THE TEST FUNCTION CONJECTURE FOR LOCAL MODELS
OF WEIL-RESTRICTED GROUPS

BY THOMAS J. HAINES AND TIMO RICHARZ

ABSTRACT. We prove the test function conjecture of Kottwitz and the first named author for local
models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as
defined by B.Levin. Our result covers the (modified) local models attached to all connected
reductive groups over p-adic local fields with p > 5. In addition, we give a self-contained study
of relative affine Grassmannians and loop groups formed using general relative effective Cartier
divisors in a relative curve over an arbitrary Noetherian affine scheme.
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1. INTRODUCTION

Building upon the work of Pappas and Zhu [PZ13], B. Levin defines in [Lev16] candidates for
parahoric local models of Shimura varieties for reductive groups of the form Resg, r(Go) where Gg
splits over a tamely ramified extension of K, and K/F is a finite (possibly wildly ramified) extension.
The present manuscript is a follow-up of [HaRi|, in which we prove the test function conjecture for
these local models. The method follows closely [HaRi], and we only explain new arguments in detail,
but repeat as much as necessary for readability. For a detailed introduction and further references
we refer the reader to the introduction of [HaRi].

Let us mention that the article is supplemented in §3 by a general study of relative affine
Grassmannians and loop groups formed using a general Cartier divisor as in the work of Beilin-
son and Drinfeld [BD]. This unifies the frameworks of [PZ13, Lev16] in mixed characteristic, of
[Hel0, Zhul4, Zhul5, Ril6b] in equal characteristic, and of the work of Fedorov and Panin [FP15, Fe]
on the Grothendieck-Serre conjecture, cf. Examples 3.1 below. As an application, we identify the
torus fixed points and their attractor and repeller loci in the sense of Drinfeld [Dr] (cf. also [He80])
for these relative affine Grassmannians, cf. Theorem 3.17.

1.1. Formulation of the main result. Let p be a prime number. Let F' /Q, be a finite extension
with residue field kr of cardinality g. Let F'/F be a separable closure, and denote by I'r the Galois
group with inertia subgroup I and fixed geometric Frobenius lift ®p € I'p.

2010 Mathematics Subject Classification 14G35. Research of T.H. partially supported by NSF DMS-1406787 and
by Simons Fellowship 399424, and research of T.R. funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 394587809.



2 T.J.HAINES AND T.RICHARZ

Let K/F be a finite extension, and let Go be a (connected) reductive K-group which splits over
a tamely ramified extension. We are interested in the group of Weil restrictions G = Resg,/r(Go)
which is a reductive F-group but now possibly wildly ramified depending on K/F.

Let G be a parahoric Op-group scheme in the sense of Bruhat-Tits [BT84] with generic fiber G.
Note that G = Resop, /0,.(Go) for a unique parahoric Og-group scheme Gy with generic fiber Go,
cf. Corollary 4.8. We fix {1} a (not necessarily minuscule) conjugacy class of geometric cocharacters
in G defined over a finite (separable) extension E/F.

Attached to the triple (G, {i}, G) is the (flat) local model

My = MG {u}.9);

which is a flat projective Og-scheme, cf. [PZ13] if K = F and [Lev16] for general K/F (cf. also Def-
inition 4.18). The generic fiber My} g is naturally the Schubert variety in the affine Grassmannian
of G/E associated with the class {u}. The special fiber M} 1, is equidimensional, but neither
irreducible nor a divisor with normal crossings in general.
Fix a prime number £ # p, and fix ¢~"/> € Q, in order to define half Tate twists. Let d, be the
dimension of the generic fiber My} g, and denote the normalized intersection complex by
def

ICuy = 5 Qeld,)(4/2) € DMy, Qo)

cf. §5.2.1. Under the geometric Satake equivalence [Gi, Lu81l, BD, MV07, Rilda, RZ15, Zhu], the
complex ICy,,, corresponds to the LG g = GY xT g-representation Vi,y of highest weight {1} defined
in [Hail4, 6.1], cf. [HaRi, Cor 3.12]. Note that we have GV = Indll:f( (GY) as groups over Q, under
which Vi, = X,V (cf. Lemma 5.6).

Let Ey/F be the maximal unramified subextension of E/F, and let & = &g, = @EOZF] and
dE = 4B, = qlFoFl The semi-simple trace of Frobenius function on the sheaf of nearby cycles

oy My (ke) = Qo 2= (=1)% (@5 | War,, (IC))z),

is naturally a function in the center Z(G(Ejy),G(OF,)) of the parahoric Hecke algebra, cf. [PZ13,
Thm. 10.14], [Lev16, Thm. 5.3.3] and §6.3. We remark that 77, lives in the center of the Q-valued
Hecke algebra attached to function field analogues of (G Eo» 905, Ey); we are implicitly identifying
this with Z(G(Ey), G(OF,)) via Lemma 4.12.

Our main result, the test function conjecture for local models for Weil restricted groups, charac-
terizes the function 777, , extending the main result of [HaRi] to the Weil-restricted situation. It
confirms that even for these local models, the local geometry of Shimura varieties at places of para-

horic bad reduction can be related to automorphic-type data, as required by the Langlands-Kottwitz
method.

Main Theorem. Let (G, {u},G) be a triple as above. Let E/F be a finite separable extension over
which {u} is defined, and let Ey/F be the mazimal unramified subextension. Then

TSS — ZSS
{n} {n}
where 275,y = zgs,{u}_e Z(G(Ey),G(0g,)) is the unique function which acts on any G(Og, )-spherical
smooth irreducible Qg-representation w by the scalar

L
tr(s(ﬂ') ‘ IndLgi" (V{M})b“IEo)7

where s(m) € [(GV)Eo x ®g,lss/(GV)Eo is the Satake parameter for m [Hail5]. The function
q%‘;/QTfZ} takes values in Z and is independent of £ # p and ¢*/? € Q.

The construction of s() is also reviewed in [HaRi, §7.2], and the values of 2}, are studied in
[HaRi, §7.7], cf. §6.5. The definition of the local models Mj,; depends on certain auxiliary choices
(cf. Remark 4.19), but the function 77, depends canonically only on the data (G,{u},G).

As an application of our main theorem we prove in §7 the test function conjecture for (modified)
local models attached to all groups and prime numbers p > 5. This relies on the fact that when
p > 5 any adjoint reductive F-group is isomorphic to a product of Weil restrictions of scalars of
tamely ramified groups, cf. (7.1) below. In Theorem 6.7 and §6.3 we also show that the variant of
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the Main Theorem holds, where semisimple traces are replaced by traces with respect to any fixed
lift @ of geometric Frobenius.

1.2. Other results. Our methods can be used to obtain results on the fixed point (resp. attractor
and repeller) locus of G,-actions on Fusion Grassmannians (cf. Theorem A below), and the special
fiber of local models (cf. Theorem B below).

1.2.1. Fusion Grassmannians. Let F' be any field, and let G be a reductive F-group. For each n > 0,
there is the fusion Grassmannian Grg, — A’ defined in [BD] which parametrizes isomorphism
classes of G-bundles on the affine line together with a trivialization away from n points. Given a
cocharacter x: G, rp — G we obtain a fiberwise G,,,-action on the family Grg , — A%, and we are
interested in determining the diagram on the fixed point ind-scheme and attractor (resp. repeller)
ind-scheme

(GI"G’H)O < (GI“G,TL)i — Grg}n,

cf.(2.1). Let M C G be the centralizer of y, which is a Levi subgroup. The dynamic method
promulgated in [CGP10] defines a pair of parabolic subgroups (P, P~) in G such that PT NP~ =
M:; see the formulation of Theorem 3.17. The natural maps M <+ P* — G induce maps of fusion
Grassmannians

GrMyn — Grpj:7n — GI‘G?n.

An extension of the method used in the proof of [HaRi, Prop. 3.4] allows us to prove the following
result.

Theorem A. For each n € Z>, there is a commutative diagram of A'L-ind-schemes

GrM,n A GrPi,n - GrG,n

S

(GrG,n)O — (GrG,n)i — GrG,nv

where the vertical maps are isomorphisms.

Theorem A is a special case of Theorem 3.17 which applies to general reductive group schemes
over A’ which are not necessarily defined over F. Let us point out that [HaRi, Prop. 3.4] implies
that Theorem A holds fiberwise. However, we do not know how to prove sufficiently good flatness
properties of Grg,, — A% in order to deduce the more general result from the fiberwise result.

The tensor structure on the constant term functors in geometric Langlands is constructed in
[BD, MV07]. In [Ga07, Rel2], it is explained how to use the nearby cycles to define the fusion
structure used in the geometric Satake isomorphism. Theorem A together with [Ri19, Thm. 3.3]
gives another way of constructing the tensor structure on the constant term functors - even without
passing to the underlying reduced ind-schemes, cf. proof of [HaRi, Thm. 3.16].

1.2.2. Special fibers of local models. As in [HaRi, §6.3.1], we use the commutation of nearby cycles
with constant terms to determine the irreducible components of the geometric special fiber M (u} R
of the local models. Recall that by construction (cf. Definition 4.18), there is a closed embedding

M{,u}jc — ‘/—'ng,fm

where Fg, is the (partial) affine flag variety attached to the function field analogue G /kp[u] of
G/Op, cf. Theorem 4.13 and Proposition 4.15 ii). As envisioned by Kottwitz and Rapoport, the

geometric special fiber My, 7 should be the union of the Schubert varieties F. l;bw 7 C Flgs j where w

ranges over the {u}-admissible set Adm?u} C We\W/W¢ where G = G¢ and W = W(G, F') denotes
the Iwahori-Weyl group. Here we are identifying the Iwahori-Weyl groups attached to G/F and
G /kp () by Lemma 4.11. The following result verifies their prediction (cf. Theorem 5.14).
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Theorem B. The smooth locus (My,y)™ is fiberwise dense in My, and on reduced subschemes a
union of the Schubert varieties

(M) p)rea = U ]:lél,ulé'

£
weAdm{“}

In particular, the geometric special fiber My, & ts generically reduced.

If pt|m1(Gder)|, then Theorem B is [PZ13, Thm. 9.3] for K = F, and [Lev16, Thm. 2.3.5] when
K # F. We have removed this condition on p and thereby conclude that the Kottwitz-Rapoport
strata in the special fiber are enumerated by the {u}-admissible set for all local models constructed
in [PZ13, Lev16].

1.3. Overview. In §2 we recall a few facts about G,,-actions for convenience. The following §3
studies relative affine Grassmannians formed using a general Cartier divisor. In §4, we recall the
definition of Weil-restricted local models and results from [Lev16] which are needed in the sequel.
These results are applied in §5 to study G,,-actions on Beilinson-Drinfeld affine Grassmannians for
Weil-restricted groups. In §6, we formulate and prove the test function conjecture for Weil-restricted
local models.

1.4. Acknowledgements. The authors thank Michael Rapoport for funding, the University of
Maryland for logistical support which made this research possible, and the anonymous referee for
useful suggestions leading to the results in §7. The second named author thanks the DFG (German
Research Foundation) for financial support during the academic year 2018.

1.5. Conventions on Ind-Algebraic Spaces. Let O be a ring, and denote by O -Alg the category
of O-algebras equipped with the fpqc topology. An O-space X is a sheaf on the site O-Alg, and
we denote the category of O-spaces by Spy. As each object in the site O-Alg is quasi-compact, the
pretopology on O-Alg is generated by finite covering families, and hence filtered colimits exist in
Spe and can be computed in the category of presheaves.

The category Sp,, contains the category of O-schemes Sche as a full subcategory. An O-algebraic
space is a O-space X such that X — X xo X is relatively representable, and such that there exists
an étale surjective map from a scheme U — X. By a Theorem of Gabber [StaPro, Tag 03W§] this
agrees with the usual definition of algebraic spaces using étale or fppf sheaves.

The category of O-algebraic spaces is denoted AlgSp,. There are full embeddings Schp C
AlgSpy C Spp. A map of O-spaces X — Y is called representable (resp. schematic) if for every
scheme T' — Y the fiber product X Xy T is representable by an algebraic space (resp. scheme).

An O-ind-algebraic space (resp. O-ind-scheme) is a contravariant functor

X:O-Alg — Sets

such that there exists a presentation as presheaves X = colim; X; where {X,};c; is a filtered system
of O-algebraic spaces (resp. O-schemes) X; with transition maps being (schematic) closed immer-
sions. Since filtered colimits in Spy can be computed in presheaves, every O-ind-algebraic space
(resp. O-ind-scheme) is an O-space. The category of O-ind-algebraic spaces (resp. O-ind-schemes)
IndAlgSpy (resp. IndSche) is the full subcategory of Sp, whose objects are O-ind-algebraic spaces
(resp. O-ind-schemes). If X = colim; X; and Y = colim;Y; are presentations of ind-algebraic spaces
(resp. ind-schemes), and if each X; is quasi-compact, then as sets

Homgp,, (X,Y) = lim; colim; Homg,, , (X;,Y),

because every map X; — Y factors over some Y; by quasi-compactness of X;. The category
IndAlgSpe (resp. IndSchp) is closed under fiber products, i.e., colim; ;) (X; X Y}) is a presentation
of X xp Y. If P is a property of algebraic spaces (resp. schemes), then an O-ind-algebraic space
(resp. O-ind-scheme) X is said to have ind-P if there exists a presentation X = colim; X; where
each X; has property P. A map f: X — Y of O-ind-algebraic spaces (resp. O-ind-schemes) is
said to have property P if f is representable and for all schemes T — Y, the pullback f xy T has
property P. Note that every representable quasi-compact map of O-ind-schemes is schematic.
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2. AcTIONS OF G,, ON IND-ALGEBRAIC SPACES

We recall some set-up and notation from [Dr] and [Ril9]. Let O be a ring, and let X be an
O-algebraic space (or O-ind-algebraic space) equipped with an action of G,, which is trivial on O.
There are the following three functors on the category of O-algebras

X% R+ Hom%" (R, X)
(2.1) X*t: R+ Hom$m ((Ak)T, X)
X~ R+ HomGm ((A})™, X),

where (A}L)T (resp. (A})7) is AL with the usual (resp. opposite) G,,-action. The functor X° is
the functor of G,,-fixed points in X, and X+ (resp. X 7) is called the attractor (resp. repeller).
Informally speaking, X+ (resp. X ™) is the space of points x such that the limit limy .o X -z (resp.
limy_ o A - @) exists. The functors (2.1) come equipped with natural maps

(2.2) X0 X+ 5 X,

where X — X0 (resp. X* — X) is given by evaluating a morphism at the zero section (resp. at
the unit section). We say that the G,,-action on an algebraic space X is étale (resp. Zariski) locally
linearizable if the G,,-action lifts - necessarily uniquely - to an étale cover which is affine, cf. [Ril9,
Def. 1.6]. We say that an G,,-action on an S-ind-algebraic space X is étale (resp. Zariski) locally
linearizable if there is an G,,-stable presentation with equivariant transition maps X = colim; X;
where the G,,-action on each X; is étale (resp. Zariski) locally linearizable. We use the following
representability properties of the functors (2.1), cf. [HaRi, Thm. 2.1].

Theorem 2.1. Let X = colim; X; be an O-ind-algebraic space equipped with an étale locally lin-
earizable G,,-action.

i) The subfunctor X° = colim; X? is representable by a closed sub-ind-algebraic space of X .

i4) The functor X+ = colim; Xii is representable, and the map X* — X is representable and
quasi-compact. The map X+ — X© is ind-affine with geometrically connected fibers and induces a
bijection on connected components wo(XT) =~ my(X°) of the underlying topological spaces.

ii1) If X = colim; X; is of ind-finite presentation (resp. an ind-scheme; resp. separated), so are X°

and X*.

The proof is like that of [HaRi, Thm. 2.1], using the representability results of [Ril9, Thm. 1.8].
We record the following lemma for later use.

Lemma 2.2. For n € Zsg, let Xi,...,X, be O-algebraic spaces (or O-ind-algebraic spaces)
equipped with an étale locally linearizable Gy, -action. Then the diagonal G,,-action on the prod-
uct [, X; is étale locally linearizable, and the canonical maps

(Jx)° = ﬁX? and (ﬁxi)i = ﬁx}
=1 =1 =1 =1

are isomorphisms.

Proof. If, for each 4, the map U; — X; is an étale local linearization, then the product []_, U; —
[Ti-, X, is an étale local linearization. It is easy to check on the level of functors that the maps are
isomorphisms. O

3. AFFINE GRASSMANNIANS FOR CARTIER DIVISORS

In this section, we give a self-contained treatment of affine Grassmannians for non-constant
group schemes over relative curves which are formed using a formal neighborhood of a general
Cartier divisor. This extends the work of Beilinson-Drinfeld [BD], and is inspired by the work of
Fedorov-Panin [FP15, Fe] and Levin [Lev16].
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3.1. Definitions and Examples. Let O be a Noetherian ring. Let X be a smooth O-curve, i.e.,
the structure map X — Spec(O) is of finite presentation and smooth of pure dimension 1. Let
D C X be a relative effective Cartier divisor which is finite and flat over O. Let G be a smooth
affine X-group scheme.

To the triple (X, G, D), we associate the functor Grg = Gr(x g py on the category of O-algebras
which assigns to every R the set of isomorphism classes of tuples (F, ) with
(3.1) F a G-torsor on Xg;
’ a: Fl(x\D)r = Fol(x\D)g & trivialization,
where F( denotes the trivial G-torsor. Fpqc-descent for schemes affine over Xp implies that Grg is
an O-space. As G is smooth affine and hence of finite presentation, the functor Grg commutes with
filtered colimits of O-algebras. Further, if R is a O-algebra, then as functors on R-Alg,

(3.2) Grg XSpeC((’J) Spec(R) = Grg|R_A1g = GI‘(XRngmDR).

If we replace D by a positive multiple nD for some n > 1, then X\D = X\nD, and hence as
O-functors

(3.3) Gr(x,g,0) = Gr(x,6,nD)-
The following examples are special cases of the general set-up.

Example 3.1. i) Affine Grassmannians/Flag Varieties. Let O = F be a field, and let D = {z}
for some point z € X(F). Then on completed local rings O, ~ F[t,] where t, denotes a local
parameter at x € X. If G = G ®p X for some smooth affine F-group G, then Grg := Grg is (by
the Beauville-Laszlo theorem [BL95]) the “affine Grassmannian” formed using the local parameter
ty, i.e., the ind-scheme given by the étale sheafification of the functor R — G(R((t,))/G(R[t:]). In
general, the functor Grg is the “twisted affine flag variety” for the group scheme G ® x F'[t,] in the
sense of [PROS].

ii) Mized characteristic. Let O = Op be the valuation ring of a finite extension F//Q,. Let K/F be
a finite totally ramified extension with uniformizer w € K. Let X = A%ﬂp with global coordinate
denoted z, and let D = {Q = 0}, where Q € Op[z] is the minimal polynomial of w over F (an
Eisenstein polynomial). Let G be the X-group scheme constructed in [PZ13, Thm. 4.1] if K = F,
and in [Levl6, Thm. 3.3.3] otherwise; here it is denoted G, see Theorem 4.13. Then Grg is the
Op-ind-scheme defined in [PZ13, Eq (6.11)] if K = F, and in [Lev16, Def 4.1.1] otherwise; here we
denote it Grg, see §4.4.1.

iii) Equal characteristic. Let F be a field, and let C be a smooth affine F-curve. Let O =T'(C,O¢)
be the global sections, and let X = C' xp C = Co. Let Gy be a smooth affine O-group scheme,
and let G = Gp ®o X. Let D := A(C) be the diagonal divisor in X. If C = AL, then Grg is the
ind-scheme defined in [Zhul4, Eq (3.1.1)]. If z € C(F) is a point, and O, — %calO denotes the
completed local ring, then Grg ®» O, is the ind-scheme defined in [Ril6b, Def 2.3]. Let us remark
that this is a special case of the general set-up in [Hel0, §2].

iv) Fusion Grassmannians. Let F be a field, and let C be an affine curve over F. The d-th symmetric
product C(?@ is by [SGA TV, Exp. XVII, Prop. 6.3.9] the moduli space of degree d effective Cartier
divisors on C. Let Spec(Q) := C@ and we let D := C@ be the universal degree d divisor on
X :=C xp C@ = Cy». For a smooth affine F-group scheme G, we let G = G ®r X. Then the
ind-scheme Grg Xgpec(0) C? is the fusion Grassmannian defined in [BD, 5.3.11].

v) Generically trivial bundles. If X = A}y and G is split reductive, then the functor Grg in (3.1) is
the moduli space of objects used in [Fe, Thm. 2].

