ≥ 0, if and only if for any neighbor-

ing datasets D and D′, any set R of possible outputs of A,

Pr [A(D) ∈ R] ≤ eε Pr
[
A(D′) ∈ R

]
+ δ

Denote a dataset as D = 〈v1, v2, . . . , vn〉, where each vi is from

some domain D . Two datasets D = 〈v1, v2, . . . , vn〉 and D′ =
〈v′1, v′2, . . . , v′n〉 are said to be neighbors, or D ' D′, iff there

exists at most one i ∈ [n] = {1, . . . , n} such that vi 6= v′i, and

vj = v′j for any other j 6= i. When δ = 0, we simplify the notation

and call (ε, 0)-DP as ε-DP.

2.2 Local Differential Privacy
Compared to the centralized setting, the local version of DP of-

fers a stronger level of protection, because each user only reports

the noisy data rather than the true data. Each user’s privacy is still

protected even if the server is malicious.

DEFINITION 2 (LOCAL DIFFERENTIAL PRIVACY). An algo-

rithm A(·) satisfies (ε, δ)-local differential privacy ((ε, δ)-LDP),

where ε, δ ≥ 0, if and only if for any pair of input values v, v′ ∈ D ,

and any set R of possible outputs of A, we have

Pr [A(v) ∈ R] ≤ eε Pr
[
A(v′) ∈ R

]
+ δ

Typically, δ = 0 in LDP (thus ε-LDP). We review the perturbation-

based LDP mechanisms that will be used in the paper.

Generalized Randomized Response. The basic mechanism in

LDP is called randomized response [57]. It was introduced for the

binary case (i.e., D = {0, 1}), but can be easily generalized. Here

we describe the generalized version of random response (GRR).

In GRR, each user with private value v ∈ D sends GRR(v) to

the server, where GRR(v) outputs the true value v with probability

p, and a randomly chosen v′ ∈ D where v′ 6= v with probability

1− p. Denote the size of the domain as d = |D |, we have

∀y∈D Pr [GRR(v) = y] =

{
p = eε

eε+d−1
, if y = v

q = 1
eε+d−1

, if y 6= v
(1)

This satisfies ε-LDP since p
q
= eε. To estimate the frequency of f̃v

for v ∈ D , one counts how many times v is reported, denoted by
∑

i∈[n] 1{yi=v}, and then computes

f̃v =
1

n

∑

i∈[n]

1{yi=v} − q

p− q
(2)

where 1{yi=v} is the indicator function that tells whether the report

of the i-th user yi equals v, and n is the total number of users.

Local Hashing. When d is large, the p value in Equation (1) be-

comes small, making the result inaccurate. To overcome this is-

sue, the local hashing idea [12] lets each user map v to one bit,

and then use GRR to perturb it. More formally, each user reports

〈H,GRR(H(v))〉 to the server, where H is the mapping (hashing)

function randomly chosen from a universal hash family. In this

protocol, both the hashing step and the randomization step result in

information loss. Later, Wang et al. [52] realized H does not nec-

essarily hashes v to one bit. In fact, the output domain size d′ of H
is a tradeoff. The optimal d′ is eε + 1. The method is called Op-

timized Local Hash (OLH), and it is frequently used in LDP tasks

(e.g., [54, 56, 58, 59]).

Similar to GRR, the result of OLH needs to be calibrated. Let

〈Hi, yi〉 be the report from the i’th user. For each value v ∈ D ,

to compute its frequency, one first computes
∑

i∈[n] 1{Hi(v)=yi}

= |{i | Hi(v) = yi}|, and then computes

f̃v =
1

n

∑

i∈[n]

1{Hi(v)=yi} − 1/d′

p− 1/d′
(3)

2.3 Cryptographic Primitives
We briefly review the cryptographic primitives that will be used.

Additive Homomorphic Encryption. In Additive Homomorphic

Encryption (AHE) [45], one can apply an algebraic operation (de-

noted by ⊕, e.g., multiplication) to two ciphertexts c1, c2, and

get the ciphertext of the addition of the corresponding plaintexts.

More formally, there are two functions, encrypt function Enc and

decrypt function Dec. Given two ciphertexts c1 = Enc(v1) and

c2 = Enc(v2), we have c1 ⊕ c2 = Enc(v1 + v2).

Additive Secret Sharing. In this technique, a user splits a secret

value v ∈ {0, . . . , d− 1} into r > 1 shares 〈si〉i∈[r], where r − 1
of them are randomly selected, and the last one is computed so that
∑

i si mod d = v. The shares are then sent to r parties, so that

each party only sees a random value, and v cannot be recovered

unless all the r parties collaborate.

Oblivious Shuffle. In order to prevent the shuffler from knowing

the mapping between the input and the output, multiple shufflers

are introduced. A natural method is to connect the shufflers sequen-

tially; and each shuffler applies a random shuffle. Another way of

achieving oblivious shuffle is the resharing-based shuffle [16, 39]

which utilizes secret sharing. Suppose there are r shufflers. The

users send their values to the shufflers using secret sharing. Define

t = br/2c+1 as the number of “hiders”, and r−t as the number of

“seekers”. The resharing-based oblivious shuffle [39] proceeds like

a “hide and seek” game. In particular, the protocol runs in
(
r
t

)
iter-

ations (because there are
(
r
t

)
ways to partition shufflers into hiders

and seekers). For each iteration, the seekers each secretly shares its

local value (a vector of shares) to the t hiders, respectively. Then

the hiders accumulate the shares and shuffle their vectors using an

agreed permutation (only the t hiders know the permutation order).

The shuffled vectors are then distributed to all of the r auxiliary

servers (each of the t hiders secret shares its local value to r − t

seekers). After
(
r
t

)
rounds, none of the colluding r − t auxiliary

servers know about the final permutation order.

3. PROBLEM DEFINITION AND EXISTING

TECHNIQUES

3.1 Problem Definition
Throughout the paper, we focus on the problem of histogram

estimation, which is typically used for solving other problems in

the LDP setting. We assume there are n users; each user i possesses

a value vi from a discret domain D . The frequency of value v ∈ D

is represented by fv = 1
n

∑

i∈[n] 1{vi=v}. The server’s goal is to

estimate the frequency for each v, denoted by f̃v . We consider the

shuffler model, which is the middle ground between DP and LDP.

In particular, an auxiliary server called the shuffler is introduced.

Users need to trust that the auxiliary server does not collude with

the server. Our goal is to improve the shuffler model in terms of

(1) accuracy of estimating f̃v , and (2) security of the model itself.

Given a fixed privacy guarantee, we use the mean squared error of

the estimation, i.e., 1
|D|

∑

v∈D
(fv − f̃v)

2, as the metric.

3.2 Privacy Amplification via Shuffling
The shuffling idea was originally proposed in Prochlo [15], where

a shuffler is inserted between the users and the server to break the

linkage between the report and the user identification. The privacy

benefit was investigated in [19, 30, 9]. It is proven that when each

user reports the private value using GRR with εl-LDP, applying

shuffling ensures centralized (εc, δ)-DP, where εc < εl. Table 1

gives a summary of these results. Among them, [9] provides the

strongest result in the sense that the εc is the smallest, and the proof

technique can be applied to other LDP protocols.

Table 1: Privacy amplification results. Each row corresponds
to a method. The amplified εc only differs in constants. The cir-
cumstances under which the method can be used are different.

