
Received January 15, 2020, accepted January 29, 2020, date of publication February 5, 2020, date of current version February 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971950

3D Capsule Networks for Object Classification
With Weight Pruning
BURAK KAKILLIOGLU 1, (Student Member, IEEE), AO REN 2, (Student Member, IEEE),
YANZHI WANG 2, (Member, IEEE), AND SENEM VELIPASALAR 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, USA
2Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

Corresponding author: Burak Kakillioglu (bkakilli@syr.edu)

The information, data, or work presented herein was funded in part by National Science Foundation (NSF) under Grant 1739748, Grant
1816732 and by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number
DE-AR0000940. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ABSTRACT The proliferation of 3D sensors, due to the increased demand for 3D data, induced the 3D
computer vision research in the last decade, and 3D data processing has gained a lot of interest. As in
many other applications in computer vision, deep learning-based methods were quickly applied to 3D data
classification and have become the state-of-the-art in this area. More recently, capsule networks, which are
novel neural structures, have been introduced to enhance the ability of neural networks to better capture the
parts-relationship, which yields more accurate classification with less training data. Moreover, deploying
deep machine learning models on mobile platforms requires the models to be optimized due to limited
memory and computational constraints. In this work, we propose methods to boost the accuracies of a
standard 3D CNN-based and a Capsule Network-based classifier, help the training to better generalize
the data distribution with limited data, and optimize the models for resource-constrained environments,
such as mobile platforms. We also show that the introduction of capsules to 3D object classification
pipeline improves the classification performance with limited training data, while a specifically optimized
weight pruning method keeps the model compact enough for mobile deployment. Our broad spectrum of
experiments show that proposed methods improve the performance of the base model while significantly
reducing the memory and computation requirements.

INDEX TERMS 3D, admm, capsule networks, classification, modelnet, network optimization, shapenet,
pruning.

I. INTRODUCTION
Deep learning-based methods have become the state-of-the-
art in many fields, including machine learning, computer
vision and natural language processing. Approaches based
on deep learning, such as [1] and [2], have become the
de-facto standard for object detection applications. However,
they require significant amount of annotated training data.
Moreover, these models are computationally expensive, and
have large network structures with significant number of
parameters.

The proliferation of 3D sensors induced the 3D computer
vision research in the last decade, and deep learning for 3D
data understanding has gained a lot of interest. As mentioned
earlier, machine learning models are data driven and require

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino .

lots of positive and negative examples to be trained. On the
other hand, the amount of 3D data is significantly lower
compared to the available 2D image datasets, and labeling/
annotating 3D data is harder. Moreover, the appearance and
representation of 3D objects change for different viewpoints,
which makes the learning in 3D even harder. Due to these
constraints and challenges, models that can be trained with
less data while maintaining the classification accuracy are
more desirable. There have been various generic strategies
proposed in the literature for machine learning with less data,
such as data augmentation, transfer learning, and generative
models [3]–[8].

3D objects are usually rigid bodies with an underlying
simple or complex shape definition. Although some perturba-
tions, such as rotation, scaling and shifting, may reflect on the
external attributes, such as position in the Euclidean space,
orientation, and volume, the internal characterization of the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 27393

https://orcid.org/0000-0001-5649-1839
https://orcid.org/0000-0002-2322-8038
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-1430-1555
https://orcid.org/0000-0003-4642-7133

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

shape remains same. Therefore, an analysis scheme must
be invariant to these external perturbations while carefully
capturing the internal geometric properties of the object, and
account for the validity of the geometric positioning and
size of these parts with respect to each other. This is also
an important factor for 2D image classification. However,
the third dimension and much lower data resolution could
potentially reduce the chance of recovery further, compared
to 2D counterpart.

More recently, Capsule Networks were proposed with a
novel activation routing mechanism [9]. Capsule network
is claimed to be robust to changes of the parts in various
instantiation parameters, such as pose, deformation, veloc-
ity, texture etc. A capsule is a vector of neurons, which
encapsulates multiple activations in one group. A capsule
layer consists of many capsules. A special agreement mecha-
nism, between subsequent capsule layers, is used for training
these layers. The encapsulation of activations and agreement
mechanism encourage each capsule to be responsible for
capturing how an entity is represented in the dataset, instead
of only indicating its existence as in traditional neural acti-
vations. This property greatly increases the explainability
and the accountability of the model during and after it is
trained.