3.1.1. Loop Groups. The functor Grg is related to loop groups as follows. For an O-algebra R,
let (Xr/Dgr)” be the formal affine’ scheme defined by Dg in Xg, and denote by R[D] its ring of

regular functions. Explicitly, if Zr C Ox,, is the ideal sheaf for Dg, then (Dg, Ox,/Z}%) is an affine

scheme Spec(A,,) for all n > 1, and R[D] def l'glAn = @F(DR, Ox,/T). Let D = Spec(R[D])

1One can show that a formal completion (X/X’) of a scheme X along an affine closed subscheme X’ C X is of
the form Spf(A) for an admissible topological ring A.
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be the associated affine (true) scheme. The map (Xr/Dgr)” — Xpg uniquely extends to a map
p: Dr — Xg by [Bhal6, Thm. 1.1]% and p~!(Dg) ~ Dg defines a relative effective Cartier divisor
on ﬁR. Let ﬁ‘}{ = ﬁR\DR. As Dp is a Cartier divisor in ﬁR, it is locally principal, and hence the
complement D% := Spec(R( D)) is an affine scheme. The (twisted) loop group LG = LpG is the
functor on the category of O-algebras

(3.4) LG: R— G(R(D)).
The positive (twisted) loop group LTG = LEQ is the functor on the category of O-algebras
(3.5) L*tG: R+ G(R[D]).

As every Cartier divisor is locally defined by a single non-zero divisor, we see that LTG C LG is a
subgroup functor. Let us explain why these functors are representable in this generality.

Lemma 3.2. i) The functor L*G (resp. LG) is representable by an affine scheme (resp. ind-affine
ind-scheme). In particular, L™G and LG are O-spaces.

i) The scheme LTG is a faithfully flat affine O-group scheme which is pro-smooth.

Proof. Part i) is true for every affine scheme G of finite presentation over O: Let G = A}, first. Denote
by Ip the invertible ideal defined by D in O[D]. By the preceding discussion, the ring O[D]/Ip is
isomorphic to the global sections of D and both are finite locally free O-modules, cf. [StaPro, Tag
0B9C]. For any a € Z, we form I, as an invertible O[D]-module. For a < b, denote by Ej, ;) the O-
module 7% /1% which is also finite locally free (hence reflexive) by an induction argument. As b varies,
the set of O-modules {EJ, 4 }s>o forms an inverse system, and O[D] = limy>oEjop by definition.
It follows that I, = limp>,FEqy) for any a € Z. In particular, we get O(D)) = colimglimy>q Eq 4.
As Ejqy) is a reflexive O-module, we get for every O-algebra R that

(3.6) E[a,b] ®Ro R = Hom@_Mod((E[a,b])*, R) = Hom@_sch(Spec(R),V[ayb]),
where Vi, 3 = Spec(Sym®(E[a’b])*) for every pair b > a. Taking limits shows that
AH(R[D]) = R[D] = limy>o(Ejo 4 ®o R)

is identified with the R-points of the affine O-scheme limy>oVg ). The same argument shows that
R — AL(R((D)) is representable by the ind-affine ind-scheme colimglimy>q Vi, ). This gives part
i) in the case G = Al,. For the general case, one verifies that the LT-construction (resp. L-
construction) commutes with taking finite products and equalizers, and that finite products and
equalizers are constructed termwise in the category of ind-schemes. Hence, the lemma follows for
LTAY (vesp. LA%). A finite presentation G = Spec(Olty,...,tn]/(f1,..., fm)) realizes G as the
equalizer of the two maps ¢, 9: Apy, — A where ¢ is given by the functions fi,..., fn, and ¢ is
the composition of the structure map with the zero section. Hence, LTG (resp. LG) is the equalizer
of Lty and Lt (resp. Ly and Lt)) in the category of schemes (resp. ind-schemes). As equalizers
define closed subschemes and L*A% is affine (resp. LAY ind-affine), i) follows.

Part ii) is true for every smooth affine O-scheme G, necessarily of finite presentation: For n > 0,
let D,, = Spec(O[D]/I}5™") be the n-th infinitesimal neighborhood of D in X. The Weil restriction
of scalars G, := Resp, /0(G xx Dy,) is a smooth affine O-group scheme, cf. [BLR90, §7.6, Thm. 4,
Prop. 5]. For varying n, these groups fit into an inverse system G,, — G,, for m > n, and the natural
map of functors

(37) L+g i> limnzo grL

is an isomorphism. This proves ii), and the lemma follows. (]

Remark 3.3. If nD is a positive multiple of D, then there is a canonical isomorphism O[D] =
O[nD] (resp. O(D) = O(nD)). Indeed, as I,p = I} C Ip, the ring O[D] is complete with
respect to the I, p-adic topology, and hence O[D] ~ limy>¢ R[D]/I¥, = R[nD].

2When XR is quasi-projective, one can invoke the more elementary result of [BD, 2.12.6].
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Lemma 3.4. i) The loop group LG represents the functor on the category of O-algebras which
assigns to every R the set of isomorphism classes of triples (F,«, 8), where F is a G-torsor on Xg,

a: Flxu\Dx = Fo (resp. B: Fo = .7-"|I§R) is a trivialization over Xg\Dpg (resp. 153).
i1) The projection LG — Grg, (F,a,8) — (F, ) is a right L*G-torsor in the étale topology, and
induces an isomorphism of sheaves LG/LTG — Grg.

Proof. Part i) is deduced from the Beauville-Laszlo theorem [BL95], cf. [BD, §2.12] for a further
discussion (cf. also [PZ13, Lem. 6.1]). For ii), it is enough to prove that the projection LG — Grg
admits sections étale locally.

Let R be an O-algebra, and let F — Dpr be a G-torsor. We have to show that F is trivial
étale locally on R, i.e., admits a Dp-section étale locally on R. By applying the lifting criterion for
smoothness and an algebraization result for sections (algebraization is easy because F is affine), it
is enough to show that the restriction F|p, — Dg admits a section étale locally on R. Since the
functor F|p,: R-Alg — Sets, B — F(Dp) commutes with filtered colimits (because F is a scheme
locally of finite presentation [StaPro, 01ZC]), we may asssume without loss of generality that R is
a strictly Henselian local O-algebra. Now by assumption on D the R-algebra R’ :=T'(Dg,Op,) is
finite, and hence a direct product of Henselian local rings R’ = Ry X ... x R,,, cf. [StaPro, 04GH]. As
R is strictly Henselian, each R; is strictly Henselian as well (because a finite extension of a separably
closed field is separably closed). But each non-empty smooth scheme over a finite product of strictly
Henselian local rings admits a section by Hensel’s lemma. This finishes the proof. O

Lemma 3.4 ii) shows that there is a transitive action map
(38) LG X0 Grg — GI‘g.
Let us look at the fibers of (3.8) over O.

Corollary 3.5. i) Let F be a field, and let O — F be a ring morphism. The underlying reduced
subscheme Dpyoq C Dr is an effective Cartier divisor on X, and we write Dp yeq = Z?Zl D; where
D; are distinct irreducible, i.e., the D; are closed points of Xg. There is a canonical isomorphism
of F-spaces

Grixg.p) ®0 F = [[ Grixpor00,
i=1
compatible with the action of LG x g .p) ®o F ~ [\ LG x, ¢r.D;)-
it) Let O = F be a field, and let D = [z] be the divisor on X defined by a closed point x € X. The
residue field K := k(z) is a finite field extension, and we assume that K/F is separable. There is a
canonical isomorphism of F-spaces

GI‘(X)g7D) i) ReSK/F(Gr(XK,QXK,D))
compatible with the action of LG x g py =~ ResK/F(LQ(XK’gXK’D)).

Proof. For i), we may by (3.2) assume O = F. It is immediate from Remark 3.3 that for any
O-algebra R, we have R[Dyed]] =~ R[D] (resp. R(Dreda) ~ R(D)). Further, there is a canonical
isomorphism

RIDwea] = [[RID (resp. R(Duea) = [[R(D)

i=1
because X is of dimension 1, and hence D, N D; = @ for i # j. Part i) follows from Lemma 3.4
ii). For ii), first note that if we consider D as the divisor on Xy defined by the K-point z, then
Gr(xy gx, D) is the twisted affine Grassmannian over K, cf. Example 3.1 1). Let K/F be the

splitting field of K which is a finite Galois extension with Galois group [. There is a canonical
isomorphism of K-algebras

KeopK = [ K, a®br— (d(a)-b)y,
v KK
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which is T-equivariant for the action - (cy)y + (7(cy))~y on the target. Applying this isomorphism
to D @ K, we obtain by i) a I'-equivariant isomorphism

(3.9) Gr(X,gp) RF K = H Gr(XK,QxK,D) QK K,

P
compatible with the actions of the loop groups. The canonical descent datum on the source in (3.9)
induces a descent datum on the target of (3.9) which implies ii). O

Let us point out some useful compatibility with Weil restriction of scalars.

Corollary 3.6. Let X' — X be a finite flat surjective map of smooth quasi-projective O-curves,
and assume G = Resx/ ) x(G') for a smooth affine X'-group scheme G'. If D" := D xx X', then the
natural map is an isomorphism of O-spaces

(310) GI‘(X/’g/,D/) E) G‘rr()(’g’D)7 (]:/,Oél) — (RGSX//X(]:/),RGSX//X(O/)).

Proof. Since X’ — X is finite flat surjective, the closed subscheme D’ C X' is a relative effective
Cartier divisor which is finite flat over O. Hence, the functor Gr(xs g/ ps) is well defined. Using
Lemma 3.4 ii), the map (3.10) is induced for any O-algebra R by the canonical map of R-algebras

Spec(R[D']) — Spec(R[D]) xx X" (resp. Spec(R(D")) — Spec(R(D)) xx X').

If R is Noetherian, then the first map (hence the second map) is an isomorphism by [StaPro, 00MA]
because X’ — X is finite. In particular, (3.10) is an isomorphism for any Noetherian O-algebra R.
As both functors in (3.10) commute with filtered colimits of O-algebras, the corollary follows. O

Lemma 3.7. Let O’ — O be a finite étale map of Noetherian rings. Then the composition X —
Spec(O) — Spec(O') is a smooth curve as well, and there is a canonical isomorphism of functors

Gr(X/O’,g,D) ~ ReSo/Ol (Gr(X/(’),g,D))~

Proof. If T — Spec(0’) is a test scheme, then X Xgpec(0) (Spec(O) Xgpec(0r) T') = X Xgpec(or) T-
The lemma follows immediately from the definitions. t

3.1.2. Basic representability properties. The starting point is the following lemma, and we sketch
its proof.

Lemma 3.8. IfG = Gl,, x, then the functor Grg is representable by an ind-projective O-ind-scheme.

Proof. Let R be an O-algebra. If G = Gl,, x, then Grg(R) classifies rank n vector bundles £ on
Xpg together with an isomorphism €|y, ~ Of_ where Ur := (X\D)g. Let Ip, C Ox, be the
invertible ideal sheaf defined by Dr C Xg. For N > 1, let Grg y be the O-space whose R-valued
points are rank n vector bundles £ on Xg such that as Ox,-modules

(Z5.)" c £ c (Tp])"
Every vector bundle is locally free and by bounding the poles (resp. zeros) of basis elements, one
gets as O-spaces

colimNZl GI‘g7N i) Grg.
We claim that each Grg, y is representable by a Quot-scheme as follows. The Ox,-module £y r =
(N /ZN)" ®0 R is coherent and locally free over R. Let Quoty be the O-space whose R-points are
coherent Ox,-module quotients €x, r — Q which are locally free R-modules. The functor Quot
is representable by a projective O-scheme by the theory of Quot-schemes applied to the finite flat

O-scheme 2N D, and the coherent Ooyp = Ox /IIQ)N -module £y, 0. More precisely, in the notation
of [FGA, §5.1.4], one has a finite disjoint union

— r,02ND
Quoty = H QUOth,O/zND/spcc(O)v
TGZZU

and the representability result is then a theorem of Grothendieck [FGA, §5.5.2, Thm. 5.14]. Note
that the structure sheaf Qs p is relatively ample for 2N D — Spec(O) because the map is finite (cf.
[StaPro, Tag 01VG, 28.35.6]). Concretely, Quot is the closed subscheme of the Grassmannian

Quoty — Grass(En,0),
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which is cut out by the condition that the quotients are stable under the finitely many nilpotent

operators uq, ..., u, on £y o induced by some presentation 2ND = Spec(Ofuq, ..., uy,|/J). Hence,
to prove the lemma it is enough to show that as functors
(3.11) Grgn — Quoty, €— (IpN)" /€.

We need to check that Q := (IB}]: )n /€ is alocally free R-module. This follows from the isomorphism
as R-modules O /E ~ EBkZOIB}’f;lS /IBQ £, and the short exact sequence

0= (ZpN)" /e = 03,16 = 03,/ (ZpN)" = 0,

cf. also the argument in [Zhu, Lem. 1.1.5]. Conversely, let Q € Quot (R), and define the coherent

Ox,-module
def

E = ker ((Igg)n — SN,R — Q) .
We need to show that £ is a rank n vector bundle on Xg. Covering X with affine schemes, we may
assume X = Spec(S5) is affine. Let p C S be a prime ideal lying over a prime ideal m := pNR C R.
By [StaPro, Tag 00M] applied to the map of local rings Ry, — S, and the module &, (note that &,
is still Rm-flat), to prove &, is free over S, we are reduced to the case where R is a field. In the case
where R is a field, £ C (I];f: )n is a torsion-free rank n submodule, and since X — Spec(R) is a
smooth curve, £ is a vector bundle. ([

Remark 3.9. Using Lemma 3.4 ii), the set Grgi, ,(O) can be identified with the set of O[D]-
lattices in O((D)), i.e., in the notation of Lemma 3.2, the set of O[D]-submodules M C O(D)) such
that for some N >> 0, (Ig’)" CMCcC (IBN)n and (IBN)n /M is a locally free O-module.

Proposition 3.10. If G — G is a monomorphism of smooth X -affine X -group schemes such that
the fppf-quotient G /G is a X -quasi-affine scheme (resp. X -affine scheme), then the map Grg — Grg
is representable by a quasi-compact immersion (resp. closed immersion).

Proof. Following the proof of [Zhu, Prop. 1.2.6], it is enough to establish the analogue of [Zhu,
Lem. 1.2.7]. Let R an O-algebra, and let p: V — Dp be an affine scheme of finite presentation.
Let s be a section of p over lA)j’%. We need to prove that the presheaf assigning to any R-algebra
R’, the set of sections s’ of p over Dp such that s | pe, = s| De, is representable by a closed

subscheme of Spec(R). Indeed, choosing a closed embedding V' C A%R for some n >> 0 and using
that R[D] C R((D) is injective, we reduce to the case V = A%R. The presheaf in question is

representable by the locus on Spec(R) where the class 5 of the section s € V(D%) = R(D)"
in (R(D))/R[D])" vanishes. With the notation of Lemma 3.2, we have 5 € E|_y o ®o R for
some N >> 0. As E_y g is a reflexive O-module, we see that giving an element of Ej_y 0 ®o R is
equivalent to giving a map of R-schemes Spec(R) — V(E[_y o ®o R). Then the presheaf in question
is representable by the equalizer of the two maps corresponding to the elements 35,0 € Ej_y g ®o R
which is a closed subscheme of Spec(R).

Corollary 3.11. i) If there exists a monomorphism G — Gl,, x such that the fppf-quotient is a
X -quasi-affine scheme (resp. an X-affine scheme), then Grg = colim; Grg ; is representable by a
separated O-ind-scheme of ind-finite type (resp. separated ind-proper O-ind-scheme). Each Grg
can be chosen to be LTG-stable.

i) If in 1) the representation G — Gl, x exists étale locally on O, then Grg = colim; Grg; is a
separated O-ind-algebraic space of ind-finite presentation (resp. separated ind-proper O-ind-algebraic
space). Each Grg,; can be chosen to be LtG-stable.

iit) If G = G ®p X is constant and G is a reductive O-group scheme, then Grg is representable by
an ind-proper O-ind-algebraic space.

Proof. Part i) is immediate from Lemma 3.8 and Proposition 3.10. For ii), we use part i) together
with Lemma 3.12 below. Note that the diagonal of Grg being representable by a closed immersion
follows from the same property of Grgi, , and the effectivity of descent for closed immersions.
Further, if O — O’ is étale, then the method of Lemma 3.12 shows that an LTG ®o O’-stable



TEST FUNCTIONS FOR LOCAL MODELS OF WEIL-RESTRICTED GROUPS 11

presentation of Grg ®o O’ induces an LT G-stable presentation of Grg (because L*G is affine and
flat, and taking the scheme theoretic image commutes with flat base change). For iii), note that
after an étale cover O — (', the group scheme G/ := G ®p O’ is split reductive, and in particular
linearly reductive. If we choose a closed immersion Gor — Gl,, o/, then the quotient Gl,, o' /Gor is
representable by an affine scheme by [Al14, Cor 9.7.7], and iii) follows from ii). O

Lemma 3.12. Let X be an O-space with schematic diagonal, and such that there exists a étale
surjective (as sheaves) map of O-spaces U — X with U an O-ind-scheme. If either U — X is
quasi-compact or U is quasi-separated, then X is an O-ind-algebraic space.

Proof. Given a presentation U = colim;c; U; with U; being schemes, we need to construct a pre-
sentation X = colim;c; X; with X; being algebraic spaces. For each ¢, consider U; C U — X. We
define X/ to be the scheme theoretic image of the map

(3.12) UxxUcCcUxxU 25 U

This well defined for the following reason: Since U; x x U is a quasi-compact scheme, the map (3.12)
factors through U; C U for some j >> i. In either case, U — X quasi-compact or U quasi-separated,
the map (3.12) is quasi-compact. By [StaPro, 01R8], the scheme theoretic image behaves well for
quasi-compact maps, and X C U, is a quasi-compact closed subscheme. As scheme theoretic images
of quasi-compact maps commute with flat base change [StaPro, Tag 0811], the scheme X/ is equipped
with a descent datum relative to U — X, and defines a closed O-subspace X; C X together with
an étale surjective map X — X;. As X; C X is closed, the diagonal of X; is schematic, and X; is
a quasi-compact algebraic space. By construction the X; form a filtered direct system indexed by
the poset I, and the canonical map colim;c; X; — X is an isomorphism (because U — X is a sheaf
surjection, and colim; X/ = U by construction). O

Remark 3.13. It would be nice to give a proof of representability of Grg which does not refer to
the choice of an embedding G — Gl,, x.

3.2. The open cell. In the following two subsections, we apply our methods to prove Theorem
3.17, a generalization of Theorem A from the introduction. The results are not used in the proof of
our Main Theorem.

We specialize to the case where X = A}, and where § = G ®o X is constant, i.e., the base
change of a smooth affine O-group scheme G of finite presentation. In this case, we denote LpG
(resp. L} G; resp. Gr(x,g,p)) by LG = LpG (resp. LTG = L} G; resp. Grg = Grix,a,p))-

Since D C A%Q is assumed to be finite over O, the subscheme D C IF’}Q is closed and defines a
relative effective Cartier divisor. In particular, Lemma 3.4 ii) (the Beauville-Laszlo lemma) implies
that Gr(AéyG,D) = Gr(lP’%yG,D) by extending torsors trivially to oco.

The negative loop group is the functor on the category of O-algebras

(3.13) L™G: R+ G(PR\Dg).
Then L™ G is an O-space which is a subgroup functor L~ G C LG.

Lemma 3.14. The functor L~ G is representable by an ind-affine ind-scheme locally of ind-finite
presentation over O.

Proof. That the affine schemes are of finite presentation follows from the fact that L~ G commutes
with filtered colimits (because G is of finite presentation). One verifies that L~ commutes with finite
products and equalizers, and hence the proof of representability is reduced to the case G = A}, cf.
the proof of Lemma 3.2. We have to show that the functor on the category of O-algebras R given by
the global sections R F(Op}__d \D ) is representable by an ind-affine ind-scheme. But as R-modules
I'(Op1\py,) = colim, I'(Op1 (nDg)), and we claim that I'(Op1 (nDp)) is finite locally free: Indeed,
this follows from the short exact sequence

0= Opy = Opy (nDg) = L5, /Op1 — 0,

and the vanishing of Hy, (P}, Op1 ). This proves the lemma. O
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Now define L™~ G = ker(L~ G — G) for g — g(00). Then the intersection L=~ GN LT G is trivial
inside LG, and we consider the orbit map

(3.14) LG — Grg, g g -eo,
where ey € Grg denotes the base point.