Method Condition εc

[30] εl < 1/2

√

144 ln(1/δ) · ε
2
l
n

[19]
√

192
n

ln(4/δ) < εc < 1, binary

√

32 ln(4/δ) · eεl+1
n

[9]

√
14 ln(2/δ)d

n−1
< εc ≤ 1

√

14 ln(2/δ) · eεl+d−1
(n−1)

Privacy Blanket. The technique used in [9] is called blanket de-

composition. The idea is to decompose the probability distribution

of an LDP report into two distributions, one dependent on the true

value and the other independently random; and this independent

distribution forms a “privacy blanket”. In particular, the output dis-

tribution of GRR given in Equation (1) is decomposed into

∀y∈D Pr [GRR(v) = y] = (1− γ)Pr [y | v] + γ Pr [Uni(D) = y]

where Pr [y | v] is the distribution that depends on v, and Uni(D)
is uniformly random with Pr [Uni(D) = y] = 1/d. With proba-

bility 1 − γ, the output is dependent on the true input; and with

probability γ, the output is random. Given n users, the n − 1 (ex-

cept the victim’s) such random variables can be seen as containing

some uniform noise (i.e., the γ Pr [Uni(D) = y] part). For each

value v ∈ D , the noise follows Bin(n − 1, γ/d). Intuitively, this

noise makes the output uncertain. The following theorem, which is

derived from Theorem 3.1 of [9], formalizes this fact.

THEOREM 1 (BINOMIAL MECHANISM). Binomial mechanism

adds independent noise Bin(n, p) to each component of the his-

togram. It satisfies (εc, δ)-DP where

εc =

√

14 ln(2/δ)

np

In Theorem 1, the larger γ is, the better the privacy. Given GRR,

we can maximize γ by setting Pr [y | v] = 1{v=y}, which gives

γ = d
eεl+d−1

. The binomial noise Bin(n − 1, 1
eεl+d−1

) thus

provides (
√

14 ln(2/δ) · eεl+d−1
(n−1)

, δ)-DP [9]. One limitation of [9]

is that as GRR is used, the accuracy degrades with domain size d.

4. IMPROVING UTILITY OF THE SHUF­

FLER MODEL
This section focuses on improving utility of the shuffler model.

4.1 Unary Encoding for Shuffling
We first revisit the unary-encoding-based methods, also known

as basic RAPPOR [31], and show that this method gives better

utility when d is large. However, its communication is linear in d.

In particular, in unary-encoding, the value v is transformed into a

vector B of size d, where B[v] = 1 and the other locations of B
are zeros (note that this requires values of the domain D be indexed

from 1 to d). Then each bit b of B is perturbed to 1 − b indepen-

dently. To satisfy LDP, the perturbation probability is set to 1

eε/2+1
.

Note that we use ε/2 because for any two values v and v′, their cor-

responding unary encodings differ by two bits. We can apply the

privacy blanket argument and prove that an εl-LDP unary-encoding

method satisfies (εc, δ)-DP after shuffling.

THEOREM 2. Given an εl-LDP unary-encoding method, after

shuffling, the protocol is (εc, δ)-DP, where

εc = 2

√

14 ln(4/δ) · e
εl/2 + 1

n− 1

PROOF. For any two neighboring datasets D ' D′, w.l.o.g., we

assume they differ in the n-th value, and vn = 1 in D, vn = 2
in D′. As each bit is perturbed independently, we can ignore other

bits and focus on location 1 and 2. For each location, there are n−1
users, each reporting a bit with probability

∀y∈{0,1} Pr [B[j]→ y] = (1− γ)1{B[j]=y} + γ Pr [Uni(2) = y]

where we slight abuse the notation and use Uni(2) for Uni({0, 1}).
Given the perturbation probability Pr [1→ 0] = Pr [0→ 1] =

1

eεl/2+1
= γ/2, we can calculate that γ = 2

eεl/2+1
. After shuf-

fling, the histogram of n − 1 (except the victim’s) such random

variables follows Bin(n − 1, γ/2). As there are two locations, by

Theorem 1, we have εc = 2
√

14 ln(4/δ) · eεl/2+1
n−1

.

4.2 Local Hashing for Shuffling
While sending B when d is large is fine for each user; with n

users, receiving B’s from the server side is less tolerable as it in-

curs O(d · n) bandwidth. To reduce the communication cost, we

propose a hashing-based method. Its utility is worse than the unary-

encoding based method (from the experiment, its MSE is at most

twice as that for unary-encoding); but the overall communication

bandwidth is smaller. In what follows, we prove the hashing-based

method is private in the shuffler model.

We remind the readers that in local hashing, each user reports H
and y = GRR(H(v)). The hash function H is chosen randomly

from a universal hash family and hashes v from a domain of size

d into another domain of size d′ ≤ d; and GRR will report H(v)

with probability eεl

eεl+d′−1
, and any other value (from the domain

of size d′) with probability 1
eεl+d′−1

(Equation (1)). Here, whether

user i reports truthfully or randomly are two random events, whose

probabilities are denoted by Pr [Trui] and Pr [Rndi], respectively.

More specifically, the user flips a coin with P (heads) = (eεl −
1)/(eεl + d′ − 1). If it lands heads, the user reports H(v) and we

call this event Trui. If it lands tails, the user picks a value uniformly

at random from 0 . . . d′ − 1. We call this event Rndi. We call this

method SOLH, which stands for Shuffler-Optimal Local Hash.

THEOREM 3. Given the εl-LDP SOLH method, after shuffling,

the protocol is (εc, δ)-DP, where

εc =

√

14 ln(2/δ)(eεl + d′ − 1)

n− 1

PROOF. Denote A as the algorithm of SOLH in the shuffler

model. Let [〈Hi, yi〉]i∈[n] be the outputs of all users before shuf-

fling, and let [〈Ĥj , ŷj〉]j∈[n] be the output of A(D). W.l.o.g., we

assume D and D′ differ in the n-th value, i.e., vn 6= v′n. We denote

R as the output from A(D). To prove A is (εc, δ)-DP, it suffices

to show

PrR∼A(D)

[
Pr [A(D) = R]

Pr [A(D′) = R]
≥ eεc

]

≤ δ

where the randomness is on coin tosses of all users’ LDP mech-

anism and the shuffler’s random shuffle. We first upper bound
Pr[A(D)=R]
Pr[A(D′)=R]

by assuming user n also report truthfully. That is (we

shorten the notation and use Pr [X(D)] to denote Pr [A(D) = R]),

Pr [X(D)]

Pr [X(D′)]

=
Pr [X(D) | Trun] · Pr [Trun] + Pr [X(D) | Rndn] · Pr [Rndn]

Pr [X(D′) | Trun] · Pr [Trun] + Pr [X(D′) | Rndn] · Pr [Rndn]

=
Pr [Pr [X(D)] | Trun] · Pr [Trun] + c

Pr [X(D′) | Trun] · Pr [Trun] + c
≤ Pr [Pr [X(D)] | Trun]

Pr [X(D′) | Trun]

where c = Pr [X(D) | Rndn] · Pr [Rndn] = Pr [X(D′) | Rndn] ·
Pr [Rndn] is a constant. Thus we assume user n reports truthfully,

and omit the conditional part for simplicity. The rest of the proof

proceeds in 5 steps:

• Step 1 (expand the probability expression):

Denote T as indices of the first n− 1 users who report truthfully

(i.e., with probability 1 − γ = eεl−1
eεl+d′−1

), and let RT denote their

chosen hash functions and hashed results (RT = [〈Hi, yi〉]i∈T).

We examine the conditional probability Pr [A(D) = R | (T,RT)]:

Pr [A(D) = R | (T,RT)]

=
∑

π

Pr [π]Pr [A(D) = R | (T,RT , π)]

=
∑

π

Pr [π]









∏

i∈T

Pr
[
Hπ(i)

]
1{Hπ(i)=Ĥi∧yπ(i)=ŷi}

︸ ︷︷ ︸
reports from users in T

· (4)

∏

i∈[n−1]\T

Pr
[
Hπ(i)

] 1

d′

︸ ︷︷ ︸

reports from users in [n − 1] \ T

·Pr
[
Hπ(n)

]
1{Hπ(n)(vn)=yπ(n)}

︸ ︷︷ ︸
report from user n










Pr [π] denotes the probability a specific random permutation is cho-

sen (Pr [π] = 1/n!), Pr
[
Hπ(i)

]
(short for Pr

[

Ĥi = Hπ(i)

]

) is the

probability user i chooses hash function Hπ(i) (assuming there are

h possible hash functions, Pr
[
Hπ(i)

]
= 1/h), and the summation

is over all permutation π. The users are divided into three groups.