In our preliminary work [10], [11], we introduced a 3D
Capsule Network, referred to as 3D CapsNet, to perform
object classification from 3D volumetric data. Despite its
ability to extract features from 3D objects, the large model
size of the 3D CapsNet hurdles its deployment on resource-
constrained platforms, such as mobile phones, IoT devices,
and unmanned vehicles etc.

Model compression of neural networks has been proven
to be an effective method to reduce the network model
size so that the state-of-the-art deep neural networks can
be implemented on FPGAs and ASICs [12]–[14]. In this
work, we propose an optimized neural network model for 3D
object classification by using a weight pruning approach to
significantly compress our proposed 3D CapsNet, so that it
can be implemented on mobile platforms or edge devices.
Our pruning approach is based on the Alternating Direction
Method of Multipliers (ADMM), which achieves state-of-
the-art pruning ratio. The approaches proposed in this paper
can also make an existing model more accurate, especially
with limited training data, and significantly reduce the num-
ber of parameters of a model.

In this paper, one goal is to show that a network’s clas-
sification accuracy can be improved, especially with limited
training data, while significantly reducing the network size
at the same time. We also show that these strategies can
be applied to other architectures without loss of general-
ity. Therefore, in addition to comparing with other existing
work, we also test our methods on a base model for a more
commensurate comparison, and provide thorough experi-
mental analysis on different datasets and with different data
encodings.

The contributions of this paper include the following:

• A 3D object classification method, referred to as 3D
CapsNet, which captures part-relationships better and
requires less data for training.

• An ADMM-based weight pruning method for signifi-
cantly reducing the number of parameters of our pro-
posed 3D CapsNet without accuracy loss.

• A comprehensive set of experiments including compar-
ison of accuracy, number of weights and compression
ratio on different datasets.

• A detailed analysis showing the performance on
decreasing amounts of training data.

• An optimization to the dynamic routing mechanism for
faster computation while maintaining the classification
accuracy.

The work proposed in this paper is different from, and
improved compared to our previous work [10], [11] in mul-
tiple ways including (i) the development of a weight pruning
approach based on ADMM and applying this approach to
the proposed 3D CapsNet to significantly reduce the num-
ber of weights and the memory requirements of the model
for embedded deployment, and increase the accuracy at the
same time; (ii) introducing an optimization to the dynamic
routing mechanism for faster computation while maintaining
the classification accuracy; (iii) performing a comprehensive
set of experiments comparing accuracy, number of weights
and compression ratio on different datasets and showing the
significant decrease in the number of weights together with
the effect of weight pruning on the classification accuracy;
(iv) comparison with additional existing work and a base
model; (v) providing a detailed analysis by using different
data splits showing the performance on decreasing amounts
of training data.

The rest of this paper is organized as follows: The related
work is discussed in Section II. The proposed 3D CapsNet
and its optimization with the weight pruning algorithm are
described in Sections III and IV, respectively. Experimental
results are presented together with a discussion in Section V,
and the paper is concluded in Section VI.

II. RELATED WORK
A. 3D OBJECT CLASSIFICATION
There have been various works for 3D object classifica-
tion [15]–[26]. In contrast to 2D case [27], [28], 3D data
has different data representations, and requires careful model
design for each type of data representation. Below, different
studies will be discussed separately based on the 3D repre-
sentation that they use.

1) METHODS BASED ON DEPTH MAPS
These methods are often called 2.5D approaches, as they
actually do not process in 3D, despite the fact that data
contains spatial information. The data is a 2D depth map
and is processed either as a single channel image or as the

27394 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

fourth channel together with RGB color channels. [15] is
one of the early studies, which uses convolutional features
of depth maps for transfer learning. [16] fuses convolutional
features, which are extracted from depth maps and color
images separately in different branches, for hand-held object
recognition.