Lemma 3.15. The map (3.14) is representable by an open immersion, and identifies L=~ G with
those pairs (F, o) where F is the trivial torsor.

Proof. The argument is the same as the deformation argument given in [HaRi, Lem. 3.1], and we
do not repeat it here. O

3.3. Geometry of G,,-actions on Grg. We assume X = Ab, and ¢ = G ®» X with G be-
ing a reductive O-group scheme with connected (and hence geometrically connected) fibers. Let
X: Gp,0 = G be an O-rational cocharacter. The cocharacter x induces via the composition

N
(3.15) Gmo C L Gmo =% LG C LG

a left G,-action on the affine Grassmannian Grg — Spec(O). As in (2.2), we obtain maps of
O-spaces

(3.16) (Grg)o — (GI'G)i — Grg.

Let us mention the following lemma which implies the ind-representability of the spaces (3.16), in
light of Theorem 2.1 and Corollary 3.11.

Lemma 3.16. The G,,-action on Grg is étale locally linearizable.

Proof. After an étale cover O — O, there exists a closed immersion Grg,, — Grai, ,, (cf. Proposi-
tion 3.11 iii)) which is G,,-equivariant with respect to the action on Gray, ,, given by the cocharacter

G, o X Gor — Gl,, 0. The proof of Lemma 3.12 shows that an LTGe/-stable presentation of
Grg,, by quasi-compact schemes induces an L*(G-stable presentation of Grg by quasi-compact
algebraic spaces. To prove the lemma it is enough to show that the G,,-action on GrGln’ o 18
Zariski locally linearizable, and we reduce to the case O = O0’, G = Gl,, 0. By [Col4, Prop. 6.2.11;
Prop. 3.1.9], Zariski locally on O the cocharacter x lies in a split maximal torus in Gl,, ¢ which is
O-conjugate to the diagonal matrices in Gl,, 0, and hence is after conjugation with a permutation
matrix dominant. In this way, we reduce to the case where x is a standard dominant cocharacter

given by A+ diag(A\®,... A% ) for some integers a; > ... > a,. With the notation of Lemma 3.8,
it is now immediate that the G,,-action on Quoty C Grass(En,0) is linear, and compatible with
the transition maps for varying N. The lemma follows. (]

Our aim is to express (3.16) in terms of group theoretical data related to the cocharacter x, cf.
Theorem 3.17 below.

Let x act on G via conjugation (\,g) — x(\) - g-x(g)~!. The fixed points M = G° (resp.
the attractor PT = GT; resp. the repeller P~ = G™) defines a closed subgroup of G which is
smooth of finite presentation over O, cf. [Marl5]. The group M is the centralizer of y, and is by
the classical theory over a field a reductive O-group scheme which is fiberwise connected (hence
fiberwise geometrically connected). By (2.2) we have natural maps of O-groups

(3.17) M+ P* 5 G.

Theorem 3.17. The maps (3.17) induce a commutative diagram of O-ind-algebraic spaces

Gry «— Grpr —— Grg

(3.18) Lol Lil idl

(Grg)? «—— (Grg)* — Grg,

where the vertical maps (° and «* are isomorphisms.
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Remark 3.18. i) An interesting example to which Theorem 3.17 applies is the case of fusion
Grassmannians Grg — A%, cf. Example 3.1 iv) with® ¢ = AL. Hence, Theorem 3.17 implies
Theorem A from the introduction. Note that the group G need not be defined over F', but can be a
general reductive group scheme over the n-th symmetric power (A};)(”). Changing the set up slightly,
the group G could even be a general reductive group scheme over A} (take D = Spec(O) = A},
X = A% xp A}, and consider the divisor A% — A% x AL, (2;); — ((:):, Y, 2:) fori = 1,...,n). ii)
Note that Theorem 3.17 also generalizes [HaRi, Lem. 3.6] and justifies [HaRi, sentence containing
(3.33)].

3.3.1. Construction of 1° and 1*. The strategy of construction is the same as in [HaRi] which we
recall for readability.

As the G,,-action on Grjs is trivial, the natural map Gry; — Grg factors as Gry — (Grg)? —
Grg which defines (°. For the construction of the map *, we use the Rees construction explained
in Heinloth [Hel8, 1.6.2]. The G,,-action P x G0 — P%, (p,\) — x(A%) - p- x(AF)7! via
conjugation extends via the monoid action of A! on (A})* in (2.1) to a monoid action

(3.19) my: PT x AL — P*

such that m,(p,0) € M. We let gr, : PE x ALY — PE x AL, (p, ) = (my(p,\),\) viewed as
an Ap-group homomorphism. Then the restriction gr, |1} is the identity whereas gr, |(oy is the
composition P* — M — P*. For a point (F*,a*) € Grp+(R), the Rees bundle is

(3.20) Rees, (F*, a®)

= g, L (Fi o) € Grps(AR),

where gr, . denotes the push forward under the Al-group homomorphism. Then the restriction
Rees, (F*,0%)|(1y, is equal to (F%,a®) whereas Rees, (F*, a*)|(}, is the image of (F*, a¥)
under the composition Grp+ — Grps — Grp:. One checks that Rees, (F*,a%) is G,,-equivariant,
and hence defines an R-point of (Grp+)®. As the Rees construction is functorial, we obtain a map
of O-spaces

(3.21) Rees, : Grpz — (Grp:)™,

which is inverse to the map (Grp=)* — Grp+ given by evaluating at the unit section. We define
the map Grp= — (Grg)™T to be the composition Grp+ ~ (Grp=)* — (Grg)* where the latter map
is deduced from the natural map Grp+ — Grg. This constructs the commutative diagram (3.18).

We claim that the map © (resp. ¢*) is representable by a quasi-compact immersion. By [Col4,
Thm. 2.4.1], the fppf quotient G /M is quasi-affine, and hence ° is representable by a quasi-compact
immersion by Proposition 3.10. Note that since M is reductive, the space Grj, is ind-proper and
hence ¢ is even a closed immersion. For ¢, we use that quasi-compact immersions are of effective
descent (cf. [StaPro, Tag 0247, 02JR]), and after passing to an étale ring extension of O, we reduce
to the case where G is linearly reductive. As in the proof of Corollary 3.11, we choose G — Gl,, o
such that Gl,, o /G is quasi-affine (or even affine). Let QT C Gl, 0 (resp. @~ C Gl, o) be the
attractor (resp. repeller) subgroup defined by the cocharacter G, o 56— Gl,, 0. Then we have
Pt =Q* Xal, .o G- The quotient Q7T /P is an algebraic space of finite presentation over O, and the
map i: QT /PT < Gl,,,0 /G is a monomorphism of finite type (hence separated and quasi-finite, by
[StaPro, Tag 0463, 59.27.10]). Thus, Q*/P* is a scheme, and the map i is quasi-affine by Zariski’s
main theorem. In particular, Q% /P is quasi-affine as well. Now there is a commutative diagram
of O-spaces

GI‘Pi
(3.22) (Gre)t —— Grg
Gros — (Grai, o) — Gray, o,

3The case of general smooth F-curves C can be reduced to the special case of A}T, but we do not need this in the
present article.
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constructed as follows. The map Grg — Grgay, , is a quasi-compact immersion by Proposition
3.10, and as Grg is ind-proper, it is a closed immersion. Hence, the square is Cartesian by general
properties of attractor (resp. repeller) ind-schemes. This also constructs the dotted arrow in (3.22)
which is the map (*. Further, the map Gro+ — (Gr(;ln’o)jE is an isomorphism by Lemma 3.19
below. The map Grp:+ — Grg= is a quasi-compact immersion because Q* /P* is quasi-affine.
Since (Grg)* — (GrGln’o)i is a closed immersion, the map % is a quasi-compact immersion.

Lemma 3.19. If G = Gl,, 0, then the maps (° and vt are isomorphisms.

Proof. As in the proof of Lemma 3.16, we reduce to the case where x is a standard dominant
cocharacter. Then y corresponds to a Z-grading on V := O™, say V = @,z V;, compatible with the
standard O-basis of V. The group M (resp. P*/P~) is a standard Levi (resp. standard parabolic)
of automorphisms of V' preserving the grading (resp. the ascending/descending filtration induced
from the grading). In the description of Lemma 3.8, the subfunctor Grjys (resp. Grp:) are those
vector bundles £ € Grg(R) compatible with the grading (resp. filtration induced by the grading)
on V ®o Op,. Likewise, the grading on V induces in the notation of Lemma 3.8 gradings on
Eno =V ®o (IBN/Ig) for each N > 1. As in Lemma 3.16, we have a closed G,,-equivariant
immersion, and hence the diagram of O-schemes

Quotly —— Grass(Ey.0)°

l |

Quoty —— Grass(En,0),

is cartesian, and likewise on attractor (resp. repeller) schemes. The equality Grass(En,0)? =
[Lics Grass(Vi ®o (Zp" /ZX)) is immediate, and one checks that Grass(V ®o (Zp" /ZN))* is the
subfunctor of those subspaces in £y o compatible with the filtration. The lemma follows. O

3.3.2. Proof of Theorem 3.17. We need a lemma first. By functoriality of the loop group construc-
tion, the G,,-action on G via x-conjugation gives an G,, on LG (resp. LTG; resp. L™G). There
are natural monomorphisms on negative loop groups

(3.23) LM — (L-Q)%
(3.24) L™ P* — (L7G)*.
Lemma 3.20. The maps (3.23) and (3.24) are isomorphisms.

Proof. Replacing O by an étale cover, we may assume that there exists a closed embedding G —
Gl,,,0. By the proof of Lemma 3.14 (resp. Lemma 3.2 1)), the induced map L~ G — L~ Gl,, ¢ is a
closed immersion.

Let x": G0 %G — Gl,,, 0, and denote the fixed point group (resp. attractor/repeller group)
by L (resp. QF). It is straight forward to check LM = L~ GNL™L (resp. L~ P* = L-GNL~Q%)
and (L=G)° = L~ GN (L~ Gl,,0)° (resp. (L~ G)* = L=GN (L~ Gl, 0)*). Hence, we may assume
G = Gly,0.

After passing to a Zariski cover of O, we may assume that  is a standard dominant cocharacter,
cf. proof of Lemma 3.16. We have for every O-algebra R,

(L™ Gloo)"(R) = {g € G(PR\DR) | VS € (R-Alg), X € G (S): x(A) - g-x(\) ™" = g}.
Let g € (L™ Gl,,,0)°(R). To show g € (L~ M)(R), we can take S = R[t,t71] to see that the desired

entries in the matrix g vanish. The case of (L~G)¥ is similar, and the lemma follows. (I

First case. Let O = F be a field. By fpqc-descent, we may assume that F' is algebraically closed.
Then Dyeq = Z?:l[xi] for pairwise distinct points z; € X(F). If d = 1, the maps (° and (* are
isomorphisms in light of Example 3.1 i) and [HaRi, Prop. 3.4]. In general, by Corollary 3.5 each
ind-scheme in (3.18) is a direct product of d copies (compatible with the maps) of classical affine
Grassmannians formed using local parameters at x;. The G,,-action on the product via

Gm C LpGm =~ L (G Xp ... xp L, Gy

is the diagonal action, and we conclude using Lemma 2.2 and the case d = 1.
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Second case. Let O be an Artinian local ring with maximal ideal m, and residue field F'. Passing to
the strict Heselization, we may assume that F is separably closed. The restriction of :* (resp. (%)
to the open cell L=~ M (resp. L=~ P¥) is an isomorphism by Lemma 3.20. By Lemma 3.15, there
is the open subset

def

Vi = U m-L™"M-ey (resp. Vp« &f Up~L77Pi~60),

m p

of Grys (resp. Grpsx), where the union runs over all m € LM (O) (resp. p € LP*(0)). The
LM-equivariance (resp. LP*-equivariance) of .° (resp. «*) implies that |y, (resp. t*|y, . ) is an
isomorphism. As Grps (resp. Grps) is a nilpotent thickening of Grys ®o F (resp. Grp+ Qo F),
it is enough to show that Vjs (resp. Vpx) contains the special fiber. As G splits over F (because
separably closed), the points Gr(F) C Grps (resp. Grp+(F) C Grp+) are dense which follows
from the density of A%(F) C A% and the cellular structure of these spaces. Thus, it suffices to show
that Grp(F) C Vs (resp. Grps(F) C Vp+). In view of Lemma 3.4 ii), it suffices to show that
the reduction map LM (O) — LM(F) (resp. LP*(O) — LP*(F)) is surjective. As O is Artinian,
the ring O((D)) is (semi-local) Artinian, and the reduction map O(D)) — F(D)) is surjective with
nilpotent kernel m((D)). Hence, the desired surjectivity follows from the formal lifting criterion using
the smoothness of M (resp. P*). This handles the second case.

The general case. Passing to an étale extension of O, we may assume that (3.18) is a diagram
of ind-schemes, cf. Corollary 3.11. In view of (3.2), the closed immersion ¢ (resp. quasi-compact
immersion () is fiberwise bijective, and hence bijective. Now Theorem 3.17 follows from Lemma
3.21 below using the second case.

Lemma 3.21. Let O be a Noetherian ring, and let v:' Y — Z be a quasi-compact immersion of
finite type O-schemes. If v is set-theoretically bijective, and if for every mazimal ideal m C O and
every n > 1, the reduction 1 ® O/m™ is an isomorphism, then ¢ is an isomorphism.

Proof. By [StaPro, Tag 01QV], the map ¢ factors as an open immersion followed by a closed immer-
sion: Y =Y — Z. As ¢ is bijective, we have Y = Y and ¢ is a bijective closed immersion. Being an
isomorphism is local on the target, and we may assume that Z = Spec(A) and hence Y = Spec(B)
are affine. The map of O-algebras 1#: A — B is surjective (because closed immersion), and each
element in I := ker(:#) is nilpotent (because :* is bijective on spectra). It is enough to show that
for the localization I, = 0 for all maximal ideals m C 0. Without loss of generality, we may assume
that O is local with maximal ideal m. If mA = A, i.e., the fiber of Z over m is empty, there is
nothing to prove, and we may assume that mA C A is a proper ideal. As A/m"A — B/m"B is
an isomorphism for all n > 1, we have I C N,>1m"A. But since m"A = (mA)” and mA C A is
a proper ideal in a Noetherian ring, we have N,>1m"”A = 0 by Krull’s intersection theorem. The
lemma follows. O

4. LOCAL MODELS FOR WEIL-RESTRICTED GROUPS

In this section, we collect a few properties of the Weil-restricted affine Grassmannians as con-
structed in [Lev16]. We provide proofs for several statements which appear to be well-known but
for which we could not find proofs in the literature.

4.1. Notation. Let F//Q, be a finite extension with ring of integers O, and residue field k£ with
q elements. Let K/F be a finite extension with ring of integers O with residue field ko/k. Let
Ky/F denote the maximal unramified subextension of K/F with the same residue field ko/k. Fix
a uniformizer w of K, and denote by @ € Ky[u] the minimal polynomial, i.e. @ is the unique
irreducible normalized polynomial with Q(w) = 0. Note that Q € O, [u], and that Q = ulf:¥ol
mod w.

Let F (resp. K; Iu(o) denote the completion of the maximal unramified extension of F' (resp. K;
Ky) inside a fixed algebraic closure F, and let o € Aut(F'/F) denote the Frobenius generator. We
note that F' = Iu(o.

In §4.4 below, we specialize the general set-up of §3 to the case where O = Op, X = A}QKO is

viewed as a smooth curve over O, and D is defined by {@ = 0}. We first summarize some properties
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of parahoric groups for Weil-restricted groups (cf. §4.2), and the group schemes G, over X = A%QKO
constructed in [PZ13, Lev16] (cf. §4.3).

4.2. Parahoric Group Schemes for Weil-restricted groups. Let G be a reductive K-group.
Fix a maximal K-split torus Ao, a maximal K-split torus Sy containing Ay and defined over K.
Let My = Zg,(Ao) denote the centralizer of Ay which is a minimal K-Levi subgroup of Gy, and let
To = Zg,(So) be the centralizer of Sy. Then Tp is a maximal torus because G07 jr is quasi-split by
Steinberg’s theorem.

We are interested in parahoric subgroups of the Weil restriction of scalars G := Resg,p(Go). We
will first need to classify the maximal F-split tori in G.

Lemma 4.1. Suppose Ty is any K-torus, so that T' = Resg,p(Ty) is an F-torus. Then there is a
canonical isomorphism of groups

(4.1) Xu(T)rp = Xu(To)rg -
In particular, the F-split rank of T is the K-split rank of Tj.
Proof. Recall that T represents the functor on F-tori which sends the F-torus 7" to
Hom g tori(T" @ K, Ty) = Homr . vod (X« (T"), X«(Tp)) = Homr . Mod (X* ("), Indll:f( (X, (TO)).

We deduce that X,(Resg,r(Tp)) = Indll:f( (X«(To)) = X.(To) ®zry Z[TF] (since [['p : I'k] < 00).
Then the Hy-version of Shapiro’s lemma gives (X, (7o) ®zr ) Z[I'F])ry = X«(To)ry, which implies
the lemma. 0

Under the bijection
(42) HOHIF (TI, RGSK/F(G())) = HOHIK (T}(, G()),

T" — Resk, r(Go) is injective if and only if the corresponding morphism Tj — Gy is injective.
Since any K-split torus is of the form T}, for a unique F-split torus 77, this shows that the rank of
a maximal F-split torus in Resg/p(Go) is the same as the rank of a maximal K-split torus in Gj.
For the maximal K-split torus Ag C Gy, we write Ag = Ai for a unique F-split torus A. Using the
canonical embedding A — Resg/p(Ax) = Resg,p(Ao), we see that A is the F-split component of
Resg/r(Ao) and also a maximal F-split torus in G.

From now on, we will abuse notation and denote by A the image of A — Resg/p(Ag) —
Resg/r(Go) = G (even though A is not a Weil restriction of a torus). The discussion following (4.2)
shows that Ay — A gives a bijection between maximal K-split tori in Gy and maximal F-split tori
in G.

Let us note that since Sy is K -split (and using K’O ®K, K = K ) there exists a unique subtorus
Sy — Resk/k,(So) which is a maximal Ko-split torus in Resg /i, (Go) defined over Ky and of the
same rank as Sg. We let S denote the image of Resg, /r(Sy) — Resk, r(Resk/k,(S0)) = Resk,rSo

which is a maximal F -split torus in G defined over F.

Lemma 4.2. Letting M = Resg/p(Mo) and T = Resg,p(Ty), we have M = Zg(A) and T = Zg(S)
as subgroups of G = Resg/p(Go).

Proof. Both containments ‘C’” are obvious. For ‘27 we note that the torus Ay is the diagonal torus
inside [] 5., 7 Ao ®K,y F. Considering its centralizer inside [[ .,  Go ®k,y F proves M = Zg(A).
Since Z(S) is necessarily a maximal torus, the inclusion 7' C Zg(.S) is also an equality. O

The correspondence A <> Ay induces a correspondence between the apartments in the (extended)
Bruhat-Tits buildings Z(G, F) and B(Gy, K). We will show that there is a canonical isomorphism

(4.3) B(G,F) ~ B(Gy, K),

equivariant for the action of G(F) = Go(K), and compatible with an identification of apartments
(G, A, F) = (G, Ao, K).
The Twahori-Weyl group W = W (G, A, F) is the group

(4.4) W < Normg(A)(F)/M(F);,
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where M (F'); is the unique parahoric subgroup of the minimal Levi M, cf. [HR08, Ril6a]. (By
Lemma 4.2, M is a minimal F-Levi subgroup of G.) We define W= W(G, S, ﬁ') analogously. In the
following we will use the identification FopK = H[KO: F K which is o-equivariant for the action
o(aj); = (caj_1); on the product.