For i ∈ T , we know from RT that his/her report is 〈Ĥi, ŷi〉, and it

must match 〈Hπ(i), yπ(i)〉 (otherwise Pr [A(D) = R | (T,RT , π)] =
0). We use the indicator function to denote this. Note that here as

the user reports truthfully, ŷi = Ĥi(vi), and 1{Hπ(i)=Ĥi∧yπ(i)=ŷi} =
1{Hπ(i)=Ĥi∧Hπ(i)(vi)=yπ(i)}. For user n and users who report

randomly, their probabilities can also be analyzed similarly.

• Step 2 (convert probabilities to counts):

Denote P = {π | ∀i ∈ T,Hπ(i) = Ĥi ∧ yπ(i) = ŷi}. Here

P is the set of all possible permutations that make the i ∈ T part

of Equation (4) non-zero (i.e., all the indicator functions for i ∈ T
equal 1). Assuming the reports in R are distinct (i.e., @i, j ∈ [n]
s.t. Hi = Hj ∧ yi = yj), such permutations must map i ∈ T to

π(i) s.t. Hπ(i) = Ĥi and yπ(i) = ŷi. P can be partitioned into

n − |T | equal-sized subsets each with π(n) = i. That is, for each

i ∈ [n] \ T , define Pi = {π | π ∈ P ∧ π(n) = i}. Each Pi is of

size 1{Ĥi(vn)=ŷi} · (n− 1− |T |)! because Pi left the mapping of

[n− 1] \ T unspecified (and any random permutation is possible).

We now have:

Pr [A(D) = R | (T,RT)]

Pr [A(D′) = R | (T,RT)]
=

c1
∑

π∈P 1{Hπ(n)(vn)=yπ(n)}
c1

∑

π∈P 1{Hπ(n)(v
′

n)=yπ(n)}

=

∑

i∈[n]\T

∑

π∈Pi
1{Ĥi(v′

n)=ŷi}
∑

i∈[n]\T

∑

π∈Pi
1{Ĥi(v′

n)=ŷi}
=

∑

i∈[n]\T 1{Ĥi(vn)=ŷi}
∑

i∈[n]\T 1{Ĥi(v′

n)=ŷi}
(5)

where c1 = Pr [π] (
∏

i∈[n] Pr
[
Hπ(i)

]
)(
∏

i∈[n−1]\T
1
d′
) is a con-

stant that does not depend on vn or v′n. Note that we previously

assumed the reports in R are unique. If there are duplicated reports,

P could be larger, but the ratio stays the same. To see this, define

R−T = [〈Ĥi, ŷi〉]i∈[n]\T as reports from [n]\T . We model a valid

permutation in P as a two-step process: for any report from user

i ∈ [n]\T , suppose there are ai ≥ 0 reports in RT that is the same

(both the hash function and the hash result are same) as user i’s
report, and bi ≥ 1 duplicated reports in R−T . We first choose ai

from ai + bi reports and “put” them to RT ; then we permute RT

(there are c ≥ 1 valid permutations within RT) and R−T (there

are
∑

i∈[n]\T 1{Ĥi(vn)=ŷi} · (n − 1 − |T |)! valid permutations

in R−T). It can be verified that this modeling covers exactly all

permutations in P . Now for each i ∈ [n] \ T : If ai = 0, there

are xi = 1{Ĥi(vn)=ŷi} ·
∏

i∈[n]\T

(
ai+bi

ai

)
· c · (n − 1 − |T |)!

possible permutations in P , where
∏

i∈[n]\T

(
ai+bi

ai

)
denotes the

number of possible choices for the duplicated reports. If ai > 0,

denote yi = xi/
(
ai+bi

ai

)
. We consider all these ai+bi duplicate re-

ports together. Index n can be mapped to match any of the ai + bi
duplicated reports. For each report, there are

(
ai+bi−1

ai

)
choices

(because the permutation will first choose ai reports and put them

into RT , and the current report which n is mapped to cannot be

put to RT ; thus we choose ai from the remaining ai + bi − 1 re-

ports to put to RT). Overall, we have yi · (ai + bi) ·
(
ai+bi−1

ai

)
=

yi ·bi ·
(
ai+bi

ai

)
= xi ·bi valid permutations, which equals to the case

when we sum all the bi values each with xi permutations. There-

fore, there are xi = 1{Ĥi(vn)=ŷi} · c
′ valid permutations for each

i ∈ [n] \ T . Summarizing all xi’s gives us Equation (5).

• Step 3 (model the counts with Binomial RVs):

So far, we have proved that, fixing R, T and RT , the ratio only

depends on the numbers of reports that are random and matches vn
and v′n, respectively. The high level idea is to show that knowing

T and RT fixes the permutation on values from T ; and any valid

permutation only shuffles values from [n] \ T (informally, this can

be thought of as the server removes reports from T). Now define

NR,T,RT =
∑

i∈[n]\T

(

1{Ĥi(vn)=ŷi}
)

and N ′
R,T,RT

=
∑

i∈[n]\T

(

1{Ĥi(v′

n)=ŷi}
)

,

we want to prove

Pr(R,T,RT)∼A(D)

[
Pr [A(D) = R | (T,RT)]

Pr [A(D′) = R | (T,RT)]
≥ eεc

]

(omit the (R, T,RT) ∼ A(D) part to simplify notations)

=Pr

[

NR,T,RT

N ′
R,T,RT

≥ eεc

]

≤1− Pr

[

NR,T,RT ≤ θeεc/2 ∧N ′
R,T,RT

≥ θe−εc/2
]

≤Pr
[

NR,T,RT ≥ θeεc/2
]

+ Pr

[

N ′
R,T,RT

≤ θe−εc/2
]

where θ is some constant. For (R, T,RT) generated from a ran-

dom run of A(D), we can show NR,T,RT and N ′
R,T,RT

follow

Binomial distributions. In particular, as we assumed user n always

report truth, there must be Hn(vn) = yn; the remaining n−1 users

will first decide whether to report truthfully (i.e., with probability

(eεl − 1)/(eεl + d′− 1)), and if user i’s report 〈Hi, yi〉 is random,

we have Pr [Hi(vn) = yi] = 1/d′. Each user’s reporting process

are thus modeled as two Bernoulli processes. As a result, NR,T,RT

follows the Binomial distribution Bin(n−1, 1/(eεl +d′−1)) plus

a constant 1. Similarly, N ′
R,T,RT

∼ Bin(n−1, 1/(eεl +d′−1))+
1{Hn(v′

n)=yn} ≥ Bin(n− 1, 1/(eεl + d′ − 1)).

• Step 4 (bound the ratio of Binomial RVs with Chernoff bounds):

Following the later part of the proof of Theorem 3.1 from [9]:

set θ = n−1
eεl+d′−1

= E
[
N ′

R,T,RT

]
= 14 log(2/δ)

ε2
,

Pr

[

NR,T,RT ≥ θeεc/2
]

+ Pr

[

N ′
R,T,RT

≤ θe−εc/2
]

=Pr

[

N ′
R,T,RT

≥ θeεc/2 − 1
]

+ Pr

[

N ′
R,T,RT

≤ θe−εc/2
]

≤Pr
[

N ′
R,T,RT

− E
[
N ′

R,T,RT

]
≥ θ(eε/2 − 1− 1/θ)

]

+Pr

[

N ′
R,T,RT

− E
[
N ′

R,T,RT

]
≤ θ(e−ε/2 − 1)

]

≤exp(−θ(eε/2 − 1− 1/θ)2/3) + exp(−θ(1− e−ε/2)2/2)

Assuming ε ≤ 1, both of them are less than or equal to δ/2: For the

first term, θ ≥ 27
ε

implies eε/2 − 1− 1/θ ≥ 25
54
ε and 14 ≥ 3·542

252
.