2) MULTI-VIEW AND PANORAMIC METHODS
Not all the spatial object classification models utilize a 3D
sensor. [17] proposes amulti-viewConvolutional Neural Net-
work (CNN) model for classification of 3D objects by fusing
2D rendered views of the objects from various different view-
points. Similarly, [18] proposes a CNNmodel that utilizes 2D
renderings of the objects together with viewpoint information
in both guided and unguided settings. [19] proposes a novel
2D panoramic representation for 3D object classification.

3) 3D VOXEL GRID-BASED METHODS
Initial works, which process the 3D data actually in 3D
domain by encoding the information as voxel-grids, use 3D
convolutional kernels for feature learning and extraction.
An earlier work in this category is 3DShapeNets [20], which
proposes a 3D CNN-based model for object classification
using volumetric grids with next-best-view approach, which
benefits from multiple views. The 3D information is encoded
into 30 × 30 × 30 volumetric grid as binary occupancies.
The work in [20] was introduced together with the ModelNet
dataset and benchmark, which enabled further improvement
by others. Another 3D convolution-basedmethod, which uses
3D voxel grids, is proposed in [21]. It compares different
voxel grid representations, such as binary and probabilistic
occupancy grids, as well as data augmentation techniques for
3D object recognition in spatial domain. [22] uses 30× 30×
30 binary voxel grids from several different viewpoints and
proposes two neural architectures to classify them. The first
network performs auxiliary training by subvolume supervi-
sion, and the second network performs anisotropic probing
by an elongated kernel to capture the global structure of the
3D volume.

4) POINT CLOUD-BASED METHODS
In recent literature, voxel grid-based representation was very
popular because of its simplicity and well-organized nature,
which fits well with the neural architectures. However, pro-
cessing 3D voxel grids in a neural network setting is a
demanding task. [23] and [24] criticized voxel grid-based
methods for having O(n3) time and space complexity, and
for requiring 3D convolution operation. [23] and [24] also
discuss the advantages of processing 3D point clouds in a
neural network directly, which is a more natural and detailed
3D representation, which contains more information while
usually requiring much less memory. However, the problem
with processing point clouds is that they are unordered set
of points. The same point cloud data (set) with N points can
be represented in N ! different ways. Thus, this requires a
model to be invariant to permutation of point ordering. [23]

proposes the PointNet architecture, wherein the input to the
neural network is a 3D Point cloud (PN×3) with N points.
It first applies a transformation network T-Net to get the
canonical rotation of the input, and applies a Multi-Layer
Perceptron (MLP) network to each point individually. Then
it applies a commutative function (max-pooling) over the
point dimension to get a point order invariant latent space
representation. This representation is then fed into another
MLP classifier to get the softmax probabilities. [24] proposes
an order equivariant layer for feature extraction from individ-
ual points while preserving their order. Then similar to [23],
it uses a commutative function (averaging) to get the latent
space representation of the object from the extracted features
by equivariant layers. [25] is the proceeding study of [23].
It uses the same PointNet structure internally, but it applies
PointNet to several hierarchical parts of the object separately
and extracts local features from the object. More recently,
another deep learning model for 3D point clouds is proposed
for addressing contextual information between local regions
implicitly via attention mechanism with LSTM (Long-Short
Term Memory) units [26].

B. NETWORK OPTIMIZATION
In order to achieve high accuracy, the state-of-the-art
approaches tend to build deeper and wider networks con-
taining millions of weights. However, the significantly large
number of weights incurs massive computation and storage
burden, hindering the deployment of the state-of-the-art deep
learning methods on resource-constrained platforms, such as
mobile phones and embedded devices. It has been extensively
studied and shown that there exists inherent redundancy in
these weights, and there have been increasing research efforts
on removing this redundancy, which is known as weight
pruning [13], [14], [29], [30].