Lemma 4.3. There is a canonical identification of Twahori-Weyl groups

W(GvAvF) :W(G07A07K) and W(Ga SaFv‘) (GOaSO7F®FK H W G07507 )
[Ko:F]
Proof. Asin Lemma 4.2, one shows Normg (A) = Resg/p(Normg, (Ao)), and hence Normg(A)(F) =

Normg, (Ao)(K). By Lemma 4.4 below, M (F); = My(K);. The first equality follows and the second
is similar. O

Lemma 4.4. Let G(F), C G(F) denote the Kottwitz kernel, i.e., G(F), = G(F) N G(F), with
G(F), = ker(kg: G(F) — X*(ZL)),

where k¢ is the Kottwitz homomorphism of [Ko97, §7). Then G(F); = iko:r Go(K)1 and G(F); =
Go(K)1-

Proof. The result is clear when Gy is a torus: G(F); and k.7 Go (K)1 coincide with the unique
maximal bounded subgroup of

Thus, by a variation of Lemma 4.1, kg: G(F) — X.(G)y, is the direct product over [K, : K]-
many copies of kg, : GO(I?) — X.(Go)rx- Clearly the result holds for Gy = Go s and hence for
Go,der = Gosc by reduction to the torus case. Finally the general case follows by the method of
z-extensions as in the construction of kg, ([K0o97, §7.4]). O

Lemma 4.5. There is a canonical isomorphism of apartments < (G, S, F’) = %(GO,SO,F’ ®p K)
compatible with the action of the Twahori-Weyl groups W(G, S, F) = W(Gy, So, F ®@p K) and the
action of the Frobenius o.

Proof. Let X¢ (resp.Xq,) denote the Bruhat-Tits échelonnage root system attached to (G,S)
(resp. (Go, So)). Taking Ty = T sc in Lemma 4.1 and using [HR08, Lem. 15], we obtain an equality
of coroot lattices

Q (EG’) H X TOSC H QV EGO

[Ko:F) [Ko:F]

By considering minimal positive generators of these lattices, we deduce that Yo = H[KD: Fl igo.
As all identifications are canonical this isomorphism is compatible with the action of o on both
sides. This gives the identification of affine root hyperplanes needed to prove the isomorphism of
apartments

(G, S, F) = o (Go,So, F @5 K).
The isomorphism is equivariant for W (G, S, F') = W(Gy, So, F @ K) and 0. O

Proposition 4.6. There is a canonical isomorphism B(G,F) ~ HB(Go, K), equivariant for the
action of G(F) = Go(K), and compatible with an identification of apartments o/ (G, A, F) =
o (Go, Ay, K).

Proof. By construction #(Go, K) = (Go(K) x </ (Go, S, K))/ ~, where (g,x) ~ (¢, ') if there
exists n € Normg, (So)(K) such that n -z = 2/ and g~'¢'n € U,. Here U, is the subgroup of
GO( <) generated by the affine root groups Us 4, associated to o+ r with alx)+r >0, for (a,r) €
EGU
of the equivalence relation for Gy. Using Lemma 4.5, this proves Z(G, F) = k.7 #(Go, K) =
AB(G, For K), equivariantly for o, and the proposition follows by étale descent, cf. [BT84, §5.1]. O

x 7. Because Y¢g = Hixo:r) Ya,, the equivalence relation for G is the [Ky : F]-fold product
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Let f be a facet of &7 (G, A, F'), and denote by fy the corresponding facet in &7 (G, Ao, K). Let
Gr (resp. Gg,) be the associated parahoric group scheme over Op (resp.over Ok ).

Proposition 4.7. There is a canonical isomorphism of Op-group schemes Ge ~ Resp, 0, (G%,)
inducing the identity on generic fibers.

Proof. By the defining property of parahoric group schemes, it suffices to check that the group H :=
Reso, /0, (Gt,) is a smooth affine Op-group scheme of finite type with (geometrically) connected
special fiber, with the property that H(O) is the intersection of the Kottwitz kernel G(F), with
the pointwise fixer in G(F) of f which we view as a subset of the building over F; cf. [HR08]. The
Op-group H is smooth affine and of finite type by general properties of Weil restriction of scalars,
cf. [BLR90, §7.6, Thm. 4, Prop. 5]. If R = O /w! Kol then the special fiber is given by

H ®OF k = ReSR/k(gfo ®OK R)7
which is a successive extension of smooth (geometrically) connected groups, and hence (geomet-
rically) connected. As [] . m K = K ®p F we have H(Op) = Ilix,.r 98 (Of) which is the

intersection of [ . p Go(K), = G(F); (Lemma 4.4) with the pointwise fixer in k) Go(K) of
f, by Lemma 4.5. The proposition follows. ]

Corollary 4.8. Every parahoric Op-group scheme of G is of the form Reso, 0, (Gr,) for a unique
facet £y C B(G,K).

O
The subgroup We = We(G, A, F) of W associated with f is the group

We < (Normg(A)(F) N Ge(OF)) /M (F);.

The isomorphism W (G, A, F) = W(Gy, Ay, K) induces Wi (G, A, F) = W, (Go, Ag, K). Let us point
out a consequence of Proposition 4.6 which is used later.

Corollary 4.9. There is a canonical identification Z(G(F),Ge(OF)) = Z(Go(K), Gs, (Ok)) of cen-
ters of parahoric Hecke algebras compatible with the Bernstein isomorphism of [Hail4, Thm. 11.10.1],
where the Haar measures are normalized to give Ge(Op) = Gg, (O ) volume 1.

Proof. In view of G¢(Op) = Gs,(Ok), the equality of the centers is clear, and it remains to show
the compatibility with the Bernstein isomorphism. This follows from the equality

Ay = M(F)/M(F)1 = Mo(K)/Mo(K)1 =: Ay,

combined with the definition of Bernstein isomorphisms given by the integration formula (e.g. [Hail4,
11.11]) and the isomorphism of finite relative Weyl groups Wy(G, 4, F) = Wy(Go, Ao, K) consistent
with Lemma 4.3. U

4.3. Group schemes over A}DK . Let Go be a reductive K-group which splits over a tamely
ramified extension, and let G := Resg/p(Go). Fix a chain of subgroups Ag C Sy C Ty C My in Gy
as in §4.2 with corresponding chain of subgroups A C S C T'C M in G. Further, fix a parabolic
K-subgroup Py containing My in Gy, and let P := Resg,p(F) in G.

In [PZ13, §3], a reductive Of[u*t]-group scheme G, admitting a maximal torus, and with con-
nected fibers is constructed. As observed in [Lev16, §3.1; Prop. 3.3], the group scheme G, is defined
over Ok, [u*] in the following sense.

Proposition 4.10. i) There exists a reductive O, [uT]-group G, together with a tuple of smooth
closed O, [ut]-subgroups (Ay, Sy, Lo, My, Py) and an isomorphism of K-groups

(QO7A05 ﬁOa z0a MOa BO) ®OK0 [ui],un K ~ (G07 AOa SO) T07 MOa PO)a
where A is a mazimal O, [uT]-split torus, S, a mazimal Ox, [uT]-split torus defined over Oy, [u*],
T its centralizer, M the centralizer of Ay (a minimal Levi), and Py a parabolic Ok, [u™]-subgroup
with Levi M.

it) The base change Go, =) i quasi-split. In particular, Ty is a mazimal torus.
0
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Proof. Let us recall some elements of the construction as needed later. Let K /K be a tamely
ramified Galois extension which splits Gy. After possibly enlarging K, we may assume:

1) the group Gy is quasi-split over the maximal unramified subextension Ky of K /F;
2) there is a uniformizer @ € K and an integer € > 1 such that w = @¢, and therefore
K & Ko[v]/Q(v?) via @ i v
3) K, contains a primitive é-th root of unity, cf. [PZ13, §3.1].
There is a cocartesian diagram4 of Ok,-algebras

O[(O [U] V=W K_
(4.5) U= vé]\ T
Orcolu] U= w

One can prove that O [v]/Ok,[u] is a ramified Galois cover with group isomorphic to r =

Gal(K/K); for this we use that Ky contains a primitive é-th root of unity. As in [PZ13, §3],
the O, [ut]-group scheme G, is constructed in [Lev16, §3.1] by descending a suitable choice of
Chevalley model for G, z along the étale ring extension Og, [vE]/Oxc, [ut], cf. [PZ13, §3] and
[Lev16, §3.1] for details. See also Example 4.14. O

Let us denote

(4.6) (Gh, Ab, S5, T4, M5, PY)

def

= (QO;AO»&O;IO»MO;EO) ®OKU[ui] kO((u))

Then G} is a reductive group over Kp := ko((u)), and (A}, S5, Tg, M§, P}) are analogous to the
corresponding groups above, cf. the discussion in [PZ13, 4.1.2; 4.1.3], [Lev16, 3.3]. Further, we
obtain a canonical identification of the apartments

(47) JZ{(G,A,F) = M(GWAO?K) = JZ{(QOvAmK((u)))v

for both k = Ky, ko, cf. [PZ13, 4.1.3], [Lev16, Prop. 3.3.1 ff.]. In particular we have &7 (Gy, Ao, Ko) =
o (G2, A3, KJ) for k = ko. Thus, we may think about G} as an equal characteristic analogue of Gy
of the same Dynkin type.

We now introduce the equal characteristic analogue G” of G by restriction of scalars along the
unramified extension Ky/F: we define the sextuple of k((u))-groups

(4.8) (G747, 8,1, M”, P?),
where G* = ResKg/F.,(G'a) is a reductive group over F” := k((u)), and likewise (S°,T°, M”, P") are
obtained from (S§, T, M§, Pg) by restriction of scalars along the unramified extension K§/F”. Here
A’ is the maximal F-split subtorus inside Res K2 /Fb (A3).

Combining (4.7) with Proposition 4.6, we obtain a canonical identification of the apartments
(4.9) (G, A F) = o (G", A" F").

We shall use the following two results in §6 below.

Lemma 4.11. There is an identification of Iwahori-Weyl groups W(G, A, F) = W(G®, A°, F")
which is compatible with the action on the apartments under the identification (4.9).

Proof. Over F we obtain a o-equivariant isomorphism according to [PZ13, 4.1.2], [Lev16, 3.3.0.1]
compatible with the action on the apartments. The general case follows by taking o-fixed points
from [Ril6a, §1.2] (cf. also [PZ13, 4.1.3], [Lev16, Prop. 3.3.1 ii)]). O

Now let G = G¢ be a parahoric Op-group scheme of G whose facet f is contained in & (G, A, F).
Then under (4.9) we obtain a unique facet f* C &7(G®, A, F*), and hence a parahoric O p»-group
scheme G’ := Gg» of GP.

4This differs from [Lev16, §3.1] in that Levin uses instead of Ko the maximal unramified subxtension of K/K;
this seems to be a mistake, e.g., the diagram corresponding to (4.5) is not cocartesian.
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Lemma 4.12. There is a canonical identification Z(G(F),G(OF)) = Z(G*(F*),G*(O)) of centers
of parahoric Hecke algebras, where the Haar measures are normalized to give G(Op) (resp. G (O ))
volume 1.

Proof. Applying Lemma 4.11 for M, we obtain an identification of abelian groups
(4.10) Ay = M(F)/M(F), = M°(F*)/M°(F"); =: Ay,
where M(F); (resp. M”(F”);) is the unique parahoric group scheme of M(F) (resp. M’(F”)). The
result follows via the Bernstein isomorphisms [Hail4, Thm. 11.10.1]
Z(Q(F*),G"(0)) = QulAp] AT = QA" OAT = Z(G(F), G(O),

noting that the finite relative Weyl groups of (G, A, F) and (G®, A?, F”) are isomorphic compatible
with the action on Apr = Ay ]

Theorem 4.13. Fiz (G, Ay, So,Ly) and Ge with £ C o/ (G, A, F) as above. There exists a tuple of
smooth affine O, [u]-group schemes (G, Ay, Sg, To) with geometrically connected fibers satisfying
the following properties:

i) The restriction (Gy, Ay, So, To)loy, [ut] i (Gos Ags So, Ty) as Ok, [uT]-groups.

ii) The base change of G, under Ok, [u] — Ok, u > w is the parahoric group G = G.

i11) The base change of G, under Ok, [u] — &[u], uw = u for both k = Ko, ko is the parahoric group
scheme for Gy ,,(y) attached to f under (4.7).

i) The group Ay is a split Og,lul-torus, S a Ok,[u]-torus which splits over Oplu] and T is a
smooth affine O, [u]-group scheme such that T, ® k[[u] is the neutral component of the Ift Néron
model Oro,,i( )’ for k = Ko, kg.

The group G is uniquely determined (up to unique isomorphism) by properties i) and i) for
k = Ky, and so is the tuple (Ay, Sy, T) using iv).

Proof. This is [Lev16, Thm. 3.3.3, Prop. 3.3.4], cf. also [PZ13, Thm. 4.1], esp. 4.2.1, for the unique-
ness assertion. O

u

Example 4.14. Suppose Gy = Ty is a tamely ramified torus over K. Let Ty be the split torus
over O, such that Ty is given by a 1-cocycle

[r] € H'(T, Aut(Ty ®0,, K)).

Explicitly,
AT
Ty = (RESR/K(TH R0k, K)) .

We let Ty Qo Oo[v] be the split torus over Oglv] := Og, [v] (cf. (4.5)), which is endowed with

Galois actions 7(v) ® v for v € ' which we view as Galois descent data used to give a torus over
Or,[u]. Explicitly, we define Ty/Of,[u*] and T,/Ox,[u] by

~ r
IO = (Reséo[’ui]/OKO [ui](TH ®OK0 OO [,U:I:])) )

and T, as the (fiberwise) neutral component of

N r
(Reséo 010y fu) (TH @05, Oo [UD) .

Write Gfil(K /K) = (y) x (o) where 7 generates the inertia subgroup and o is a lift of a generator
of Gal(K"/K) for K" /K the maximal unramified subextension of K /K. Then T is realized as
a Gal(K/Kj)-descent of

(Reso e (0510, [ut] (T @0, O, [v¥])) "

This shows that the formation of T, commutes with base change Ay — Aj , where Ey/Kj is any
unramified extension. Similar remarks apply to T,.
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4.4. Affine Grassmannians and Local Models. We continue with the notation as in §4.1. Recall
that we fix a uniformizer w € K with Eisenstein polynomial Q € Og,[u]. Let (Go, Ao, So,Tp) be
tamely ramified over K, and fix a spreading (G, 4y, Sy, Ty) defined over O, [u*] as in Proposition
4.10. Let (G, A, S,T) be constructed from (Gy, Ag, So, Tp) by Weil restriction of scalars along K/F
as in §4.2. Choose a facet f € & (G, A, F), and let G := Gr be the corresponding parahoric O g-group
scheme for G. Associated with these data, we have the tuple (G, Ag, Sg, T,) of smooth affine group
schemes over X := Spec(Ok,[u]) constructed in Theorem 4.13. Since O, /O is finite étale, we
can view X as a smooth curve over Op. Let D C X be the closed subscheme defined by {Q = 0}
viewed as a relative effective Cartier divisor over Op. We are interested in local models for the group
G = Resg/p(Go) with level structure given by the parahoric Op-group G = Gr = Reso,. /0, (9%, ),
cf. Proposition 4.7.

4.4.1. Affine Grassmannians for Weil-restricted groups. The Beilinson-Drinfeld Grassmannian
(4.11) Grg = Gr(x,g,,p)
from (3.1) specializes to [Lev16, Def. 4.1.1] for Ky = F. By Lemma 3.7, we have

Grg = Gr(x/05,6,,0) = Resoy, /0x (GI(x/0x,.6,,D))-

Hence, our definition of Grg agrees with [Lev16, Prop. 4.1.8 {f.].

We think about (4.11) as being the Beilinson-Drinfeld Grassmannian associated with the para-
horic Op-group scheme G. Explicitly, Grg is the functor on the category of Op-algebras R given by
the isomorphism classes of tuples (F, «) with

F a G,-torsor on Spec((R ®o, Ok,)[u]);

a

where FO denotes the trivial torsor. If Q = u — @, i.e., K = F, then Grg is the BD-Grassmannian
defined in [PZ13, 6.2.3; (6.11)].

For an Op-algebra R, we have the regular functions on the completion of X along Dg, namely

the O, [u]-algebra R[D] = limy(R®e, Ok, )[u]/(QY), and likewise R(D)) = R[Q]['/¢]. With the
notation of §3.1.1, we have the loop group

LG(R) = LpG,(R) = G,(R(D)),

(4.12)

a: F a trivialization,

lSpec((R0p On)u/al) =T 1Spec((RS0p Ong)(ul[1/a])

and the positive loop group
L*G(R) ¥ L}Gy(R) = Go(R[D]).

By Lemma 3.4, there is a natural isomorphism LG/LTG ~ Grg, and thus a transitive action mor-
phism

(4.13) LG x o, Grg — Grg.

The following proposition is [Lev16, Prop. 4.1.6, 4.1.8].
Proposition 4.15. i) The generic fiber of (4.13) is isomorphic to
(4.14) L.G xg Grg — Grg,

where L.G(R) = G(R(2)) = G(K®FrR)((2)) is the loop group for G = Resk,p(G) formed using the
parameter z :== u—w € Klu|, and Grg is as in Ezample 3.1 1) the affine Grassmannian for the group
G ®p F[z], i.e., the étale-sheaf associated with the functor on F-algebras R — G(R(2))/G(R[z])-

it) The special fiber of (4.13) is canonically isomorphic to
(4.15) LG’ Xy Flgs — Flgs,

where LG’ (R) = G*(R((w) is the twisted affine loop group for the parahoric kp[u]-group scheme
G’ = Gp of G® as in (4.9), and Flgs is the twisted affine flag variety for G’ /kr[u] defined in [PROS],
i.e., the étale-sheaf associated with the functor on kp-algebras R v+ G°(R((u))/G° (R[u]).
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Proof. Let LB Ok, G,, denote the positive loop group attached to D and the curve A%QKO, and let
Lp /O, G, be the corresponding loop group. We then have

Lg = LDQO = ReS@KO/oF (LD/OKOQO)’

and likewise for the positive loop group. We may use Theorem 4.13 to compute the generic and
special fibers of the right hand side. For example, if G := G, ® ko[u]], then the special fiber of LG
is

(4.16) Resko/k(ng) = L(Resko[[u]]/kﬂu]] (Qg)) = Lgb,

and likewise for the positive loop group. This together with Lemma 3.7 reduces us to the case
that Ko = F. Then part ii) is Corollary 3.5 i). For i), note the natural maps Resg/p(L.Go) —
L.Resk;r(Go) and Resy/rp(Grg,) — GrResy,r(G,) are isomorphisms, cf. [PRO8, (1.2)] and [Lev,
§2.6]. Note that Q(z + w) € zK|[z]. Hence by induction on n > 1, the map u — z + w sets up an
isomorphism Flu]/(Q") = K|z]/(z"), and hence F[u] = K[z]. Similarly, we remark that for any
F-algebra R u+— z + w gives an isomorphism R[u] = (R ®F K)[z]. Let Gxpep = Y90 ®0ru) K[Z],

and denote by GrgKM the twisted affine Grassmannian for G cf. Example 3.1 i). In view of

K[z
Corollary 3.5, or the above remark, the generic fiber of (4.13) is canonically isomorphic to the action

morphism

) — ResK/F(Grg

ReSK/F(LgK[[z]]) X ReSK/F(GI‘g le[z}l)'

ZK[=]
Hence, as in [PZ13, §6.2.6] and [Lev16, Prop. 4.1.6] it suffices to give an isomorphism of K [z]-groups
Gk = Go Ok K[z]. But as u is invertible in K[z], we have Gxpp = Go ®opfut] K[z]]. With
the notation of (4.5), the group scheme G|, is constructed by descent from Oz, [vE] where it is a
constant Chevalley group scheme. As in [PZ13, (6.9)], it is enough to give a commutative diagram
of T-covers

Spec(O g, [vF] @0, pu) K[2]) = Spec(K[z])
(4.17)
pry T

Spec(K[z])

which matches the I-action on O 7o [vE]/Or[uF] via (4.5) with the T-action on the coefficients in
K[z] (see below for why this is enough). As in [PZ13, (6.9)], the isomorphism is given on rings by
v w-(l+2)and z — b- 2z with

b= —w'(1+z) v € K[=]*.
z

The map 7 is the K-algebra morphism given by z — b - z. (To see that the horizontal morphism is
an isomorphism, observe that K[z] = K[bz], and let f(z) € K[z] be such that f(bz) = (14 2)7%;
then v ® f(z) — @ and the morphism is surjective. One sees it is injective using an Op[u]-basis
for Og [v] of the form a;v’ for a; € O 7, to write any element in the source uniquely in the form
Do a; v’ @ f;; for fij € K[z]. To see that diagram (4.17) suffices, note that the right oblique arrow
is isomorphic via K[z] = K[z], z — b- 2, to the arrow Spec(K[z]) — Spec(K[z]) induced by the
inclusion K[z] < K[z].) O

Recall from [PZ13, Cor 11.7] that there exists a closed immersion of X-groups G, < Gl, x such
that the quotient Gl,, x /G, is quasi-affine. Thus, the Op-space Grg = Gry X,g,.D) 18 representable
by a separated Op-ind-scheme of ind-finite type, cf. Corollary 3.11. We need the following stronger
statement.