For the second term, 1− eε/2 ≥ (1− e1/2)ε ≥ ε/
√
7.

• Step 5 (put things together):

We have bound the conditional probability ratio. It also implies

a bound on joint probability ratio, because
Pr[A(D)=R|(T,RT)]
Pr[A(D′)=R|(T,RT)]

=
Pr[A(D)=R∧(T,RT)]Pr[T,RT]
Pr[A(D′)=R∧(T,RT)]Pr[T,RT]

= Pr[A(D)=R∧(T,RT)]
Pr[A(D′)=R∧(T,RT)]

. For any R,

we say (T,RT) is “good” if eεc ≥ Pr[A(D)=R∧(T,RT)]
Pr[A(D′)=R∧(T,RT)]

and “bad”

otherwise. Consider any possible set S of output, we finally prove

Pr [A(D) ∈ S] =
∑

(T,RT)

∑

R∈S

Pr [A(D) = R ∧ (T,RT)]

=
∑

(T,RT) is good

∑

R∈S

Pr [A(D) = R ∧ (T,RT)]

+
∑

(T,RT) is bad

∑

R∈S

Pr [A(D) = R ∧ (T,RT)]

≤
∑

(T,RT) is good

∑

R∈S

eεPr
[
A(D′) = R ∧ (T,RT)

]

+
∑

(T,RT) is bad

∑

R

Pr [A(D) = R ∧ (T,RT)]

≤
∑

(T,RT)

∑

R∈S

eεPr
[
A(D′) = R ∧ (T,RT)

]
+ δ

=eεPr
[
A(D′) ∈ S

]
+ δ

4.3 Utility Analysis
Now we analyze the utility of different methods. We utilize

the framework of Theorem 2 from [52] to analyze the accuracy

of estimating the frequency of each value in the domain (i.e., Equa-

tions (2) and (3)). In particular, we measure the expected squared

error of the estimation f̃v , which equals variance, i.e.,

∑

v∈D

E
[

(f̃v − fv)
2
]

=
∑

v∈D

Var

[

f̃v
]

Fixing the local εl, the variances are already summarized in [52].

We first restate results from [52], and then extends it to the shuffler

setting.

LEMMA 4. Given the domain size d and the LDP parameter εl,
the variance of GRR is eεl+d−2

n(eεl−1)2
.

LEMMA 5. Given the hashing domain size d′ and the LDP pa-

rameter εl, the variance of local hash is
(eεl+d′−1)2

n(eεl−1)2(d′−1)
.

Utility of Generalized Randomize Response. We first prove the

variance of GRR.

PROPOSITION 6. Given εc in the shuffler model, the variance

of using GRR is bounded by

ε2c(n−1)

14 ln(2/δ)
−1

n

(

ε2c(n−1)

14 ln(2/δ)
−d

)2 .

PROOF. From [9], we have eεl + d − 1 =
ε2c(n−1)

14 ln(2/δ)
. Plugging

it to Lemma 4 the variance is

ε2c(n−1)

14 ln(2/δ)
−1

n

(

ε2c(n−1)

14 ln(2/δ)
−d

)2 .

Utility of Unary Encoding (RAPPOR). Similarly, we can prove

the variance of unary encoding.

PROPOSITION 7. Given εc in the shuffler model, the variance

of using unary encoding (RAPPOR) is bounded by

ε2c(n−1)

56 ln(4/δ)
−1

n

(

ε2c(n−1)

56 ln(4/δ)
−2

)2 .

PROOF. For each value, the estimate is based on the number of

1’s in the corresponding location. Thus we can apply Lemma 4

with d = 2. From Theorem 2, we have eεl/2 + 1 =
ε2c(n−1)

56 ln(4/δ)
.

Thus the variance becomes

ε2c(n−1)

56 ln(4/δ)
−1

n

(

ε2c(n−1)

56 ln(4/δ)
−2

)2 .

Utility of Local Hashing. Now we prove the variance of SOLH

and instantiate d′.

each party separately. Existing work focuses on Adv, but we ex-

amine the privacy guarantee also for Adva and Advu. This gives a

comprehensive understanding of the system’s privacy guarantee.

In particular, existing work showed that if each user executes an

εl-LDP protocol, the view of Adv is (εc, δ)-DP. If the users col-

lude with the server, the server’s view is composed of two parts:

the shuffled reports as in Adv, and all users’ reports except the vic-

tim’s. By subtracting each user’s reports from the shuffled result,

the server now knows the victim’s LDP report; thus the model falls

back to the LDP setting. Finally, if the shuffler colludes with the

server, the model also degrade to the LDP setting.

Note that we assume the cryptographic primitives are safe (i.e.,

the adversaries are computationally bounded and cannot learn any

information from the ciphertext) and there are no side channels

such as timing information. In some cases, the whole procedure

can be interactive, i.e., some part of the observation may depend on

what the party sends out. For this, one can utilize composition theo-

rems to prove the DP guarantee. Moreover, the parties are assumed

to follow the protocol in the privacy proofs. If the parties deviate

from the prescribed procedure, we examine the possible deviations

and their influences in the next subsection.

5.3 Robustness to Malicious Parties
There could be multiple reasons for each party to be malicious

to (1) interrupt the data collection process, (2) infer more sensitive

information from the users, and (3) degrade the utility (estimation

accuracy) of the server. In what follows, for each of the reasons,

we analyze the consequence and potential mitigation of different

parties. Note that the server will not deviate from the protocol as it

is the initiator, unless to infer more information of the users.

First, any party can try to interrupt the process; but it is easy to

mitigate. If a user blocks the protocol, his/her report can be ignored.

If the auxiliary server denies the service, the server can find another

auxiliary server and redo the protocol. Note that in this case, users

need to remember their report to avoid averaging attacks.

Second, it is possible that the auxiliary server deviates from the

protocol (e.g., by not shuffling LDP reports). In this case, the

auxiliary server does not have benefits except saving some com-

putational power. Thus we assume the auxiliary server will not

deviate in order to infer sensitive information. For the server, as it

only sees and evaluates the final reports, there is nothing the server

can do to obtain more information from the users.

Third, we note that any party can degrade the utility. Any party

other than the server has the incentive to do so. For example, when

the server is interested in learning the popularity of websites, dif-

ferent parties can deviate to promote some targeted website. This is

also called the data poisoning attack. To do this, the most straight-

forward way is to generate many fake users, and let them join the

data collection process. This kind of Sybil attack is hard to defend

against without some kind of authentication, which is orthogonal

to the focus of this paper. Another unavoidable attack is that users

can change their private values for reporting. We note that any abil-

ity beyond these is undesirable. In addition, the protocol should

restrict the impact of the auxiliary server on the result. Thus the

major concern is that the users or auxiliary servers disrupt utility.

5.4 Discussion and Key Observations
Several observations and lessons are worth noting.

When Auxiliary Server Colludes: No Amplification. When the

server colludes with the auxiliary servers, the privacy guarantee

falls back to the original LDP model. When using the shuffler

model, we need to reduce the possibility of this collusion, e.g., by

introducing more auxiliary servers.

When Users Collude: Possibility Missed by Previous Litera-

ture. When proving privacy guarantees against the server, existing

work assumes the adversary has access to users’ sensitive values

but not the LDP output. While this is possible, we note that if an

adversary already obtains users’ sensitive values, it may also have

access to the users’ LDP reports. Such cases include the users (ex-

cept the victim) collude with the server; or the server is controlling

the users (except the victim). To handle this challenge, we propose

to have the auxiliary servers add noise (shown in the next section).

When Parties Deviates: Avoid Utility Disruption. The protocol

should be designed so that each individual user or auxiliary server

has limited impact on the estimation result.