Theorem 4.16. The BD-Grassmannian Grg = colim; Grg; is representable by an ind-projective
Op-ind-scheme, and for each i, the projective Op-scheme Grg; can be choosen to be LtG-stable
compatible with the transition maps.
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Proof. By Lemma 3.7 we reduce to the case that Ky = F. Then the ind-projectivity is proven in
[Lev16, Thm. 4.2.11, Prop. 5.1.5]. If G is unramified, the proof is considerably simpler, cf. [Lev16,
Prop. 2.2.8]. The proof relies on the existence and properties of specialization morphisms

sp: Grr(F) — Gry(k),

where Gry C Grg is the part induced from the maximal torus, cf. Lemma 4.17 below. Levin
constructs this map “by hand” in [Lev16, Prop. 4.2.8]. We will follow a more conceptual approach
which avoids constructing sp ahead of time and the calculations that entails. Our outline is the
following;:
(a) Prove Gry — Spec(Op) is ind-finite, using the method of [Ril6b, Lem. 2.20], cf. §4.4.2.
(b) Deduce existence of the specialization maps for 7 via the valuative criterion of properness,
and prove the required compatibility with Kottwitz homomorphisms, cf. §4.4.3.
(¢) Use (b) to show that each local model has non-empty special fiber and deduce by [Ril6b,
Lem. 2.22] that each local model is proper, cf. §4.4.5.
(d) Conclude that Grg — Spec(Op) is ind-proper, cf. §4.4.6.

In view of Lemma 3.8 and Corollary 3.11, the ind-properness of Grg implies the theorem. The steps
(a)-(d) are explicated in the next several subsections, and with them the proof is concluded. (]

4.4.2. Gry is ind-finite. Recall that we already reduced to the case Ky = F' so that K/F is totally
ramified. Without loss of generality, we further assume that F = F, Op = Oj. Here we use that
the formation of the affine Grassmannian (4.11) and the group scheme T from Theorem 4.13 is
compatible with unramified base change, cf. also Example 4.14. We show that Grr := Gr(x 1,,p)
is ind-proper over Op where X = A})F and D = {Q = 0}. It is then ind-finite, since this holds
fiberwise by Proposition 4.15. We proceed in two steps as follows.

Step 1): First assume that T' = Resg,p(Tp) where Ty is an induced K-torus which splits over
a tamely ramified extension. Then T is isomorphic to a finite product of K-tori of the form
T := Resk, /x(Gy,) where K /K is a tamely ramified finite field extension. Note that K;/K is
totally ramified by our assumption F' = F. Accordingly, the A}gF-group scheme 7 is isomorphic
to a finite product of AéF—group schemes of the form

T, :=Reso,[v)/0r ] (Gm),

where v!51 K]l = 4. After fixing a uniformizer w; € K with ()55 = @ (possible because F =
F), this can be verified using Example 4.14 (use that, in this case, Ty 20, [v] & ((Gm’@0 M)[K“K] with
Gal(K;/K) acting via the permutation of the factors). Likewise, the affine Grassmannian Grr is a
finite Op-product of the affine Grassmannians Gr(x 7, p), where X = A}QF and D = {Q(u) = 0}.
Hence, we reduce to the case where 7y = T, i.e., T'= Resg, /x (G,,). By Corollary 3.6, there is an
equality of ind-schemes

Grx,r,.p0) = Gr(x'G,..0">
where X' = Ap, = Spec(Op[v]) and D' = {Q(uE+ K]y = 0}. We reduce to the case X = X',
Ty =Gy and D = D". Then Gr(xg,,,p) is ind-projective (hence ind-proper) by Lemma 3.8.
Step 2): Now let T' = Resg/p(To) where Tp is an K-torus which splits over a tamely ramified
extension. As in [Ko97, §7], we choose a surjection of K-tori T} — Tj where T} is induced, and
where the kernel T5 := ker(T} — T') is a K-torus. Note that T} can be chosen to split over a tamely
ramified extension (and so does Ty as well). The proof of [KP18, Prop. 2.2.2] adapts to our set-up,
and the map T} — T} extends to a map of X-groups 7; — 7T with kernel 7, an X-group scheme
extending To. (Instead of using [KP18], one can also deduce this making use of the prescription
given in Example 4.14.) We claim that the resulting map of Op-ind-schemes

(418) GI‘T1 = Gr(X7117D) — Gr(X,L,,D) = GI‘T

is surjective on the underlying topological spaces. Clearly, this can be tested on the fibers of
(4.18) over Op which are determined by Proposition 4.15. The geometric generic fiber of (4.18) is
isomorphic (on the underlying topological spaces) to the map of discrete groups X, (Resg/p(T1)) —
X«(Resg/p(Tp)) which is surjective because 71 — Tp is surjective and its kernel T3 is a torus
(i.e.,connected). The geometric special fiber of (4.18) is under the Kottwitz map isomorphic to
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X*(le)jk((u)) — X*(Tob)jk((u)) which is induced by T} := T, ® k(u) — T, @ k(u) =: Tj. This
map is isomorphic to X.(T1)r, — X«(To)1, which follows by applying the Kottwitz map to the
identification (4.10). As in [Ko097, §7 (7.2.5)] the desired surjectivity now follows from T, being a
K-torus. By Step 1), the Op-scheme Gr; is ind-proper and maps surjectively onto the separated
ind-scheme Grs which is therefore ind-proper as well. This concludes §4.4.2.

4.4.3. The specialization map. Once Grg is known to be ind-proper, by the valuative criterion for
properness there exists a specialization map
(4.19) sp: Grg(F) = Grg(F) — Grg(k) = Fgs (k).

In case G = Tp is a maximal torus, and hence G, = T, is as in Theorem 4.13 iv), we therefore know
the existence of the specialization map. It is made explicit in [PZ13, Lem. 9.8], [Lev16, Prop. 4.2.8].
Recall the following result for later use (which compared to loc. cit. is proved in a more conceptual
way here).

Lemma 4.17. Let I'r denote the Galois group of F', and likewise I'y, and I'y,. There is a commu-
tative diagram of abelian groups

CrResye, p (1) (F) —— X (Rese/p(Tp))
(4.20) sp | or|
./_'27-|7 (];7) —_s X* (RGSK/F(T()))[F,

which is Galois equivariant for the I p-action on the top covering the I'y-action on the bottom.

Proof. The top arrow is the natural isomorphism, and the map pr is the canonical projection to the
coinvariants. Let us construct the bottom arrow. Note that X, (Resg,r(T0)) = Indll:i (X (Tp)) is
an induced Galois module by the proof of Lemma 4.1. Shapiro’s lemma induces a I'g-equivariant
isomorphism

(4.21) Indp! (Xo(To)r,) — Xu(Resge/p(To)) 1

(For any Z[I'k]-module M, we have (M ®zr . Z[L'r]) 1, = M1, ®zr,,) Z[I'x] canonically.) Further,
the Kottwitz map (cf. [Ko97, §7]) applied to (4.10) in the case of To(K) (resp. T3 (k(w)) induces
a T'y,-equivariant isomorphism X, (75) I = X«(To) 1, - Applying the induction functor we deduce
a I'p-equivariant isomorphism

(4.22) Indp (X (T9)r,,) — Indpt (Xu(To)rc)-

0
Finally, we use Flr» = Resy,/,(F7) (cf. (4.16)) together with the isomorphism induced by the
Kottwitz map

Flys (k) = T3 (k(w)/ Ty (K[u]) = X.(T5)
which is I'y,-equivariant as well. This induces the I'y-equivariant isomorphism

(4.23) Fgs (k) = Indpt (Xo(T9)r,,, ).

)
Ko

The bottom arrow in (4.20) is defined to be the composition of (4.21), (4.22) and (4.23).

It remains to prove the commutativity which is a reformulation of [Lev16, Prop. 4.2.8]: the
composition pr with the inverse of (4.21) is the map given by u' — 5\”/ in the notation of loc. cit..
We show the commutativity as follows. The diagram is comaptible with unramified extensions, and
we reduce to the case Ky = F. Changing notation, we may now assume that F' = F’, k = k. The
diagram (4.20) is functorial in the tamely ramified K-torus Tp. Arguing as in §4.4.2 Step 2), we
choose an induced tamely ramified K-torus 77 — T, with kernel being a torus. Each item in the
diagram for 77 maps surjectively onto each item in the diagram for Ty, and we reduce to the case
where Ty = T is an induced tamely ramified K-torus. Arguing as in §4.4.2 Step 1), the torus
Ty is a product of K-tori of the form Resg, /x(Gn,) with K;/K being totally (tamely) ramified.
Accordingly, each item in the diagram (4.20) splits as a product compatible with the maps, and we
reduce to the case where Ty = Resg, /x (G,,). Replacing the pair (X, D) with the pair (X', D’) as in
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§4.4.2 Step 1), we reduce further to the case where Ty = G,,. In this case, we have for the (global)
loop group

LGn(0f) = (LGw)(x,6,,,0)(OF) = Op(Q) ™,

where @) € Oplu] is the minimal polynomial of @ € K over F. Writing Q = (u —aq) - ... (u — aq)
for d = [K : F] and pairwise distinct elements ay, . ..,aq € O, we compute for the generic fiber
(LGm)(x.cnpy(F) = [ Flu—a)™.
i=1,..., n

Fori =1,...,d, let v; be the (u — a;)-adic valuation of F((u — a;)). The specialization map (4.19)
is explicitly given by the map

I Fu—a)*/Flu—a]* = k(u)*/k[u]*, (z1,...,7a) u iz vile)

where we use that Q = ulf*F] mod w. One checks that (4.20) commutes for Ty = G,, which
finishes the proof of the lemma. O

4.4.4. Local Models for Weil-restricted groups. We now recall the definition of local models for
the pair (G,G) = (Resk,r(Go), Reso, /0, (Gs,)). Let {u} be a G(F)-conjugacy class of geometric
cocharacters with reflex field E/F. For a representative p € {u}, the associated Schubert variety is
the reduced LT G p-orbit closure

(4.24) Gré{#} L LIGr 2t e C Grg p-

The F-scheme Gré{”} is defined over the reflex field E = E({u}), i.e., the field of definition of {u}
which is a finite extension of F, and is a (geometrically irreducible) projective E-variety.

The following definition is [PZ13, Def 7.1] if K/F is tamely ramified, and [Lev16, Def 4.2.1] in
general, cf. [Lev16, Prop. 4.2.4]).

Definition 4.18. The local model My, = M(Gy, G, {1}, @) is the scheme theoretic closure of the
locally closed subscheme

Gl‘é{u} — Grg Q@ F — GI‘g Rop OE,
where Gré{“} is as in (4.24).

By definition, the local model M,y is a closed flat LG ,-invariant subscheme of (Grg ®o,
OF)rea Which is uniquely determined up to unique isomorphism by the data (G, Gs, {u}, @). Its
generic fiber My, @ B = Gré{g} is a (geometrically irreducible) variety, and the special fiber
My, @ kg is equidimensional, cf. [GW10, Thm. 14.114]. By Proposition 4.15, the map Grg —
Spec(Op) is fiberwise ind-proper, and hence the map My,; — Spec(Og) is fiberwise proper. Note
that there is a closed embedding into the flag variety

(4.25) M{M} ® kg — Grg ®o, kg = ]:eQb’;cE,
which identifies the reduced locus (M, ® kE)rea with a union of Schubert varieties in Flgo joy-

Remark 4.19. The local model My, should up to unique isomorphism only depend on the data
(G,G,{u}). The uniqueness of My, is a separate question, and not of importance for the present
article. We refer the reader to [PZ13, Rmk 3.2] for remarks on the uniqueness of G, and to [Lev16,
Rmk 4.2.5] for remarks on the independence of My, on the choice of the uniformizer w € K. In
the recent preprint [HPR, Thm. 2.7], it is shown the ind-scheme Grg for K = F depends up to
equivariant isomorphism only on the data (G,G). So My,; for K = F depends up to equivariant
isomorphism only on the data (G, G, {u}). Note that [HPR, Conj 2.12] uniquely characterizes My}
for K = F in the case where {u} is minuscule.
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4.4.5. Each local model is proper. For every conjugacy class {u}, we need to show that the local
model My, is proper over O where Ef = E({1}) is the reflex field. In view of [Ril6b, Lem. 2.20] and
the discussion after Definition 4.18, it remains to show that the special fiber of My, is non-empty.
The inclusion 7y C G, induces a map of Op-ind-schemes

(4.26) GTT = GT(XIU,D) — Gr(X,QO,D) = Grg.

In the notation of Proposition 4.15, the geometric generic fiber My, (F') contains the element
JURS GI‘T(F) = GI‘T(F)7

for any representative p € X, (T) of {u}. As Gry is ind-finite (hence ind-proper) by §4.4.2, the
element u € Gry(F) uniquely extends to a point fi € Gry(Of) by the valuative criterion for
properness. Composed with (4.26), this defines a point (still denoted) fi € Grg(OF). Since My, C
Grg,0, is a closed subscheme, we have

(4.27) n e M{H}(F) N Grg(Op) = M{M}(Op),

and its special fiber fi := fiz € My, (k) is non-empty. This concludes §4.4.5.

4.4.6. Conclusion of Proof of Theorem 4.16. We need to show that Grg — Spec(Op) is ind-proper.
It suffices to prove that the map (Grg ® Op)rea — Spec(Of) is ind-proper. In view of §4.4.5, we
have to show that the closed immersion

(4.28) U(M{H},Oﬁ)red C (Grg ® Op)red

{u}
is an equality. Here {u} ranges over all G(F)-conjugacy classes of geometric cocharacters. As both
ind-schemes in (4.28) are reduced, one can check the equality on the underlying topological spaces.
As in [Ril6b, §2.5] (resp. [Lev16, Thm. 4.2.11]), this follows from Lemma 4.17 combined with (4.25)
and (4.27). This concludes §4.4.6, and hence the proof of Theorem 4.16.

5. AcCTIONS OF G,, ON WEIL-RESTRICTED AFFINE (GRASSMANNIANS

5.1. Geometry of G,,-actions on affine Grassmannians. Fix the data and notation as in §4.4.
In particular, we denote the group schemes over X = A%,)KO by (GysAg, Sos To)-

5.1.1. Main geometric result. Let x: G,k — Ao C G be a cocharacter which acts on Gy by con-
jugation. Asin (3.17), the centralizer is a Levi subgroup My C Gy, and the attractor (resp. repeller)
subgroup Py (resp. P;) is a parabolic subgroup with P;f N Py = My. Further, we have semidirect
product decompositions Poi = My NSE defined over K.

Via the fixed isomorphism G, . ~ G compatible with A ;- ~ Ao, we may view x as a cocharacter
of Ay gr- As X is connected and A a split torus, x extends uniquely to a cocharacter also denoted

(51) X: Gm,X — Ao C g0~

Hence, the cocharacter x acts by conjugation on G, via the rule G,, x xx G, = G,, (A, 9) —
X(A) - g - x(A\)~"!. Using the dynamic method promulgated in [CGP10], the functors (2.1) define
X-subgroup schemes of G, given by the fixed points M, = Qg’x, and the attractor Pj = G/ X
(resp. the repeller Py = G X). Note that M, is by definition the schematic centralizer of x in G,.

Lemma 5.1. i) The X-group schemes M, and £§ are smooth closed subgroup schemes of G, with
geometrically connected fibers.

it) The centralizer M, is a parahoric X -group scheme for My in the sense of Theorem 4.15.

ii1) There is a semidirect product decomposition as X -group schemes B(jf =M, x Moi where M? 18
a smooth affine group scheme with geometrically connected fibers.

w) The fized isomorphism G ~ Go induces isomorphisms of K[z]|-groups My g ~ Mo ®k
K[z], and Boi,K[[z]] ~ P @ K[2] compatible with the semidirect product decomposition in iii).

Proof. The method of [HaRi, Lem. 5.15] extends to give i), ii) and iii) of the lemma. Part iv) is
immediate from the construction of y, and the proof of Proposition 4.15 1). (]
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By (2.2), there are natural maps of X-group schemes

(5.2) M, « Py — G,

The maps (5.2) induce, by functoriality of BD-Grassmannians, maps of Og-spaces

(5.3) Grypm + Grpx — Grg,

where Grg := Gr(X7g07D) (resp. Grpg := Gr(x,m,.p); resp. Grps = GI‘(X’B[:)(:’D)) by notational

convention. In light of [PZ13, Cor 11.7] and Corollary 3.11 i), the functors in (5.3) are representable
by separated Op-ind-schemes of ind-finite type. Note that by Theorem 4.16 i) and Lemma 5.1
ii), the Op-ind-schemes Grg and Grag are even ind-projective. The Op-ind-scheme Grp is never
ind-projective besides the trivial cases.

By functoriality of the loop group, we obtain via the composition

L+
(5.4) Gmor C LhGmx 25 LbA, C LG,
a Gy, 0p-action on Grg — Spec(Op).
Lemma 5.2. The G,,-action on Grg is Zariski locally linearizable.

Proof. By [PZ13, Cor 11.7] there exists an monomorphism of X-groups G, < Gl,, x such that the
fppf-quotient Gl,, x /G, is quasi-affine. Hence, the induced monomorphism ¢: Grg < Gray, 5 is
representable by a quasi-compact immersion (cf. Proposition 3.10) which is even a closed immersion
because Grg is ind-proper, cf. Theorem 4.16. The map ¢ is G,,-equivariant for the cocharacter
Cmx > G, — Gl x, and we reduce to the case G, = Gl, x. By [Col4, Prop. 6.2.11] (use
Pic(X) = 0), the cocharacter x: G,, x — Gl, x is conjugate to a cocharacter with values in the
standard diagonal torus, and hence defined over Op. The lemma follows from the proof of Lemma
3.16. O

In light of Theorem 4.16 and Theorem 2.1, we obtain maps of separated O pg-ind-schemes
(5.5) (Grg)o — (GrI‘g)i — Gl“g.
The following theorem compares (5.3) with (5.5).

Theorem 5.3. The maps induce a commutative diagram of Op-ind-schemes

Gry «——— Grpr —— Grg

(5.6) 0| | id |

(Grg)? «—— (Grg)* — Grg,

where the maps 10 and & satisfy the following properties:

i) In the generic fiber, the diagram is isomorphic to (5.7) below, and the maps (% and LiE are
isomorphisms.

it) In the special fiber, the diagram is isomorphic to (5.8) below, and the maps Lg and Lf are closed
immersions which are open immersions on the underlying reduced loci.

i) The maps 1° and v* are closed immersions which are open immersions on the underlying reduced
loci.

The diagram is constructed as follows. The fppf-quotient G /M, is quasi-affine by [Col4,
Thm. 2.4.1], which implies that the map Gry; — Grg as in the proof of Lemma 5.2 is rep-
resentable by a closed immersion. Since the G,,-action on Grp, is trivial, the map factors as
Grag — (Grg)? — Grg, and we obtain the closed immersion ¢°.

The map ¢* is given via a Rees construction in terms of the moduli description (4.12), cf. §3.3.1.
Alternatively, if we choose a monomorphism of X-groups G, < Gl, x such that Gl, x /G, is quasi-
affine (cf. [PZ13, Cor 11.7]), then the same argument as in (3.22) applies, and we conclude that ¢+
is representable by a quasi-compact immersion. We do not repeat the argument here, but instead
refer the reader to §3.3.1 for details. This constructs the commutative diagram (5.6).
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Proof of Theorem 5.3. Part i). In the generic fiber, (5.6) is by (4.14) and Lemma 5.1 iv), the
commutative diagram of F-ind-schemes

Gry «— Grpx —— Grg

(5.7) L%J L}él idl
(Grg)? —— (Grg)* — Grg,

where G = Resg/r(Go) (resp. M = Resg,p(Mp); resp. pt = ResK/F(POi)). The G,,-action on
the diagram is induced by the L} -construction applied to the cocharacter

) Res;(/_p>(x)

X: G, r C ReSK/F(Gm,K RGSK/F(A()) C ReSK/F(Go) =G,

combined with the inclusion G, r C Lij r. We claim that the conjugation action of ¥ on G
gives the group of fixed points M = G%X and the attractor (resp. repeller) group PT = GX (resp.
P~ = G—X). Indeed, the canonical maps of F-subgroups of G,

ReSK/F(Mo) — GO’X
ReSK/F(POi) — Gi»Z
are isomorphisms. By descent, it is enough to prove this after passing to F. But G ®p F ~

[l 7 Go @K,y F, where the G,-action induced by ¥ is the diagonal action on the product.
Lemma 2.2 implies the claim. Part i) follows from [HaRi, Prop. 3.4] applied to the pair (G, x).

Part ii). In the special fiber, (5.6) is the commutative diagram of k-ind-schemes

]:‘e/\/[b <;]:ﬁpbi E— ]:égb
(5.8) Lgl Lfl idl
(]:fgb)o A (]:ggb)i — ffgb.

The G,,-action on the diagram is given as follows. Base changing (5.1) along Og,[u] — ko[u] and
taking restriction of scalars along ko[u]/k[u], we obtain the cocharacter

Xb: Gm,k[[u]] - Resko[[u]]/k[[u]] (Gm,ko[[u]]) - gbv

which factors through A” C G”, the natural k[u]-extension of the maximal k((u))-split torus A C G”
in (4.8). Then G, i acts on the diagram via x” after applying the L*-construction combined with the
inclusion G, 1 C L+(Gm,k[[u]]. Since taking fixed points (resp. attractors; resp. repellers) commutes
with base change [Ril9, (1.3)] and is compatible with restriction of scalars along étale extensions,
we have M? = (G*)%X" and P+ = (G*)£X". Part ii) follows from [HaRi, Prop. 4.7] applied to the
pair (G, x").

Part iii). This follows as in [HaRi, Thm. 5.5, 5.17] using Proposition 5.5 below, and we sketch the
argument for convenience. With the notation of Proposition 5.5, the map (° (resp. Li) factors as a
set-theoretically bijective quasi-compact immersion

19¢: Grayg — (Grg)®®  (resp. 15¢: Grpz — (Grg)®e),

where (Grg)%¢ (resp. (Grg)*) is an open and closed Op-sub-ind-scheme of (Grg)® (resp. (Grg)¥).
But any such map ¢%¢ (resp. t¥¢) is a closed immersion which is an isomorphism on the underlying
reduced loci, cf. [HaRi, Lem. 5.7]. O

We record the following properties.

Lemma 5.4. i) The map (Grg)* — Grg is schematic.
i) The map (Grg)T — (Grg)? is ind-affine with geometrically connected fibers, and induces an
isomorphism on the group of connected components mo((Grg)*) =~ mo((Grg)?).

Proof. These are general properties of attractors in ind-schemes endowed with étale locally lineariz-
able G,,-actions, cf. Lemma 5.2, and Theorem 2.1 ii) or [HaRi, Thm. 2.1 ii)]. O
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The following proposition decomposes the image of the maps :° and (* into connected compo-
nents, and will be important in what follows.

Proposition 5.5. Let either N = NT or N = N—. There exists an open and closed Op-ind-
subscheme (Grg)?¢ (resp. (Grg)™¢) of (Grg)° (resp. (Grg)™) together with a disjoint decomposi-
tion, depending up to sign on the choice of N, as Op-ind-schemes

(Grg)” = [ (Grg)%, (resp. (Grg)** = [] (Grg)i),

mEeZ meZ

which has the following properties.
i) The map °: Grpq — (Grg)? (resp. *: Grps — (Grg)*) factors through (Grg)®c (resp.
(Grg)*°) inducing a closed immersion 1%¢: Gryg — (Grg)% (resp. 15¢: Grpr — (Grg)™¢) which
s an isomorphism on reduced loci.
ii) The complement (Grg)?\(Grg)®¢ (resp. (Grg)®\(Grg)*° ) has empty generic fiber, i.e., is
concentrated in the special fiber.

Proof. The proof follows closely [HaRi, Prop. 5.6, 5.19]. We recall some steps of the construction.
Let us denote @ := Op, and O := Op. Let m (M) = X, (T)/X.(Th,.) be the algebraic fundamental
group of M in the sense of [Bo98], and denote by 71 (M), the coinvariants. By [PR08, Thm. 5.1],
the group of connected components is given by

To(Flpgs ) = (M) = m(M)rp,

Tie(u)
where the last equality follows from the proof of Lemma 4.11. Note that w1 (M), = Indll::(J 71 (Mo) 14,
cf. (4.21). Since Gry o — Spec(@) is ind-proper and O is Henselian, the natural map

’/T()(GI‘M(V)) i) WO(ngb,E)

is an isomorphism by [SGA4%, Arcata; IV-2; Prop. 2.1]. This shows that there is a decomposition
into connected components

(5.9) Gryo= |[ (Gryes
veri (M),

such that (Gr »)7 ® k ~ (Fpp 7)p- By Lemma 4.17, the generic fiber decomposes as (Gr . 3)r ®
F ~11,.;(Gry p), where v € m (M) runs over the elements which map to 7 under the reduction
map m (M) = m (M) 1,.

By Theorem 5.3 i) and ii), it is easy to see that the closed immersion *: Gry, 5 — (Grg 3)°
is open on the underlying topological spaces (e.g.,its image is closed under generization), i.e., the
image identifies each connected component of Gr,, 5 with a connected component of (Grgﬁ)o.
Using Lemma 5.4 ii), we get an inclusion

7T1(M>[F = WO(GI‘M)é) C mo ((Grg)@)o) = T ((Grg@)i) .
For v € m (M), we denote the corresponding connected component of (Grg@)0 (resp. (Grg )
by (Grg)p (resp. (Grg)y).

Let p denote the half-sum of the roots in Res/p (V) g with respect to Resg /(1) . For mi (M) >
vis v € m (M), and 7 € X.(Resg,/p(T)) a lift of v, we define the integer n, := (2p,7) (resp.
ng = (2p, 1)) which is well-defined independent of the choice of v, cf. [HaRi, (3.19)]. Note that we
have n, = ny for all v — 7 by definition. For fixed m € Z, we consider the disjoint union

(Grg)h, = J[(Gro)s (resp. (Grg)i = [](Gro)?),

*)

where the disjoint sum is indexed by all o € (M), such that ny = m. The Galois action
preserves the integers n;, and hence the ind-scheme (Grg)Y, (resp. (Grg)t) is defined over O. Note
that (Grg): is the preimage of (Grg)?, along (Grg)* — (Grg)?. We obtain a decomposition as

O-ind-schemes
(Grg)™ = [[(Grg), (resp. (Grg)™* = ] (Grg)i).
meZ MmEZL
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Properties i) and ii) are immediate from the construction. (]

5.2. Cohomology of G,,-actions on affine Grassmannians. The conventions are the same as
in [HaRi, §3.4]. We fix a prime ¢ # p, and an algebraic closure Q of Q,. We fix once and for all
¢'/? € Qy, and the square root of the cyclotomic character cycl : T'p — Z; which maps any lift
of the geometric Frobenius ®p to ¢~/2. The Tate twists are normalized such that the geometric
Frobenius ® acts on Q(—1/2) by ¢'/2.

For a separated ind-scheme X = colim; X; of finite type over a field (e.g. F) or a discrete valuation
ring (e.g. OF), we denote the bounded derived category D%(X) = D%(X, Q) of Q-complexes with
constructible cohomologies by

def b

DY(X) = colim; Db(X;, Q).

There is the full abelian subcategory Perv(X) C D%(X) of perverse sheaves, cf. e.g. [Zhu, A.1] in
the setting of ind-schemes. For a complex A € D%(X), we denote for any n € Z the shifted and
twisted complex by

Afn) = Aln](v/2).

Let us briefly recall the nearby cycles functor. Let S = Spec(Op) with open (resp. closed) point
n = Spec(F) (resp. s = Spec(k)). Let i := Spec(F) — n (resp. 5 := Spec(k) — s) denote the
geometric point with Galois group I' = Gal(77/n). Let S denote the integral closure of S in 7. This
gives rise to the seven tuple (S,7,s,5,7,5, ). Now if X is an Op-ind-scheme of ind-finite type,
there is by [SGA7, Exp. XIII] (cf. also [1194, App]) the functor of nearby cycles

(5.10) Ux: DYX,) — DX, xsn),

where D?(X, x5 1) denotes the bounded derived category of Qg-sheaves on X5 with constructible
cohomologies, and with a continuous action of I' compatible with the action on X3z. The nearby
cycles preserve perversity and restrict to a functor ¥x : Perv(X,) — Perv(X, xgn). We refer the
reader to [PZ13, §10] for the extension to ind-schemes.

For a map of Op-ind-schemes f: X — Y, the nearby cycles are functorial in the obvious way,
cf. [SGA7, Exp. XIII, 1.2.7-1.2.9]. Further if f is a nilpotent thickening, i.e., a closed immersion
defined by an nilpotent ideal sheaf, then f induces ¥x ~ Uy .

5.2.1. Geometric Satake for Weil-restrictions. Recall the geometric Satake equivalence from [Gi,
Lu81, BD, MV07, Rilda, RZ15, Zhu]. We work under the same conventions as in [HaRi, §3.4], and
we refer the reader to this reference for more details.

Let G be a reductive group over K. We are interested in the geometric Satake isomorphism for
the group G = Resg,p(Go). For a conjugacy class {u} of geometric cocharacters in G, denote the
inclusion of the open L} G z-orbit by

'E Gré“} — Gré{“},
cf. (4.24). The map j is defined over the reflex field E = E({u}). We define the normalized

intersection complex by

def

(5.11) ICy = 5Qe(d,) € P(Grg ),

where d,, denotes the dimension of Gré{” }. The category P+ o(Grg) of LT G-equivariant perverse
sheaves (cf. e.g. [Zhu, A.1] for equivariant perverse sheaves on ind-schemes) is generated by the
intersection complexes (5.11) and local systems concentrated on the base point eq € Grg(F'). More
precisely, every indecomposable object in P+ (Grg) is of the form

(5.12) (Brere/rslCypy) ® L,

where £ is a Q-local system on ey = Spec(F). The Satake category Satg is the full subcategory
of Pp+,(Grg) generated by objects (5.12) where the local system L is trivial over a finite field

extension F'/F.
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We view I'rp as a pro-algebraic group, and we let Repag (T'r) be the category of algebraic Q-
representations of I'p, i.e., finite dimensional representations which factor through a finite quotient
of I'p. There is the Tate twisted global cohomology functor

w: Satg — Repgeg(f‘p)

Ar— P H (Grg g, Ap)(i/2).

€L

(5.13)

By the geometric Satake equivalence, the functor w can be upgraded to an equivalence of abelian
tensor categories

(5.14) w: Satg — Rep@g(LG)

where “G = GV x I'r denotes the L-group viewed as a pro-algebraic group over Q,. The tensor
structure on Satg is given by the convolution of perverse sheaves, cf. §5.5 below. The normalized
intersection complex ICy,,) is an object in the category Satg,, and its cohomology w(ICy ) is under
the geometric Satake equivalence (5.14) the “Gg := GV x I'g-representation Vi) of highest weight
{p} defined in [Hail4, §6.1], cf. [HaRi, Cor 3.12].

Let us describe the dual group GV = ResK/F(GO)V and the representation Vj,, explicitly in
terms of Gy. Of course, GV is canonically isomorphic to the product [[. .,z Gy, but the Galois
action does not respect the factors in general.

Let Homg, (Tr,GY) be the sheaf of Qg-scheme morphisms where again I'r is viewed as a pro-
algebraic group. Then Homg, (Tr,GY) is a group functor, and the pro-algebraic group I'k acts on
Homg, (T'p, Gy) via Qg-group automorphisms by the rule (v f)(g) = v(f(y'g)). Following [Bo79,
1.5], we define the induced group as the I" x-fixed point sheaf

T def T
(5.15) IrF(Gy) = Homg* (I'p, Gy),
which is a group functor. Note that choosing any finite extension K /K which is Galois over F' and
splits G, we get an isomorphism of Qg-groups

Tz ~
(5.16) Hom "™ (P g /p, Gy) — IrE(GY),
where I'g o = Gal(K /K) (resp. Pgp= Gal(K/F)). In particular, Igf; (GY) is an algebraic group,
and is the colimit indexed by the filtered direct system (5.16) indexed by the splitting fields K. In
this way, we get as in [Bo79, 1.5] an I' p-equivariant isomorphism of algebraic Qg-groups
(5.17) GY ~ ILF(GY).

Let us turn to the representation V3. We write the conjugacy class as {s} = ({¢ty:}),, according
to Gp ~ [y, keyr Go ®y, K F. The reflex field E of {u} is the intersection (inside F) of the reflex
fields Ey of {yy}. For each 1, let Vy, ; the representation of G of highest weight {u,} where we

view {py} as a Weyl orbit in the dual torus X*(TV). The following lemma is immediate from the
construction, and left to the reader.

Lemma 5.6. The Hw G -representation &y Vi, ) uniquely extends to the LG =GY xT'g repre-
sentation Vi, defined above.

O

5.2.2. Constant terms commute with nearby cycles. We proceed with the notation as in §5.1, and
view the cocharacter x as in (5.1). Combining Theorem 5.3 and Proposition 5.5 from the previous
section, we have constructed a commutative diagram of Op-ind-schemes

- p*
Gry «— Grpr —— Grg

(5.18) LO’CJ Li’cl idl
(Grg)*¢ —— (Grg)** — Grg,
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The generic fiber of (5.18) is (5.7), and the special fiber of (5.18) is (5.8). The maps 1%¢: Gry <
(Grg)%¢ and t*¢: Grp+ — (Grg)® are nilpotent thickenings by Proposition 5.5, and we may and
do identify their derived categories of f-adic complexes. Then there is a natural isomorphism of
functors D%(Grps) — DY F g x5 1),

(5.19) \IIGrM ~ \I’(Grg)o,c.

0,c +.,c

We write Ug = ¥y, (resp. Upq = ¥qy,,) in what follows. Since (*¢ and ¢ are nilpotent

thickenings, Proposition 5.5 gives us a decomposition

+ +
qg- = H ¢, Grpz = H Grp= ,, — H Gra,m = Grag,
mEeZ meZ meZL

according to the choice of the parabolic P*. We use the generic and the special fiber of diagram
(5.18) to define normalized geometric constant term functors as follows.

Definition 5.7. We define the functor CTy; : D(Grg) — D2(Gras) (resp. CT pp : DY(Flgs xs
n) — DY(F e X5 n)) as the shifted pull-push functor

CTu = @ (g (pf) (m) (resp. CTre = (g (07)" (m)).

meEZ meZ

Asin [HaRi, Thm. 6.1, (6.11)], the functorialities of nearby cycles give a transformation of functors
Dg(GrG) — Df(fZMb Xs 77) as

(5.20) CTMb O\I/g —> U 0CTyy.

Theorem 5.8. The transformation (5.20) is an isomorphism of functors Satg — D%(Flop X5 7).
In particular, for every A € Satg, the complex CT p 0Wg(A) is naturally an object in the category
PervL+Mb (.FéMb Xs 77)

Proof. Every object in Satg is G,,-equivariant. In view of Theorem 5.3 and (5.18), the extension
of the method used in [HaRi, Thm. 6.5] to this more general situation is obvious. We do not repeat
the arguments. O

5.3. Constant terms for tori. We aim to make Theorem 5.8 more explicit in the special case
where M = T is a torus, cf. Theorem 5.12 and Corollary 5.13. We keep the notation as in §5.2.

Let Saty» C Pervy+o» (Fp X g n) denote the semi-simple full subcategory defined as in [Ril6a,
Def 5.10]. By [Ril6a, Thm. 5.11], the category Sats» has a Tannakian structure with tensor struc-
ture given by the convolution product, and with fiber functor given by the global sections functor
wrs: Sat — Repg, (I'r), A HO(FETb,]’C, Azr). Note that F¢r» is ind-finite, and hence there is no
higher cohomology and the convolution product is given by the usual tensor product. Further, for
every A € Saty» the I'p-action on wy (A) factors by definition through a finite quotient.

Lemma 5.9. The functor wys can be upgraded to an equivalence of Tannakian categories
Satrs — Rep@z(LTr),
where YT, = (TV)'* x T'r viewed as a pro-algebraic subgroup of “T. Here the subscript (-), stands
for ‘ramified’.
Proof. By Lemma 4.17, there are Gal(k/k)-isomorphisms of abelian groups
Flys (k) = Xo(T") 1y gy = X (D)1 = X5 (TY)'7)

where the equivariance of the last isomorphism holds by construction of the dual torus. This induces
a Gal(k/k)-equivariant isomorphism of k-schemes

(521) (}—ZT",I})red x~ w

By definition, the objects in Sat;, are finite dimensional Q-vector spaces on (5.21) (viewed as
complexes concentrated in cohomological degree 0) together with an action of '  which is equivariant
over the base, and which factors through a finite quotient. The lemma follows from this description.

O



TEST FUNCTIONS FOR LOCAL MODELS OF WEIL-RESTRICTED GROUPS 33

The following proposition is the analogue of [PZ13, Thm. 10.18, 10.23] in the special case of a
torus.

Proposition 5.10. There is a commutative diagram of Tannakian categories

SatT
wr l ~ W l ~
L res L
Repg, ("T) —— Repg, ("T%),

Sath

where res denotes the restriction of representations along the inclusion T, C 'T.

Proof. This is a reformulation of Lemma 4.17 as follows. In view of (5.14) and Lemma 5.9 the
diagram is well defined, and it suffices to prove the commutativity. Let f: Grr — Spec(Op) denote
the structure map. Since f is ind-proper, there is a I' p-equivariant isomorphism

\IIOF © fﬁ,* — fg,* o \IjTa

and passing to the 0-th cohomology defines a I' p-equivariant isomorphism o : res o wy ~ wy» o Wr.
We have to show that « is a map of “T',-representations. As we already know the I' z-equivariance,
it is enough to check that « is a map of gTV)I F_representations, i.e., respects the grading by

X*((TV)r) = X.(T)r, on the underlying Q-vector spaces. By (5.9), we have a decomposition
into connected components

Gr7‘®0p = H (GYT,(’)I;,)D,

veX, (T)IF

where (Grr,0,)s @k = {7} and (Gr7,0,)s ® F =1, ,{v} on the underlying reduced subschemes,
cf. also Lemma 4.17. The proposition follows from the fact that nearby cycles of a disjoint sum are
computed as the sum of the single components. O

Remark 5.11. It would be interesting to see whether the analogue of Proposition 5.10 for more
general very special parahoric group schemes as in [PZ13, Thm. 10.18, 10.23] holds true.

Combining Proposition 5.10 with Theorem 5.8, we arrive as in [HaRi, §6.2] at the following
theorem which is the analogue of [AB09, Thm. 4] in our situation.

Theorem 5.12. i) For every A € Satg, one has CT oUg(A) € Satys.

it) The functor CTy, oWg: Satg — Saty, admits a unique structure of a tensor functor together
with an isomorphism wy» oCT 1, oWg ~ wg. Under the geometric Satake equivalence, it corresponds
to the restriction of representations res: Repg, rG) — Rep@l(LTT) along the inclusion “T, C LG.

O

We now apply Theorem 5.12 in a special case. For more details, we refer to [HaRi, §6.2.1] which
is analogous. Assume F' = F, and hence that K/F is totally ramified. Let x: G,, x — Ao C Go
be a regular cocharacter, i.e., its centralizer My = T is a maximal torus, and let the parahoric
Ok-group scheme Gy be an Iwahori. Hence, G = Resp,. /0, (Go) is an Iwahori Op-group scheme as
well, cf. Proposition 4.7. There is a decomposition into connected components

(Fgo)t = T ()
weWw

where W = W(G,A,F) = W(G, A, K) is the Iwahori-Weyl group, cf. Lemma 4.3. Let Ar =
T(F)/T(Op) C W be the subset of “translation” elements. Let X.(T)r. ~ Ar,\ — t* be the
isomorphism given by the Kottwitz map. Let 2p € X*(T) be the sum of the positive roots contained

in the positive Borel B* of G determined by x. Then the integer (2p, \) := (2p, A) is well defined
independent of the choice of A € X, (T) with A — A.
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Corollary 5.13. Let V € Repg,(GY), and denote by Ay € Satg r the object with wg 5(Av) =V.
As Qq-vector spaces, the compactly supported cohomology groups are given by the equality

V) ifw=t" andi= (2p,\);

0 else,

HL(Flgs ) Ug(Ay)) = {

where V(X) is the A\-weight space in Vivyie -
O

5.4. Special fibers of local models. Levin proved in [Lev16, Thm.2.3.5] the analogue of the
following theorem in the special case where p { |71(Gger)|. As in [HaRi, §6.2, 6.3], Corollary 5.13
can be used to obtain this result on the special fibers of local models, with no hypothesis on p.
We do not need this result for the proof of our Main Theorem, but include it for completeness:
together with the corresponding result in [HaRi], we can conclude that the admissible sets Admf{ )
parametrize the strata in the special fiber of My, for all known local models My, .