6. DEFENDING AGAINST ATTACKS
We present a protocol that improves the security guarantee of

existing work. The goal is to simultaneously defend against three

threats: (1) the server colludes with the users; (2) the server col-

ludes with the auxiliary servers; (3) data poisoning from each party.

6.1 Fake Response from Auxiliary Servers
To defend against the threat when the server colludes with the

users, we propose to have the auxiliary servers inject noise. There

can be different ways to do this. Our approach utilizes uniform fake

reports. That is, the auxiliary servers draw nr reports uniformly

distributed in the range of the LDP protocol and report them. These

reports are indistinguishable from the n reports contributed from

users. On the server side, after obtaining the estimated frequency

f̃ (given by Equation (2) or (3)), the server recovers the frequency

for the original dataset by subtracting the expected noise, i.e.,

f ′
v =

n+ nr

n
f̃v −

nr

n

1

d
(7)

where d is the domain size. Building on top of this, we present

efforts to defend against the other two threats, i.e., the server col-

luding with the auxiliary servers, and data poisoning attack.

6.1.1 First Attempt: Sequential Shuffle

To improve the trust model of the shuffler-based model, one idea

is to introduce a sequence of shufflers, so that as long as one shuf-

fler is trusted, the privacy guarantee remains. In this case, the task

of inserting nr fake reports can be divided equally among the r
auxiliary servers (shufflers). More specifically, the first shuffler re-

ceives the users’ LDP reports as input, and draws nu = nr/r fake

reports. It then shuffles all the reports and sends them to the second

shuffler, who draws another nu fake reports, shuffles all the reports,

and sends them to the next shuffler. This procedure proceeds until

the last shuffler sends the result to the server. Onion encryption is

used during the process; each party decrypts one layer of encryp-

tion, and the server obtains n+ nr reports.

However, this approach is vulnerable to poison attacks by the

shufflers. That is, the auxiliary servers can replace the users’ re-

ports with any report of their choice to change the final result, and

the fake reports each shuffler inserts can be chosen arbitrarily.

To mitigate the first threat, we can use an idea of spot-checking.

That is, the server can add dummy accounts before the system

setup, then it can check whether the reports from its accounts are

tampered. For the second threat, we find that it hard to handle.

Specifically, a dishonest auxiliary server may draw fake reports

from some skewed (instead of uniform) distribution in order to mis-

lead the analyzer and achieve a desired result; and there is no way

to self-prove the randomness he/she used is truly random.

Algorithm 1 PEOS

User i: Value vi, server’s public key pk
1: Yi = FO(vi) . FO can be GRR or SOLH

2: Split Yi into r shares 〈Yi,j〉j∈[r]

3: for j ∈ [r − 1] do

4: Send Yi,j to auxiliary server j

5: Send ci,r ← Encpk(Yi,r) to auxiliary server r

Shuffler j ∈ [r − 1]: Shares 〈Yi,j〉i∈[n]

1: for k ∈ [nr] do . Generate shares of fake reports

2: Sample Y ′
k,j uniformly from output space of FO

3: Participate in EOS with 〈Yi,j〉i∈[n] and 〈Y ′
k,j〉k∈[nr] and send

the shuffled result to the server

Shuffler r: Encrypted shares 〈ci,r〉i∈[n]

1: for k ∈ [nr] do . Encrypted shares of fake reports

2: Sample Y ′
k,r uniformly from output space of FO

3: c′k,r ← Encpk(Y
′
k,r)

4: Participate in EOS with 〈ci,r〉i∈[n] and 〈c′k,r〉k∈[nr] and send

the shuffled result to the server

Server: Shares from auxiliary servers

1: Decrypt and aggregate the shares to recover Y
2: For any v ∈ D , estimate f ′

v using Y and Equation (7)

collude, the server can subtract all other users’ contribution and the

privacy comes from the fake reports. The following corollaries give

the precise privacy guarantee:

COROLLARY 10. If SOLH is used and SOLH is εl-LDP, then

PEOS is εc-DP against the server; and if other users collude with

the server, the protocol is εs-DP, where

εs =

√

14 ln(2/δ) · d
′

nr
, εc =

√

14 ln(2/δ)/

(
n− 1

eεl + d′ − 1
+

nr

d′

)

(8)

PROOF. The proof is similar to the setting of with SOLH, but

with nr more random reports. More specifically, when other users

collude, privacy is provided by the nr reports that follow uniform

distribution over [d′]. Plugging the argument into Equation (5),

these can be viewed as a random variable that follows Binomial

distribution with Bin
(
nr,

1
d′

)
. The rest of the proof follows from

that for Theorem 3.

Similarly, for the privacy guarantee against the server, there are

n − 1 random reports from users, and nr reports from the auxil-

iary server. The effect of both can be viewed as one Binomial ran-

dom variable: Bin (n− 1, 1/(eεl + d′ − 1)) + Bin (nr, 1/d
′) =

Bin

(

n− 1 + nr,
(n−1)/(eεl+d′−1)+nr/d

′

n−1+nr

)

.

One can also use GRR in PEOS, and we have a similar theorem:

COROLLARY 11. If GRR is used and GRR is εl-LDP, then PEOS

is εc-DP against the server; and if other users collude with the

server, the protocol is εs-DP, where

εs =

√

14 ln(2/δ) · d

nr
, εc =

√

14 ln(2/δ)/

(
n− 1

eεl + d− 1
+

nr

d

)

The proof is similar to that for Corollary 10 and is thus omitted.

6.3 Utility Analysis
In Section 4.3, we analyze the accuracy performance of different

methods under the basic shuffling setting. In this section, we fur-

ther analyze the utility of these methods in PEOS. The difference

mainly comes from the fact that nr dummy reports are inserted, and

the server runs a further step (i.e., Equation (7)) to post-process the

results. In what follows, we first show that Equation (7) gives an

unbiased estimation; based on that, we then provide a general form

of estimation accuracy.

We first show f ′
v is an unbiased estimation of fv , where fv =

1
n

∑

i∈[n] 1{vi=v}is the true frequency of value v.

LEMMA 12. The server’s estimation f ′
v from Equation (7) is an

unbiased estimation of fv , i.e., E
[

f̃v
]

= fv .

PROOF.

E
[
f ′
v

]
= E

[
n+ nr

n
f̃v −

nr

n

1

d

]

=
n+ nr

n
E
[

f̃v
]

− nr

n

1

d
(9)

Here f̃v is the estimated frequency of value v given the n + nr

reports; among them, n of them are from the true users, and nr are

from the randomly sampled values. For the n reports from users,

nfv of them have original value v; and for the nr reports, in expec-

tation, nr/d of them have original value v. Thus we have

E
[

f̃v
]

=
nfv + nr/d

n+ nr

Putting it back to Equation (9), we have E
[

f̃v
]

= fv .

Given that, we prove the expected squared error of f ′
v:

Var
[
f ′
v

]
= Var

[
n+ nr

n
f̃v −

nr

n

1

d

]

=
(n+ nr)

2

n2
Var

[

f̃v
]

Now plugging in the results of Var
[

f̃v
]

from Section 4.3 (note that

we replace n with n+ nr in the denominator as there are n+ nr

total reports), we obtain the specific variance of different methods

after inserting nr dummy reports.