The following is precisely the analogue of [HaRi, Thm. 6.12] in the current Weil restriction setting.
We will assume for simplicity here that Ky = F'; a similar result holds without this assumption.
Since K = KF‘, we may work over F' = F‘, so that K = K and k = k. The special fiber My, » and
the relevant Schubert varieties live in the affine flag variety attached to equal characteristic analogues

G* = Gbk((u) ,A" = S" defined in (4.8), and by Lemmas 4.3 and 4.11 there is an identification of

Iwahori-Weyl groups
W =W(G, A F) =W(Go, Ap, K) = W(G”, A", k((u).
For w € W, we define the Schubert varietiy F léw exactly as in [HaRi, §3.2].

Theorem 5.14. The smooth locus (My,y )™ is fiberwise dense in My,y, and on reduced subschemes

(Myyi)ea = |J  FIS"
wEAdmf{“}

In particular, the special fiber My, 1. is generically reduced.

Proof. We may imitate the proof of [HaRi, Thm.6.12]. First we follow the method of [Ril6b,
Lem. 3.12] to prove Admgu} - Suppgu} := Supp VYg, (ICy,;), using our Lemma 4.17 in place of
[Ril6b, Lem. 2.21].

Also as in [HaRi, Thm. 6.12], we reduce to the case where f = a. Then is it enough to show that
if w e Supp?“} is maximal, then w € Adm‘{i#}. Now we choose a regular cocharacter x: Gy, x —

Ag C Gy, and use Corollary 5.13 as follows. As Qp-vector spaces, we have
H ((Flgs )w, Pg(ICq,)) # 0,
because fﬂgbw N(Flg);; C Flg, is non-empty by [HaRi, Lem. 6.10], and because up to shift and twist
Ug (IC{“}HHSE = Q¢ for some d > 0 since w € Suppz{’u} is maximal. Thus, Corollary 5.13 applies
to show w = t* for some A € X, (T)r, which is a weight in Viuyligvyre - As in [HaRi, Thm6.12], we
can conclude that w = t* € Adm$,, by citing [Hail8, Thm.4.2and (7.11-12)].
O

5.5. Central sheaves. We recall some facts on central sheaves which will be used in what follows.
We proceed with the notation as in §4.4. Let Pervy.g»(Flg» X5 1) be the category of LtgP-
equivariant perverse sheaves compatible with a continuous Galois action, cf. [PZ13, Def 10.3].

Recall that for objects in Perv g, (Flg» X gn) there is the convolution product defined by Lusztig
[Lu8l]. Consider the convolution diagram

Flgs x Flgs <L LG" x Flgs B LG" x™'9" Flg, =: Flgo x Flgs ™ Flgs.

For A, B € Perv g (Flg» x5 1), let AXB be the (unique up to canonical isomorphism) complex on
Flgs x Flg» such that ¢* (AKX B) ~ p*(AXB). By definition

(5.22) AxB & m, (AXB) € DY (Flg xs1,Q).
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In the following, we consider Pj+ g (Flg») as a full subcategory of Pp+gs (Flg» X5 7).
Let W = W(G,A,K) = W(G®, A°, F*) be the associated Iwahori-Weyl group, cf. Lemma 4.11.
For each w € W, the associated Schubert variety .7-?3;“ C Hgs is defined over kp. Let j: 5, —

]-'ééw , and denote by IC,, = ji,(Q¢[dim(F¥g,)]) the intersection complex. We have the functor of

nearby cycles
Vg Pervy+o(Grg) — Pervyi g (Flgs xsn).

The next theorem follows from [PZ13, Thm. 10.5] if K/F is tamely ramified, and from [Lev16,
Thm. 5.2.10] in general:

Theorem 5.15 (Gaitsgory, Zhu, Pappas-Zhu, Levin). For each A € PervLjG(Grg), and w € W,
both convolutions Wg(A) xIC,,, IC,, * ¥g(A) are objects in Pp+gs(Flgs xsn), and as such there is
a canonical isomorphism

\I/g(.A) * ICw ~ ICw * \I/g(.A)

Proof. 1f A =1Cy,y where {1} is a class which is defined over F', then the theorem is a special case
of [Levl6, Thm. 5.2.10] which follows the method of [PZ13, Thm. 10.5]. However, the proof given
there works for general objects A € PLj ¢(Grg), and only uses that the support Supp(.A) is finite
dimensional and defined over F. We do not repeat the arguments here. U

6. TEST FUNCTIONS FOR WEIL RESTRICTED LOCAL MODELS

6.1. Preliminaries. Recall we let G = Resg,p(Go) and “G = GY xT'p. Recall that {u} is defined
over a field E, a separable field extension of F' which is a possibly nontrivial extension of the reflex
field, and that Eo/F is the maximal unramified subextension of E/F. We have V,; € Rep(*Gg)

LGEU

and I(Vy,y) € Rep(L“GE,), where I(V) := Ind, . °(V) for V € Rep(LGg). Writing G := G¢ and
Go = Us,, the parahoric group scheme of G = Resg,r(Go) is given by G = Reso, /0,.(Go) by
Corollary 4.8.

Because the representation I(Vy,,) is “defined over Ey” (not ), it is convenient to reformulate the
test function conjecture after base-changing all geometric objects from Op to Og,. This ultimately
allows us to reduce to the case where Ey = F (see end of §6.1, and §6.3 below). The next few
lemmas are ingredients toward this reduction.

Lemma 6.1. The following statements hold.

i) We may write KoQpE = Hj E; and Koy®pEy = Hj Ejo, where E; /Ky is a finite extension
of fields with mazimal unramified subextension E; /Ko, and where j ranges over the finite
index set of Tk, -orbits of F'-embeddings Ey — Koy, i.e., over the set I'g \I'r /T'k,. Similarly
for rings of integers we have Ok, ®o, O, = Hj Og; - Furthermore, the inertia groups
satisfy Ig = IE_,» - IE'O = IE]‘,O'

ii) K®p Ey = Hj KE;y.

iii) The canonical map T, \I'r/Tx — g, \I'r/Tk, is a bijection.

Proof. Write Ko ®@F Eo = [[; Ej0 and E = Ep[X]/(Q) where @ is an Eisenstein polynomial over
Opg,. Each extension F, (/F is unramified, and so () remains an Eisenstein polynomial in the over-
field Ejo of Ey. As Ko®p E =[]; E;o[X]/(Q) =[], Ej, it follows that E;/Ej is totally ramified
and that E; = EE; o, from which it follows that E;/E is unramified and hence I = Ig,.

Since K/Kj is totally ramified, K Qk, E; o = KEj; o, which implies ii).

Abstractly Ko @p F is a product of fields indexed by the set I'g\I'r /T'k,, and this set coincides
with I'g,\I'r/T'k, by the above argument. Interchanging the roles of E and K, we also get the
bijection in iii). O

Lemma 6.2. We have Gg, = [[; Reskr, ,/5,Go.kE;, and Go,, =[] Resoyp, o /08, 90.0x5, .-

Proof. This is a consequence of the compatibility of Weil restriction of scalars with base change
along the ring extension F' — Ey (resp. Op — Op,) and Lemma 6.1 i) and ii). O



36 T.J.HAINES AND T.RICHARZ

By [Bo79, L5] (cf. (5.17)) there are natural identifications
GY = I (Gy)
LG =Ig(GY) = Tp,

where we abbreviate I := Ill: - for the induction functor. Using Lemma 6.2 we obtain the following
lemma.

Lemma 6.3. We have an identification

LG, = (TT1E, 18, (G ke, ) % Ty

J

Let X = A}DKU = Spec(Ok,[u]) and D = {Q = 0}, viewed as a relative effective Cartier di-
visor on X which is finite and flat over Spec(Op). The following lemma helps us to determine
Gr(X/@F,QD)D) ®o, Ogy; it handles the special case where K/F is totally ramified.

Lemma 6.4. Assume Ky = F, and let K' = EqgK, which is the mazimal unramified subextension
of KE/K, and let O = Og @, OF, be its ring of integers. Since Ok, = Of, note G, is defined
over Oplu]. Then we have identifications

i) Gy ®0ru) O, [u] = gOK/O =: QO,OEU ’

ii) (LpG,) ®or Og, = LDOE0 QO,OEO (and similarly for L});

iii) Gr(X,QO,D) ®OF OEO = Gr(XOEO’go o 7DOE0).
T Eo

Proof. Part i) follows because the formation of G and G, as in [Lev, Prop.3.1.2; Thm. 3.3.3] is
compatible with change of base Op[u®] — Og,[u*] (vesp.,Or[u] — Og,[u]); see also Example
4.14. Part ii) follows formally from part i) and the identities R[Do, ] = lim R[u]/Q" = R[D]
(vesp., R(Doy, ) = (lgln R[u)/Q™)[1/Q] = R(D))) for Op,-algebras R. Part iii) follows from part
ii) and Lemma 3.4 ii). O

Proposition 6.5. In the notation above, there are canonical isomorphisms

Gr(X/OFvgoaD) ®OF OEO = H ReSOEjyo/OEU (Gr(X/OK() ’govD) ®OK0 OEJ':O)
J

= H ReSOEj,O/OEO (Gr(XoEj,O /OE; 4> QO’OEJ- o’ D®0K0 OEJ-,O)) :
J :

Proof. The first equality is proved using Lemma 3.7. The second equality follows by applying

Lemma 6.4 iii) to each factor indexed by j, replacing the data (F, K, Ey) with (Ko, K, E; ). O

Recall that G, is defined using the following data: the totally ramified extension K /Ky, the Ko-
group Gy, the facet fy, and the choice of spreading G,/ O, [uT]; and the generic fiber of Gr(x/0..6,D)
is the affine Grassmannian for G = Resg,rGo, by Proposition 4.15. By contrast G, 0p I8 defined

.OE;

from the data: the totally ramified extension KFE;/FEj o, the E; o-group Go,E;,, the facet fo, and

the spreading QO)OEJ_ J[ut ] and the generic fiber of Gr(XOE /OB 0 Go 0, s DB0g, OB, ) is the affine
7 Js YT Y Ej o ’

Grassmannian for Resgg, ,/E; ,Go,kE; - S0 when restricting attention to the part inside the Weil re-
striction in the j-th factor, we are in the situation “F = Fy” and “Ky = F”. Our next goal is to show
how we may effectively reduce our problem to the study of each Gr(XoEj)(J /Ok, 4. Qo,OEj .+ D®ox, 05, ,)
separately.

6.2. Statement of theorem. Given an irreducible algebraic representation V of G, we define the
parity dy € Z/2Z as in [HaRi, (7.11)]. Then we define the function g%, on Grg(kr) by the identity

(6.1) &y = (=D tr™(® | Uy, (Sat(V))).

We extend this definition to general representations V of “G (not necessarily irreducible) by linearity.
By Theorem 5.15, Lemma 4.12, and Corollary 4.9, we may view 75y, as an element in the Hecke alge-
bra Z(G(F'),G(OF)). Given any algebraic representation V, we also define 2&'y, € Z(G(F),G(OF))
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to be the unique function such that, if 7 is an irreducible smooth representation of G(F) on a Q-
vector space such that 79(9F) =£ 0, then zgy acts on 79(OF) by the scalar tr(s(r) | V*Ir), where
s(m) is the Satake parameter of 7 as defined in [Hail5).

Theorem 6.6. For (G,G,V) as above, we have the equality 75y, = 28y -

Recall that taking inertia invariants does not commute in general with forming tensor products of
representations. Because of the products and unramified Weil restrictions appearing in Lemma 6.3
and Proposition 6.5, it is problematic to reduce our Main Theorem to Theorem 6.6. Instead we need
a variant of Theorem 6.6 without semisimplifying the trace, for a fixed lift ® of geometric Frobenius.
This is formulated as follows. For each fixed lift ®, we define a function zgv € Z(G(F),G(0Or));
similarly we define a function 7'5 v on Grg(kp); see the Appendix §8. By the same arguments due
to Gaitsgory, Pappas-Zhu, and Levin cited above, this function can be viewed as an element of

Z(G(F),9(0r)).

Theorem 6.7. For (G,G,V) as above and for every fixed choice of lift ® of geometric Frobenius,
we have the equality Tg,v = Zg,v-

In fact we will prove Theorem 6.7, and we deduce Theorem 6.6 immediately by Lemma 8.1.
However we will not require Theorem 6.6, but only Theorem 6.7, to prove our Main Theorem.

6.3. Reducing the Main Theorem to Theorem 6.7. Following the method of [HaRi, 7.3],
we show that the main theorem is a consequence of Theorem 6.7 as follows. Recall that Vi, is
a representation of “Gg = GV x I'g, the L-group of Resg,r(Go) ®p E, and that I(V(,) is a
representation of LG g, = G¥ xI'g,, the L-group of Resg/r(Go) @r Eo. Arguing as in [HaRi, §7.3],
up to the sign (—1)% the function 7}, is identified with the function in Z(G(Eo),G(Og,))

(6.2) tr°% (P | Verg o, (ICqy)) = tr*(Pp, | \IIGW,OEO (Sat(I(Viu)))-
Also, Z{5,y acts on 79(©80) £ 0 by
(6.3) tr(s(m) | V{B) = tr(s(m) | T(Vi,y) ™).

Therefore, to prove the Main Theorem, it suffices to prove 75’ I, =25 . All irre-
oy I(Viny) Gog, I (Viuy)

ducible constituents of I(Vy,}) have the same parity, so we may replace I(Vj,}) with an arbitrary

irreducible representation V of “Gg,. By Lemma 8.1, it suffices to prove

(6.4) TG0,V = “Gog, V

for every fixed lift ® g, of geometric Frobenius.

Now LGg, = (HJ Ig;o (Resk g, o/B,0G0.k8,0)") X T, by Lemma 6.3. Because Ejo/Ep is un-
ramified, cf. Lemma 6.1 i), any irreducible representation V' is built up, as explained in the Appendix
§8, from irreducible representations of L (Resg Ejo/E;0G0.KE;,). There is a parallel description of
the corresponding perverse sheaves on the generic fiber of Grg’@EO, thanks to Proposition 6.5. Us-
ing Lemmas 8.2 and 8.3, we easily see that (6.4) will be proved, if we can prove Theorem 6.7 for
any irreducible representation of ©(Resg B;0/E;0G0.KE;,) and corresponding nearby cycles along

Gr(X@Ej‘0 /08, 4 QOWOEM D@0, Or; )"

Therefore, we may assume F' = Ej henceforth, and we have seen that in order to prove the Main
Theorem it is enough to prove Theorem 6.7, and in fact we may even assume Ky = F, ie., K/F
is totally ramified, and that V is an irreducible representation of “G. By the argument of [HaRi,

Lem. 7.7], we may also assume that V|gv 7, is irreducible, whenever convenient.

6.4. Proof of Theorem 6.7. As above, we will assume V|gv w1, is irreducible. Following the proof
of [HaRi, Thm. 7.9], there are three main steps:

(1) Step 1: Reduction to minimal F-Levi subgroups of G.
(2) Step 2: Reduction from anisotropic mod center groups to quasi-split groups.
(3) Step 3: Proof for quasi-split groups.
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The proofs work exactly the same way as in [HaRi], with only a few additional remarks. For Step
1, we use Lemma 4.2 to ensure that a minimal F-Levi subgroup of G is of the form M = Resg/p(Mo),
for My a minimal K-Levi subgroup of G; in light of Theorem 5.15 and Theorem 5.8 the argument of
[HaRi] goes through to reduce us to proving the Theorem 6.7 for M, i.e., for Gr(x m,,p)- For Step 2,
we assume G is F-anisotropic mod center and we observe that if Gj is a K-quasi-split inner form of
Go, then G* = Resg,p(Gp) is an F-quasi-split inner form of G. More to the point, Gr(XQO,D) and
Gr( X,G:.D) become isomorphic over Op and hence we may think of them as the same geometrically,
with differing Galois actions ® and ®* of the geometric Frobenius element; applying the argument
of [HaRi], we reduce to proving Theorem 6.7 for G*, i.e., for Gr(X,Q[*),D)-

For Step 3, we apply Step 1 to G*, and we are reduced to proving the theorem for a torus of the
form T* = Resg/p(17), ie.,for Gr(x r: p). The theorem for any torus T' = Resg /(7o) is easy.
Let us explain following the method of [HaRi, §7.6]). Let V be a representation of TV x I'p such
that V|pvup, is irreducible. As in [HaRi, Def.7.11], let wy € m(T)7, be the common image of
the TV-weights in V|pv. Then wy can be viewed as the unique k-rational point in the support of
U(Sat(V]rvxis)), and also as the element indexing the unique coset in the support of z%v. Further,
by Proposition 5.10, we have an identification of YT} = (TV)!* x I' p-modules

H* (e, (Sat(V))) = H* (Grr 5, Sat(V))| o, -

By the Grothendieck-Lefschetz fixed point theorem, it suffices to prove
z‘%v(wv) =tr(®|V) = tr(P |H*(GrT7F, Sat(V))).

The second equality comes from the identifications H*(Gry z, Sat(V)) = H(Grp g, Sat(V)) = V as
LT _representations under the Satake correspondence. Therefore we need to prove the first equality.
Note that all the weights in V' are Ip-conjugate, and z%v acts on a weakly unramified character
x:T(F)/T(F); — Q) by the scalar

tr(s®(x) | V) = tr(x x ®|V) = x(wv) tr(®| V),

the second equality holding since s®(x) € (TV)'* x ®. Thus 23y, = tr(®|V) 1, as desired. This
completes the proof of Step 3 and therefore of Theorem 6.7. O

6.5. Values of Test Functions. As in the Main Theorem of [HaRi|, the function q%‘(‘) / 2225 (u} takes
values in Z and is independent of £ # p. The proof given in [HaRi, §7.7] uses only general facts about
the Bernstein functions and related combinatorics, and applies equally well to all groups, including
those which are Weil-restricted groups such as G.

7. TEST FUNCTIONS FOR MODIFIED LOCAL MODELS

The aim of this final section is to formulate and prove the test function conjecture for all reductive
groups and all primes p > 5 using the modified local models introduced in [HPR, §2.6]. This is a
consequence of our main theorem and some geometric results in [HaRi2], cf. Corollary 7.4 below.

7.1. Modified local models. We denote by G a reductive group over a non-archimedean local
field F' of mixed characteristic (0,p). We fix an isomorphism

(71) Gad ~ HReSKj/F(Gj)7
jeJ

where each K;/F is a finite field extension, and each G; is an absolutely simple, reductive K ;-group.
We assume that each G is tamely ramified. This is only a restriction for p = 2, 3: whenever p > 5
this assumption is automatically satisfied by the classification, cf. [Ti77, §1.12; §4] (see also [PROS,
§7.al).

We further fix a facet f C B(G, F') which corresponds to facets f; C #(G;, K;), j € J under the
identifications

B(GF) = B(Gaa, F) = H %(ijKj)
jeJ

deduced from Proposition 4.6 applied to each pair (G;, K;/F). We denote by G = Gr over O, and
by G; = G, over Of; the associated parahoric group schemes.
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We fix a uniformizer @; € K; and an O, ,[u*]-extension G, , of G; where Kj/F denotes the
maximal unramified subextension in K;/F. Each geometric conjugacy class of cocharacters {u} in
G induces a geometric conjugacy class {ftaq} in Gaq and hence for each j € J a geometric conjugacy
class {y;} in Resg,/r(Gj). We note that the reflex field E of {u} is naturally an overfield of the
reflex field E; of {M;}

Definition 7.1. The modified local model Mg (G, {u}) = M(K;/F,G; o,f;,{p;},@;; j € J) is the
Og-product of the Og-schemes

[1 M35 @0, O,

jeJ
where My, y = M(Kj/F7 G0 Ei, {1}, wj) is the local model over O, as in §4.4.4 and Mf/f]”}“ —
M;,,;y denotes its normalization.

For convenience we summarize the results on the modified local models obtained in [PZ13, Lev16,
HPR, HaRi2).
Theorem 7.2. i) If G splits over a tamely ramified extension of F', then Mg (G, {u}) is isomorphic
to the modified local model defined in [HPR, §2.6].
i) A morphism of local model triples (G',{1'},G") — (G,{u},G) with G4 ~ Gaq satisfying the
tameness assumption in (7.1) induces an isomorphism of Og:-schemes

Mg (G', {'}) = Mg(G, {1}) ®o, Op.

iii) The modified local model Mg (G, {u}) is normal with geometrically reduced special fiber, and if
p > 2 it is Cohen-Macaulay as well.

Proof. As in [HPR, §2.6] we choose for each j € J a suitable z-extension G’ — G whose derived
group G der is simply connected. Then the geometric conjugacy class {y;} in Res i, /r(Gj) can be
lifted to {fi;} in Resg, /F(G ) with the same reflex field E; = Ej, cf. loc. cit.. Denote by f; the facet
of Gj corresponding to f;. This induces a morphism of O - Schemes on Weil restricted local models
(72) M{ﬁ} = M(KJ/F Gj va‘ {ﬂj} w]') — M(K]/F GjO’f' {/.Lj} Wj) =: M{Hj}’
where G — G is an Ok, ,[u*]-extension of G; — G;. Now for tamely ramified extensions
K;/F the Well restricted local models agree by [Lev16 Prop 4.2.4] with the local models of [PZ13].
Further, the morphism (7.2) is a finite, birational, universal homeomorphism by [HaRi2, Cor. 2.3].
Since M,y is normal by [PZ13, Thm. 9.1] (see also [Lev16, Thm. 4.2.7]), the map induces an
isomorphism M 3 ~ Mﬁgﬁ“ on normalizations, and the former are the modified local models of
[HPR, §2.6]. Extending scalars to Op and taking the product over j € J implies part i). Part iii)
follows from [HaRi2, Cor. 2.5], see also the references cited there. For part ii) we remark that the
morphism is a finite, birational, universal homeomorphism by the same reasoning as in i), and that
the target is normal: its generic fiber is normal by definition and its special fiber is reduced by iii).

As the local model is flat and of finite type, the target is normal by Serre’s criterion, cf. [PZ13,
Prop. 9.2]. O

Remark 7.3. As in Remark 4.19 one can show that Mg (G, {u}) depends up to equivariant isomor-
phism only on the data (G, {u},G) which justisfies the notation.

We also record the following property which is important for the proof of the test function
conjecture.

Corollary 7.4. The product of the normalization morphisms
Mg (G, {}) = [T M2} ®0s, O = [ M) ®0s, Ok
jeJ jeJ
is finite, birational and a universal homeomorphism. In particular, this morphism induces an equiv-

alence on the associated étale topoi of source and target [StaPro, 03SI].

Proof. This is immediate from the isomorphism My} ~ ?/j”}“ 7 € J in the proof of Theorem 7.2
i), together with [HaRi2, Cor. 2.3]. O
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7.2. Test functions. Let (G,{u},G) be a triple as above where G/F satisfies the tameness as-
sumption in (7.1). Denote by My, = Mg(G, {x}) the modified local model as Definition 7.1. For
a finite extension E/F over which {u} is defined, we consider the associated semi-simple trace of
Frobenius function on the sheaf of nearby cycles

TEZ}: My, (k) — Qe x> (1% tr™ ((DE | Uny,, (IC{H})i)'

where ICy,; denotes the normalized intersection complex of the generic fiber of My,;. As an
application of our main theorem we deduce the test function conjecture for modified local models:

Theorem 7.5. Let (G,{u},G) be as above, and denote by E/F an extension which contains the
reflex field of {u}. Let Eo/F be the mazimal unramified subextension. Then sz} naturally defines
an element in Z(G(Ey),G(0Og,)), and one has

Tiny = A

where 275, € Z(G(Eo),G(Og,)) is the unique function which acts on any G(Og, )-spherical smooth

irreducible Qg-representation m by the scalar
L
tr(s(ﬂ') ‘ IndLg‘ZO(V{#})“‘IEo)’

where s(m) € [(GV)Eo x ®g,lss/(GV)Eo is the Satake parameter for m [Hail5]. The function
q%‘;/QTEZ} takes values in Z and is independent of £ # p and ¢*/? € Q.

Proof. First, we will show that 7}, naturally defines an element of Z (G(Eyp),G(Og,)) for which
we need to prove the analogue of (6.2). As in (7.1) we denote by (H;,{u;},H;), j € J the local
model triple where H; := Resg,/r(G;) and H; = Resoy, /0r (Gj). Note that Gaq = [[; H; and
Gaa = [[; H;. For the next statement, observe that ICy,; = Sat(Vy,,,}) under the equivalence of
étale topoi of Corollary 7.4 for the generic fibers My, g and Hj M{M}Q{)@E]_ E C Grg,,,0p,®05, £ =
GrGad,E- .

Lemma 7.6. We have
tr®® (q)E | Unmy,,, (Ic{u})) = tr* ((I)EO | \Dad(sat(l(vt{““d}))))

where Woq denotes the nearby cycles functor for Grg,, o5, = Hj Gra;,05, -
Proof. The argument follows the proof of (6.2) as in [HaRi, §7.3]. Consider the finite morphism

VE Grgad70E0 ®0g, Op Grgadyan'

Abbreviate the nearby cycles for Grgad,oEo ®0g, OF by Uaq,r. We have

07 (O | Waa, 5 (Sat (Viuoa))) = 0 (P, | F.eVaa, p (886 (Vipoa )
= tr’ ((I)Eo | \Ilad(fn,*sat(v{#ad})))
= 0% (D, | Waa(Sat(1(Viy,))))-

We used the analogue of [Hail8, Lem. 8.1] for the first equality, proper base change for the second
equality and [HaRi, Prop. 3.14] for the final equality. By the topological invariance of the étale site
in Corollary 7.4 we have

tr (g | W, (IC)) = tr(Pp | aq 6 (Sat (Vi)
which proves the lemma. (I
By Lemma 7.6 (combined with Theorem 5.15), the test function
(7.3) iy = (1)t (P, | Waa(Sat (I (Vi)

naturally defines an element of Z(Go4(Eo), Gad(Or,)). By §7.3 below, the natural projection p: G —
(aq induces a canonical morphism of algebras

P« Z(G(E0)7Q(OE0)) - Z(Gad(E0)7gad(OEo))'
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There is a disjoint union

(7.4) GE) = [l G®E.

wem (G)r

where G(Ep), = né}EO (w) is the fiber of the Kottwitz morphism kg g,: G(Ey) — 71 (G); with
I =1Ig, = Ir (use Ey/F unramified), and likewise for G replaced by G.q. The key observation is
proved in Lemma 7.7 below: If w — w,q under the map m1(G); — 71(Gaa)1, then p, restricts to an
isomorphism

(7.5) Z(G(Eo),6(08,))w — Z(Gad(Eo), Gad(OF,))wa

on the functions whose support is contained in G(Ey),,, respectively in Gaq(Fp)w,,- We apply this to
W = wy,y, the image of {x} inside 71 (G);. To explain, note that the representation I(Vy,) of LG,
need not be irreducible, but all its BY-highest TV are Ig,-conjugate to p. Similar remarks apply
to the restriction I(Vy,,.1) of I(Vi,}) to %(Gaa) gy; note as well wy,y — wy,, 3. Geometrically, this
means that the support of (7.3) is contained in the connected component of Grg,, ®o,. kg, indexed
by w{y,q}, and hence it belongs to Z(Gaa(Eo), Gad(OE,))w, ., Finally via (7.5) we see that T
identifies with an element of Z(G(Ey),G(Or,))w,,, C Z2(G(Eo),G(0Ox,))-

Next we prove the equality of 77}, = 27}, as elements of Z(G(Ep),G(Og,)). Their values then

satisfy the required integrality properties independently of the choice of £ # p and ¢'/? € Q, by
§6.5. It is enough to show the equality T{Siad} = z? had}? that is, the equality of the two functions
when they are viewed as elements of Z(Gad(Eo), Gad(Og,)) via (7.5). Here 777, is just a relabeling
of (7.3) and we are using Lemma 7.7 below with V' = I(V,3) and Vaq = I(V,,,}) to justify that
250 7 2,y under (7.5).

Fix a lift of geometric Frobenius ® = ®g,. We will show that T}iad} = zf{bﬂad}, cf. §8. The result
will then follow from Lemma 8.1 by averaging over the different lifts .

For each j € J as in (7.1), we denote by T{qu} (resp. zﬁ‘j}) the central functions associated with

the local model triple (Hj, {y;},H;) over the extension E/F. Parallel to (7.3) we have
Ty = (F1) " te(@] W (Sat(1(V,, 1))

where W; stands for the nearby cycles functor for Gry;, ®o, Op. The tameness assumption in (7.1)
guarantees that Theorem 6.7, and in particular (6.4), is applicable, and we deduce the equality

> 3
Ty = g}
as functions in Z(H;(Eop), H;(Og,)) for all j € J. Recall that ICy,, = Sat(Vy, ;) can be expressed
as the external tensor product X;Sat(Vy,;1) = K;ICy, 1 on the generic fiber Grg,, 05, ®oy, £ =
11 j Grpy, g. Since the formation of the non-semisimplified functions commutes with direct products
of groups by Lemma 8.2, we get the equality
@ _ e » @
Tt = 1700y = 11400 = 2
J jeJ
inside Z(Gad(Eo), Gad(Ok,)) = [1; Z2(H;(Eo), H;(OF,)). We have also used the equality , d,; =
d,, mod2. This completes the proof of the theorem. O

7.3. Passing to adjoint groups. In this section, we do not need any tameness assumptions — the
arguments hold for general groups. We work over the unramified extension Ey/F. Let Z be the
center of G. Let A, S, T, M be as usual for the Ey-group G, and denote by A.q, Sad, Tad, Maq their
images under the canonical map p: G — G,q = G/Z. Recall that M,q is not the adjoint group of
M, but is a minimal Ey-Levi subgroup of G,q. Let G (resp. G,) be the parahoric group Og,-scheme
with generic fiber G, attached to a facet f (resp.an alcove a with £ C &). Let Gaq (resp. Gad,a) be
their analogues for Gnq. The morphism p: G(Ey) = Gada(Ep) sends G(Og,) into Gaqa(Og, ), and so
by the étoffé property of G, p extends to an Op,-morphism p : G — G.q (cf. [BT84, 1.7]). Similarly
we have p: Go = Gad.a-

Let O stand for either O, or OEO with K its fraction field. In general, the natural maps
p: G(O) = Gaa(O) and G(K)/G(O) — Gaa(K)/Gaa(O)) are not surjective. Nevertheless, using
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[BT84, 5.2.4], if M,q (resp. Taq) denotes the unique parahoric group scheme for M,q (resp. Taq),
one can check that p(G(Og,)) - Maa(Og,) = Gad(Og,) (resp. p(G(Op,)) - Taa(Op,) = Gaa(Of,))-
This implies that p takes any G(O)-orbit in G(K)/G(O) onto a Gq(O)-orbit in Gad( )/Qad( )
since Mad(Op,) (resp. Tada(Op, ) is normalized by the group Neg,,(Aad)(Eo) (resp. Ng,, (Saa)(Eo)
giving rise to representatives of those G,q(O)-orbits.

Write O = O, and O = Op,- We make some abbreviations: Iwahori subgroups I = Ga(0)
and I = Ga(O); parahoric subgroups J = G(O) and J = G(O). Similarly define their analogues
for Gag: fad, I.q, jad, and J,q. Let Wy denote the finite relative Weyl group for G/FEy. There are
decompositions of the Iwahori-Weyl groups over Ej

(7.6) W(G) =W = X*(Z(MV)0)® x Wy = Wye x Qa

W (Gad) = Waa 2 X*(Z((Maa)¥)0)® x Wy = Wie X Qa,,.
and p: W — W,q is compatible with these decompositions. In general p maps Q, to Qa,,, but
neither surjectively nor injectively. However, for each fixed w € 2, with image w,q € Q we
obtain an isomorphism
(7.7) P Wee Xw = Wee X Waq.

Recall that H(G(Ep), I) is generated by TG = 11,1, where 1 € Ng(T)(Ep) is a lift of w € W(GQ)
along the Kottwitz homomorphism k¢ g,. The algebra H(G(Ey),I) has an Iwahori-Matsumoto
presentation, i.e., it is isomorphic to an affine Hecke algebra over Z[v,v~!] with possibly unequal
parameters, after a specialization v — |/qg, € Qe (cf.[Hail4, 11.3.2] or [Rol5] for a proof in this
generality). The map TS + Tl%d) respects the braid and quadratic relations, hence gives an algebra
homomorphism

)

Aad

H(G(Eo),I) = H(Gaa(Eo), Laa)-
Let ey and e, be the idempotents corresponding to J and Jaq; these both correspond to the same
set of reflections in Wy, (those which fix f). Therefore using the usual relations in the Iwahori-Hecke
to understand the products of such idempotents by the standard generators TS , we see that the
map
TG

G
BJTw6JF—>6J way €Jad>

ad

where w,q = p(w), determines a homomorphism of algebras
P« H(G(Eo), J) — H(Gad(EO)a Jad)

The homomorphism above preserves centers; to see this one uses the Bernstein presentation of
H(G(Ey),I) and H(Gada(Ep), Iaa) (we refer to [Rolb] for a proof of the Bernstein presentation in
this most general setting). Put Ay = X*(Z(MV)'50)®. The Bernstein presentations reflect the
decomposition W = Ap; x Wy of (7.6) and for each Wy-orbit A C Ay, there is a basis element
zy € Z2(G(Eo),I) (cf. [Hail4, 11.10.2]). The map sends zy to z5_,. To see this, we write out each
of z5 and zjz_, in terms of the standard basis elements TS and T (i )- (Use that the alcove walk
description of Bernstein functions depends only on the combinatorics of Wy, cf. [HR12, §14.2]).
Hence the following diagram commutes

(7.8) Z(G(Eo),J) Z(Gaa(Eo), Jaa)

| |

Qe[X*(Z(MY)1E0) ]V —— Qe[ X*(Z((Maa)¥)) #0)*]"o,

where the vertical arrows are the Bernstein isomorphisms of [Hail4, 11.10.1].
Now, the top arrow is neither injective nor surjective in general. To remedy this, we establish
the analogue of (7.7) on the level of centers. Assume V € Rep(ZGg,) has the following property:

(x) all the BY-highest TV-weights in V|gv are Ig,-conjugate

e.g., V|vaE0 is irreducible. Then the restriction V,q := V| L(Gad) 5y has the same property. Let
wy € m (G)}{’; be the common image of the \; € X, (T) appearing as BY-highest T"V-weights in
0
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Vl]gv, and define wy,, similarly. Note that wy — wy,, under m (G)IE0 — Wl(Gad)]EO, ie (Wy)aa =
Wv,q-

Let H(G(Ep), J)w, be the subspace generated by the elements e;T ey, w € Wy x wy. Define
Z(G(Ep), J)w, = H(G(Ey), J)wy N Z(G(Eyp),J). As in (7.4) these are the functions supported on
G(Eo)w, C G(Ep).

Lemma 7.7. Assume V satisfies property (%), e.g. V.= I(Vi,1). Then the map p.: Z(G(Eo), J) —
Z(Gada(Ev), Jaa) induces a vector space isomorphism

(7.9) Z(G(Ey), D)y — Z(Gada(Ep), Jaa)

WVad

taking Zg,v to zgad,vad.

Proof. Since p(z5) = zx,, for A (resp. Aaa) ranging over Wo-orbits in Ay N (Wee X wy) (resp. in
Any N (Wse X wy,,)), the first statement is clear. It remains to show that p, (zg)y) = Zg)ad,Vad'

Using the construction of Satake parameters ([Hailb, §9], [Hail7]), the map G — Ga.q induces a
commutative diagram (here for notational convenience we write G in place of GV):

— —~Ig, « —~1T1 " /;I * /;I
(Z(M)50)g /Wy —— (T* ™ )ge /W — (T* ") /W( 5 (G % 7] /GF "

| | |

_ I —le . il « e lE
(Z(Maa)P0)a /Wo —— (Tig Do+ /W5 — (Toy o /Wip [Gha 2 ®"]ss/Ghy -

Fix V € Rep(Gg). Starting with the regular function g* x ®* + tr(g* x ®*|V) on the variety
in the upper right corner, we pull-back along the diagram to get a regular function on the lower
left hand corner. Pulling-back in one way yields zad’ujd, and pulling-back the other way, by (7.8),

yields p.(2g v)- O
8. APPENDIX: NON-SEMISIMPLIFIED TRACE

8.1. Basic definitions. Let V € Rep(LG), and let ® € Gal(F/F) denote a fixed lift of geometric

Frobenius. Let G/Op denote a parahoric group scheme. Define zg’y € Z(G(F),G(Or)) to be the

unique function such that, if 7 is an irreducible smooth representation of G(F) on a Qg-vector space
such that 79(9r) =£ 0, then Zg,v acts on 79(9r) by the scalar

tr(s®(m) | V),

where s®(7) € [(GV)!F x ®]s/(GY)IF is the Satake parameter of 7 as defined in [Hail5], relative to
the fixed choice of ®.

Similarly, if V' is irreducible with parity dy € Z/27Z as in [HaRi, (7.11)], we define the function
Tgy on Grg(kr) by the identity

Tov = (1) tr(® | Warg (Sat(V))).

We extend by linearity to define Tg’v for all V. By the same arguments which proved Theo-
rem 5.15, Lemma 4.12, and Corollary 4.9, we may view Tg,v as an element in the Hecke algebra

Z(G(F),9(0F)).

8.2. Averaging over inertia. Choose any normal finite-index subgoup I; C Ir having the prop-
erty that 1 x I; acts trivially on V and I; acts purely unipotently on all cohomology stalks of
Ve, (Sat(V)).

Lemma 8.1. Let ¥ € I range over a set of lifts of the elements v € Ir/Iy. Then

1 o4

8.1 = Y Too
( ) g,v |IF/I1| ; g,v
(8.2) 25y = b 227
GV Ip /6| oV

Consequently, 75, = 25 v, if Tgv = Zg,v for all lifts ® of Frobenius.
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Proof. Let H be a finite group acting on a finite dimensional Q-vector space V. Let ® denote an
arbitrary linear operator on V. Then we have the identity

(8.3) tr(® | VH) = H > tr(@oh|V).

‘ | heH
Now in a cohomology stalk of Wg,, (Sat(V)), choose a Gal(F/F)-stable filtration on which Ir acts
through a finite quotient on the associated graded, denoted V. Then (8.3) yields (8.1). Similarly,
using that 1 x I already acts through a finite quotient on V', we obtain (8.2). (]

8.3. Products and unramified Weil restrictions.

8.3.1. Products. Let G, j = 1,...,n, connected reductive groups with corresponding parahoric
groups G;. Write G = Hj Gjand G = Hj g;.

Suppose V; are representations of “G;. We form the dual group L(Hj G,) = (HJ GY) x T, with
I' = Gal(F'/F') acting diagonally on the factors.

Lemma 8.2. Let V = KX;V;, the representation ofL(Hj G;) with T acting diagonally in the obvious
(F),6(0r)) =11, 2(G;(F),G(0r))

manner. Then we have equalities of functions in Z(G
d o
gv = H 76,
J

o _ [}
gV = Hzgj,vj-
J

8.3.2. Unramified Weil restrictions. Let F,,/F be a finite unramified extension of degree n, and
let Go be a connected reductive Fy,-group; let G = Resp,;rGo. Then L@ identifies with the
induced group “G = (If. Gy) x I'r, where I'p acts on the Qg-group I, Gy = H?:_Ol Gy in the

obvious way. Explicitly, as a [',-group I, Gy = []/— @y, where ' GY is G endowed with

the given action of I';;, and e Gy is the same group but with I';, acting through the given action
precomposed with the automorphism =, +— ®7~,®77. The action of ® on [ IEHGE{ is given by

(907917"'7gn 1) (gla927"'7gn 1aq)n(gO))
An irreducible algebraic representation of “G is of the form V = &” 1 - JVO, where V) is an

irreducible representation of LGy = GY x I',, and T, acts on ©~ Vo by precomposing the given
action on Vp with the automorphism ~y, +— ®/4,®~7. Then as before I'r = (®)['r, operates as
follows: I' acts “diagonally” on vectors of the form voXwvy K- - -Xwv,_1, and ® sends such a vector
to the vector v1 K vy X -+ K v, 1 K ®"(vg).

Lemma 8.3. We have the identity
tr(®| V) = tr (" | V),
and this implies the identities in Z(G(F),G(OF)) = Z(Go(Fn),Go(OF,))

n

d
TG v = Tgo,vo
Zg v = Zgo,vo

Proof. The first identity is a special case of a result of Saito-Shintani, cf. [Feng, Lem. 6.12]. The
other assertions follow from this one. O
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