One thing to note is that as the utility expression changes, the

optimal parameter d′ in SOLH becomes different as well. In par-

ticular, Corollary 10 gives both εs and εc. Given nr and δ, d′ is

determined given εs; but d′ can change given εc. In particular, we

can also derive the optimal value of d′ following the similar to the

analysis of Section 4.3 (after Proposition 8):

Given εc =

√

14 ln(2/δ)/
(

n−1
eεl+d′−1

+ nr
d′

)

, we have

eεl + d′ − 1 =
n− 1

14 ln(2/δ)/ε2c − nr/d′

We denote it as m, and (to simplify the notations) use a to rep-

resent 14 ln(2/δ)/ε2c and b to represent n − 1. By the variance

derived above, we have Var = m2

(m−d)2(d−1)
n+nr
n2 . Note that this

formula is similar to the previous one in Section 4.3; but here m
also depends on d′. Thus we need to further simplify Var:

Var =
(n+ nr)

(
b

a−nr/d′

)2

n2
(

b
a−nr/d′

− d
)2

(d′ − 1)

=
(n+ nr)b

2

n2 (b− (a− nr/d)d′)
2 (d′ − 1)

=
(n+ nr)b

2

n2a2 (d′ − (b+ nr)/a)
2 (d′ − 1)

To minimize Var, we want to maximize (d′ − (b+ nr)/a)
2
(d′ −

1). By making its partial derivative to 0, we can obtain that when

d′ =
(b+ nr)/a+ 2

3
=

ε2c(n− 1− nr)

42 ln(2/δ)
+

2

3

the variance is minimized. Comparing to Equation (6), introducing

nr will reduce the optimal d′. We use the integer component of d′

in the actual implementation.

6.4 Discussion and Guideline
PEOS strengthens the security aspect of the shuffler model from

three perspectives: First, it provides better privacy guarantee when

users collude with the server, which is a common assumption made

in DP. Second, it makes it more difficult for the server to collude

with the shufflers. Third, it limits the ability of data poisoning of

the shufflers. We discuss criteria for initiating PEOS.

Choosing Parameters. Given the desired privacy level ε1, ε2, ε3
against the three adversaries Adv,Advu,Adva, respectively. Also

given the domain size d, number of users n, and δ, we want to

configure PEOS so that it provides εc ≤ ε1, εs ≤ ε2, and εl ≤ ε3.

Local perturbation is necessary to satisfy ε3-DP against Adva.

To achieve ε2 when other users collude, noise from auxiliary servers

are also necessary. Given that, to satisfy εc ≤ ε1, if we have to add

more noise, we have two choices. That is, the natural way is to add

noisy reports from the auxiliary server, but we can also lower εl
at the same time. As we have the privacy and utility expressions,

we can numerically search the optimal configuration of nr and εl.
Finally, given εl, we can choose to use either GRR or SOLH by

comparing Theorem 3 and Proposition 6.

7. EVALUATION

7.1 Experimental Setup

Datasets. We run experiments on three real datasets.

• IPUMS [49]: The US Census data for the year 1940. We sample

1% of users, and use the city attribute (N/A are discarded). This

results in n = 602325 users and d = 915 cities.

• Kosarak [2]: A dataset of 1 million click streams on a Hungarian

website that contains around one million users with 42178 possible

values. For each stream, one item is randomly chosen.

• AOL [3]: The AOL dataset contains user queries on AOL website

during the first three months in 2006. We assume each user reports

one query (w.l.o.g., the first query), and limit them to be 6-byte

long. This results a dataset of around 0.5 million queries including

0.12 million unique ones. It is used in the succinct histogram case

study in Section 7.3.

Competitors. We compare the following methods:

• OLH: The local hashing method with the optimal d′ in LDP [52].

• Had: The Hadamard transform method used in [5]. It can be seen

as OLH with d′ = 2 (utility is worse than OLH); but compared to

OLH, its server-side evaluation is faster by a constant factor.

• SH: The shuffler-based method for histogram estimation [9].

• AUE: Method from [8]. It first transforms each user’s value

using one-hot encoding. Then the values (0 or 1) in each location

is incremented w/p p = 1− 200
ε2cn

ln(4/δ). Note that it is not an LDP

protocol, and its communication cost is O(d).
• RAP: The unary-encoding-based idea described in Section 4.1.

Its local side method is equivalent to RAPPOR [31]. Similar to

AUE, it has large communication cost.

• RAPR: Method from [29]. Similar to AUE and RAP, it trans-

forms each user’s value using one-hot encoding. The method works

in the removal setting of DP. When converting to the replacement

definition, it has the same utility as RAP.

• SOLH: The hashing-based idea introduced in Section 4.2.

• PEOS: We focus on the perspective of the computation and

communication complexity in Section 7.4.

• SS: As a baseline, we also evaluate the complexity of the se-

quential shuffling method presented in 6.1.1; we call it SS.

Implementation. The prototype was implemented using Python

3.6 with fastecdsa 1.7.4, pycrypto 2.6.1, python-xxhash 1.3.0 and

numpy 1.15.3 libraries. For SS, we generate a random AES key to

encrypted the message using AES-128-CBC, and use the ElGamal

encryption with elliptic curve secp256r1 to encrypt the AES key.

For the AHE in PEOS, we use DGK [21] with 3072-bits ciphertext.

All of the encryption used satisfy 128-bit security.

Metrics. We use mean squared error (MSE) of the estimates as

metrics. For each value v, we compute its estimated frequency

f̃v and the ground truth fv , and calculate their squared difference.

Specifically, MSE = 1
|D|

∑

v∈D
(fv − f̃v)

2.

Methodology. For each dataset and each method, we repeat the

experiment 100 times, with result mean and standard deviation re-

ported. The standard deviation is typically very small, and barely

noticeable in the figures. By default, we set δ = 10−9.

7.2 Frequency Estimation Comparison
We first show the utility performance of SOLH. We mainly com-

pare it against other methods in the shuffler model, including SH,

AUE, RAP, and RAPR. We also evaluate several kinds of baselines,

including LDP methods OLH and Had, centralized DP method

Laplace mechanism (Lap) that represents the lower bound, and a

method Base that always outputs a uniform distribution.

Figure 3 shows the utility comparison of the methods. We vary

the overall privacy guarantee εc against the server from 0.1 to 1,

and plot MSE. First of all, there is no privacy amplification for SH

when εc is below a threshold. In particular, when εc <
√

14 ln(2/δ)d
n−1

,

εl = εc. We only show results on the IPUMS dataset because for

the Kosarak dataset, d is too large so that SH cannot benefit from

amplification. When there is no amplification, the utility of SH is

poor, even worse than the random guess baseline method. Com-

pared to SH, our improved SOLH method can always enjoy the

privacy amplification advantage, and gets better utility result, espe-

cially when εc is small. The three unary-encoding-based methods

AUE, RAP, and RAPR all perform slightly better than SOLH. But

the communication cost of them are higher. The best-performing

method is RAPR; but it works in the removal-LDP setting. Because

of this, its performance with εc is equivalent to RAP with 2εc.

Moving to the LDP methods, OLH and Had perform very simi-

larly (because in these settings, OLH mostly chooses d′ = 2 or 3,

which makes it almost the same as Had), and are around 3 orders

of magnitude worse than the shuffler-based methods. For the cen-

tral DP methods, we observe Lap outperforms the shuffler-based

methods by around 2 orders of magnitude.

In Table 2, we list the value of d′ of SOLH and the utility of

SOLH and RAPR for some εc values. We also fix d′ in SOLH and

show how sub-optimal choice of d′ makes SOLH less accurate. The

original domain d is more than 40 thousand, thus RAPR introduces

a larger communication cost compared to SOLH (5KB vs 8B). The

computation cost for the users is low for both methods; but for the

server, estimating frequency with SOLH requires evaluating hash

functions. We note that as this takes place on server, some compu-

lies in n decryption (for one layer), sampling nu random reports

(with necessary encryption), and then shuffling. Note that the de-

cryption is done in parallel. We use 32 threads for demonstration.

With more resources, the processing time can be shortened.

In SS, an ElGamal ciphertext is a tuple 〈P,C〉, where P is a

point in the secp256r1 curve represented by 256× 2 bits, and C is

a number in {0, 1}256. Thus, we need 96 bytes for the AES key in

each layer. For SOLH, we let each user randomly select an 4-byte

seed as the random hash function. After padding, each message is

32 + 96(r + 1) bytes, where r is the number of layers used for

shufflers. One additional layer is used for the server. Given n = 1
million users and r shufflers, there will be on average 1

r
× n ×

∑r
k=1(32+96(k+1)) = 672 MB data sent to the three shufflers.

PEOS consists of
(

r
br/2c+1

)
rounds of sorting. Since a well-

implemented sorting on 1 million elements takes only several mil-

liseconds, the computation cost of shuffling is minor for the shuf-

flers. In addition, our protocol require each shuffler do
(

r
br/2c+1

)
·

n/r homomorphic additions during shuffling. As Table 3 indicates,

all of these cryptographic operations are efficient. The cost is no

more than one second with n = 1 million reports.

According to the analysis of oblivious shuffle from [39], each

shuffler’s communication cost is O(2r
√
rn). In addition, our pro-

tocol sends n encrypted shares each round, which introduces an-

other communication cost of O(2rn/
√
r) by similar analysis (mul-

tiplied with a larger constant factor because of the 3072-bit DGK

ciphertexts). In experiments with 1 million users and 3 shufflers,

each shuffler needs to send 430 MB. In a more expensive case with

7 shufflers, it becomes 3.3 GB. While the communication cost is

higher than that of SS, we note that the cost is tolerable in our set-

ting, as the data collection does not happen frequently.

Server Overhead. For SS, the server computation overhead is

similar to that of the shufflers, as they all decrypt one layer. The

server’s communication cost (measured by amount of data received)

is lower though, as there is only one layer of encryption on the data.

In PEOS, the server needs to collect data from all r shufflers.

The communication overhead is mostly DGK ciphertext and grows

slowly with r. The computation overhead is also dominated by

decrypting the DGK ciphertexts.

8. RELATED WORK

Privacy Amplification by Shuffling. The shuffling idea was orig-

inally proposed in Prochlo [15]. Later the formal proof was given

in [30, 19, 9]. Parallel to our work, [8, 33] propose mechanisms to

improve utility in this model. They both rely on the privacy blanket

idea [9]. More recently, [29] considered an intriguing removal-

based LDP definition and work in the shuffler model. Besides esti-

mating histograms, the problem of estimating the sum of numerical

values are also extensively investigated [34, 10].

Crypto-aided Differential Privacy. Different from using shuf-

flers, researchers also proposed methods that utilize cryptography

to provide differential privacy guarantees, including [32, 28, 42].

One notable highlight is [20], which proposes Cryptε. In this ap-

proach, users encrypt their values using homomorphic encryption,

and send them to the auxiliary party via a secure channel. The

auxiliary server tallies the ciphertext and adds random noise in a

way that satisfies centralized DP, and sends the result to the server.

The server decrypts the aggregated ciphertext. More recently, re-

searchers in [48] introduce several security features including ver-

ification and malice detection. This line of work does not require

LDP protection, thus differs from our approach. Moreover, to han-

dle the histogram estimation when |D | is larger, the communication

overhead is larger than that of ours.

Relaxed Definitions. Rather than introducing the shuffler, another

direction to boost the utility of LDP is to relax its semantic mean-

ing. In particular, Wang et al. propose to relax the definition by

taking into account the distance between the true value and the

perturbed value [51]. More formally, given the true value, with

high probability, it will be perturbed to a nearby value (with some

pre-defined distance function); and with low probability, it will be

changed to a value that is far apart. A similar definition is proposed

in [37, 35]. Both usages are similar to the geo-indistinguishability

notion in the centralized setting [7]. In [44], the authors consider

the setting where some answers are sensitive while some not (there

is also a DP counterpart called One-sided DP [24]). The work [36]

is a more general definition that allows different values to have dif-

ferent privcay level. Our work applied to the standard LDP defini-

tion, and we conjecture that these definitions can also benefit from

introducing a shuffler without much effort.

There also exist relaxed models that seem incompatible with

the shuffler model, i.e., [13] considers the inferring probability as

the adversary’s power; and [53] utilizes the linkage between each

user’s sensitive and public attributes.

Distributed DP. In the distributed setting of DP, each data owner

(or proxy) has access to a (disjoint) subset of users. For example,

each patient’s information is possessed by a hospital. The DP noise

is added at the level of the intermediate data owners (e.g., [41]). A

special case (two-party computation) is also considered [38, 47].

[40] studies the limitation of two-party DP. In [27], a distributed

noise generation protocol was proposed to prevent some party from

adding malicious noise. The protocol is then improved by [17].

[43] lays the theoretical foundation of the relationship among sev-

eral kinds of computational DP definitions.

We consider a different setting where the data are held by each

individual users, and there are two parties that collaboratively com-

pute some aggregation information about the users.

DP by Trusted Hardware. In this approach, a trusted hardware

(e.g., SGX) is utilized to collect data, tally the data, and add the

noise within the protected hardware. The result is then sent to the

analyst. Google propose Prochlo [15] that uses SGX. Note that the

trusted hardware can be run by the server. Thus [18] and [6] de-

signed oblivious DP algorithms to overcome the threat of side in-

formation (memory access pattern may be related to the underlying

data). These proposals assume the trusted hardware is safe to use.

However, using trusted hardware has potential risks (e.g., [14]).

This paper considers the setting without trusted hardware.

9. CONCLUSIONS
In this paper, we study the shuffler model of differential privacy

from two perspectives. First, we examine from the algorithmic as-

pect, and make improvement to existing techniques. Second, we

work from the security aspect of the model, and emphasize two

types of attack, collusion attack and data-poisoning attack; we then

propose PEOS that is safer under these attacks. Finally, we per-

form experiments to compare different methods and demonstrate

the advantage of our proposed method. For the problem of his-

togram estimation, our proposed protocol is both more accurate

and more secure than existing work, with a reasonable communica-

tion/computation overhead. We also demonstrate the applicability

of our results in the succinct histogram problem.

Acknowledgement. We sincerely thank the reviewers for their in-

sightful comments. This work is supported by NSF grant 1640374

and 1931443. Tianhao’s work was partly done at Alibaba.

10. REFERENCES

[1] Apple differential privacy team, learning with privacy at

scale. Available at

https://machinelearning.apple.com/docs/

learning-with-privacy-at-scale/

appledifferentialprivacysystem.pdf.

[2] Frequent itemset mining dataset repository. Available at

http://fimi.ua.ac.be/data/.

[3] Web search query log downloads. Available at http:

//www.radiounderground.net/aol-data/.

[4] J. M. Abowd. Protecting the confidentiality of america’s

statistics: Adopting modern disclosure avoidance methods at

the census bureau. https://www.census.gov/

newsroom/blogs/research-matters/2018/08/

protecting_the_confi.html, 2018.

[5] J. Acharya, Z. Sun, and H. Zhang. Hadamard response:

Estimating distributions privately, efficiently, and with little

communication. In AISTATS, 2019.

[6] J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and

S. Yekhanin. An algorithmic framework for differentially

private data analysis on trusted processors. In Advances in

Neural Information Processing Systems, pages

13635–13646, 2019.

[7] M. Andrés, N. Bordenabe, K. Chatzikokolakis, and

C. Palamidessi. Geo-indistinguishability: Differential

privacy for location-based systems. In 20th ACM Conference

on Computer and Communications Security, pages 901–914.

ACM, 2013.

[8] V. Balcer and A. Cheu. Separating local & shuffled

differential privacy via histograms. arXiv preprint

arXiv:1909.06879, 2019.

[9] B. Balle, J. Bell, A. Gascon, and K. Nissim. The privacy

blanket of the shuffle model. In CRYPTO, 2019.

[10] B. Balle, J. Bell, A. Gascon, and K. Nissim. Private

summation in the multi-message shuffle model. In CCS,

2020.

[11] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta.

Practical locally private heavy hitters. In NIPS, 2017.

[12] R. Bassily and A. Smith. Local, private, efficient protocols

for succinct histograms. In Proceedings of the Forty-Seventh

Annual ACM on Symposium on Theory of Computing, pages

127–135. ACM, 2015.

[13] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and

R. Rogers. Protection against reconstruction and its

applications in private federated learning. arXiv preprint

arXiv:1812.00984, 2018.

[14] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R.

Sadeghi. The guard’s dilemma: Efficient code-reuse attacks

against intel sgx. In 27th USENIX Security Symposium, 2018.

[15] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov,

A. Raghunathan, D. Lie, M. Rudominer, U. Kode, J. Tinnes,

and B. Seefeld. Prochlo: Strong privacy for analytics in the

crowd. In SOSP. ACM, 2017.

[16] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A

framework for fast privacy-preserving computations. In

European Symposium on Research in Computer Security,

pages 192–206. Springer, 2008.

[17] J. Champion, J. Ullman, et al. Securely sampling biased

coins with applications to differential privacy. In Proceedings

of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pages 603–614. ACM, 2019.

[18] T. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi.

Foundations of differentially oblivious algorithms. In SODA.

SIAM, 2019.

[19] A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev.

Distributed differential privacy via shuffling. In

EUROCRYPT, 2019.

[20] A. R. Chowdhury, C. Wang, X. He, A. Machanavajjhala, and

S. Jha. Cryptε: Crypto-assisted differential privacy on

untrusted servers. SIGMOD, 2020.

[21] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and

secure comparison for on-line auctions. In Australasian

Conference on Information Security and Privacy, pages

416–430. Springer, 2007.

[22] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic

encryption and secure comparison. Int. J. Appl. Cryptol.,

1(1):22–31, Feb. 2008.

[23] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry

data privately. In Advances in Neural Information Processing

Systems, pages 3574–3583, 2017.

[24] S. Doudalis, I. Kotsogiannis, S. Haney, A. Machanavajjhala,

and S. Mehrotra. One-sided differential privacy. arXiv

preprint arXiv:1712.05888, 2017.

[25] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local

privacy and statistical minimax rates. In FOCS, pages

429–438, 2013.

[26] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.

[27] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and

M. Naor. Our data, ourselves: Privacy via distributed noise

generation. In S. Vaudenay, editor, EUROCRYPT, volume

4004 of Lecture Notes in Computer Science, pages 486–503.

Springer, 2006.

[28] T. Elahi, G. Danezis, and I. Goldberg. Privex: Private

collection of traffic statistics for anonymous communication

networks. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security,

pages 1068–1079, 2014.

[29] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,

S. Song, K. Talwar, and A. Thakurta. Encode, shuffle,

analyze privacy revisited: Formalizations and empirical

evaluation. arXiv preprint arXiv:2001.03618, 2020.

[30] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,

K. Talwar, and A. Thakurta. Amplification by shuffling:

From local to central differential privacy via anonymity. In

SODA, pages 2468–2479, 2019.

[31] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:

Randomized aggregatable privacy-preserving ordinal

response. In CCS, pages 1054–1067. ACM, 2014.

[32] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang,

C. Mouchet, B. Ford, and J.-P. Hubaux. Unlynx: a

decentralized system for privacy-conscious data sharing.

Proceedings on Privacy Enhancing Technologies,

2017(4):232–250, 2017.

[33] B. Ghazi, N. Golowich, R. Kumar, R. Pagh, and

A. Velingker. On the power of multiple anonymous

messages. arXiv preprint arXiv:1908.11358, 2019.

[34] B. Ghazi, P. Manurangsi, R. Pagh, and A. Velingker. Private

aggregation from fewer anonymous messages. In

EUROCRYPT, 2020.

[35] X. Gu, M. Li, Y. Cao, and L. Xiong. Supporting both range

queries and frequency estimation with local differential

privacy. In 2019 IEEE Conference on Communications and

Network Security (CNS), pages 124–132. IEEE, 2019.

[36] X. Gu, M. Li, L. Xiong, and Y. Cao. Providing

input-discriminative protection for local differential privacy.

In ICDE, 2020.

[37] M. E. Gursoy, A. Tamersoy, S. Truex, W. Wei, and L. Liu.

Secure and utility-aware data collection with condensed local

differential privacy. arXiv preprint arXiv:1905.06361, 2019.

[38] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava.

Composing differential privacy and secure computation: A

case study on scaling private record linkage. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1389–1406. ACM, 2017.

[39] S. Laur, J. Willemson, and B. Zhang. Round-efficient

oblivious database manipulation. In International Conference

on Information Security, pages 262–277. Springer, 2011.

[40] A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar,

and S. Vadhan. The limits of two-party differential privacy.

In 2010 IEEE 51st Annual Symposium on Foundations of

Computer Science, pages 81–90. IEEE, 2010.

[41] B. McMahan and D. Ramage. Federated learning:

Collaborative machine learning without centralized training

data. Google Research Blog, 3, 2017.

[42] L. Melis, G. Danezis, and E. De Cristofaro. Efficient private

statistics with succinct sketches. arXiv preprint

arXiv:1508.06110, 2015.

[43] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan.

Computational differential privacy. In Annual International

Cryptology Conference, pages 126–142. Springer, 2009.

[44] T. Murakami and Y. Kawamoto. Utility-optimized local

differential privacy mechanisms for distribution estimation.

In 28th USENIX Security Symposium, 2019.

[45] P. Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In International Conference on

the Theory and Applications of Cryptographic Techniques,

pages 223–238. Springer, 1999.

[46] S. Pohlig and M. Hellman. An improved algorithm for

computing logarithms overgf(p)and its cryptographic

significance (corresp.). IEEE Transactions on Information

Theory, 1978.

[47] F.-Y. Rao, J. Cao, E. Bertino, and M. Kantarcioglu. Hybrid

private record linkage: Separating differentially private

synopses from matching records. ACM Transactions on

Privacy and Security (TOPS), 22(3):15, 2019.

[48] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen.

Honeycrisp: large-scale differentially private aggregation

without a trusted core. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages

196–210. ACM, 2019.

[49] S. Ruggles, S. Flood, R. Goeken, J. Grover, E. Meyer,

J. Pacas, and M. Sobek. Integrated public use microdata

series: Version 9.0 [database], 2019.

[50] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin,

and G. Yu. Privtrie: Effective frequent term discovery under

local differential privacy. In 2018 IEEE 34th International

Conference on Data Engineering (ICDE), pages 821–832.

IEEE, 2018.

[51] S. Wang, Y. Nie, P. Wang, H. Xu, W. Yang, and L. Huang.

Local private ordinal data distribution estimation. In

INFOCOM 2017-IEEE Conference on Computer

Communications, IEEE, pages 1–9. IEEE, 2017.

[52] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially

private protocols for frequency estimation. In 26th USENIX

Security Symposium, 2017.

[53] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and

S. Jha. Answering multi-dimensional analytical queries

under local differential privacy. In SIGMOD, 2019.

[54] T. Wang, N. Li, and S. Jha. Locally differentially private

frequent itemset mining. In 2018 IEEE Symposium on

Security and Privacy (SP), pages 127–143. IEEE, 2018.

[55] T. Wang, N. Li, and S. Jha. Locally differentially private

heavy hitter identification. IEEE Trans. Dependable Sec.

Comput., 2019.

[56] T. Wang, M. Lopuhaä-Zwakenberg, Z. Li, B. Skoric, and

N. Li. Locally differentially private frequency estimation

with consistency. In NDSS, 2020.

[57] S. L. Warner. Randomized response: A survey technique for

eliminating evasive answer bias. Journal of the American

Statistical Association, 60(309):63–69, 1965.

[58] M. Xu, B. Ding, T. Wang, and J. Zhou. Collecting and

analyzing data jointly from multiple services under local

differential privacy. Proceedings of the VLDB Endowment,

13(12):2760–2772, 2020.

[59] J. Yang, T. Wang, N. Li, X. Cheng, and S. Su. Answering

multi-dimensional range queries under local differential

privacy. arXiv preprint arXiv:2009.06538, 2020.