A heuristic pruning method is used in [13] by directly
removing the weights with small magnitudes and retrain-
ing the network. This work achieves 9× weight reduction
on AlexNet [27] for ImageNet dataset, but it only achieves
2.7× reduction on the convolutional layers of AlexNet, which
accounts for the main computations and number of weights
in the state-of-the-art deep neural networks (DNNs), such
as GoogleNet [31] and ResNet-50 [28], etc. [28], [31].
Low-rank matrix factorization [14], [29] is another way of
pruning by decomposing the original weight matrix into the
linear composition of a set of low-rank weight matrices. Even
though these methods can achieve good compression ratio
by constraining the rank to a small number, they also incur
significant (>3%) accuracy loss. NeST [30] achieves weight
reduction by learning a compact architecture, and provides
15.7× and 30.2× overall reduction on AlexNet and VGG,
respectively, but only 2× to 5× reduction are obtained on the
convolutional layers of AlexNet and VGG [32].

III. 3D CAPSULE NETWORKS
As mentioned in [9], CNNs do not necessarily impose any
restrictions on relative positioning of parts with respect to

VOLUME 8, 2020 27395

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

FIGURE 1. Routing of information from the first capsule layer to the
capsule vi in the second capsule layer.

each other, and need large amounts of training data to gen-
eralize the classifier. All low-level details are sent to all of
the higher level neurons, which then perform further convo-
lutions to check whether certain features are present. This
is done by striding the receptive field and then replicating
the knowledge across all different neurons. Capsule networks
(CapsNet) were proposed [9] to address these problems.

In a CapsNet, neurons (which output scalar values) are
replaced with capsules (which output vectors). A capsule
contains several neurons, and together they represent instanti-
ation parameters of a feature. Like neurons, capsules are also
stacked into layers. However, unlike convolutional layers,
capsule layers will activate only certain capsules that best
represent the incoming image (or just a feature). A CapsNet
addresses the aforementioned issues of CNNs by treat-
ing different orientations of an image as the same object.
Hence fewer training examples suffice during the train-
ing of CapsNets. The CapsNet solves the issue of transla-
tional invariance by preserving the geometric dependence of
features.

Capsule Networks were originally proposed for 2D
data [9]. The model used in this work, namely 3D Capsule
Network, is an extension of the 2D Capsule Networks to 3D
data, andwill be referred to as 3DCapsNet. To account for the
complexity of 3D data, in comparison to MNIST dataset that
was used in [9], 3DCapsNet uses additional layers to improve
the model. In our experiments, we use the 3D CapsNet archi-
tecture shown in Fig. 2, and improve the performance of our
previous work [10] by incorporating ADMM-based weight
pruning optimization and routing mechanism optimization,
which are detailed in Sections IV and V-F, respectively.
We also perform additional comparative experiments with the
state-of-the art models and a base model on multiple datasets
with different training/testing splits to show the significant
decrease in the number of weights together with the effect of
weight pruning on the classification accuracy.

A. CAPSULE LAYERS
Although the idea of capsules was first introduced by Hinton
in [33], their first use in a deep, specifically convolutional,
neural network is in [9], thanks to the proposed dynamic
routing between capsules algorithm. A capsule is basically
a small group of neurons, each of which is responsible for

various properties of a particular entity. Each capsule is rep-
resented as a vector in the layer and a layer is composed of
multiple capsules. A special function, which is called squash-
ing function (see Eqn. (1)), ensures that the length of each
vector is squashed into [0, 1) range. Therefore, squashing
function also works as a regularizer. The length of the capsule
vector indicates how well the entity, of which the capsule is
responsible for, is represented in the data. If a particular entity
does not exist in the data, the length of the capsule, which
is responsible for that entity, is expected to be close to zero.
The squashing function is defined as following, where sj is
the vector that is accumulated by the contributions from the
previous capsule layer and vj is the final capsule vector, which
is the squashed version of sj:

vj =
‖sj‖2

1+ ‖sj‖2
sj
‖sj‖

(1)

B. DYNAMIC ROUTING
The reason that capsules have not appeared in deep neural
networks until recently is that there was not a practical and
effective way to train them in a neural network. The first
study to train a capsule network introduced the dynamic rout-
ing mechanism, which routes the information from previous
capsule layer to the next one by an agreement [9]. If the
agreement between the capsules at lower and higher level
is high, then the input at the lower capsule is sent to the
higher one due to a greater coupling coefficient between these
capsules. This provides a dynamic mechanism for lower level
features to contribute to a feature at the higher level if they
are related. Internally, a prediction ûj|i of the next layer is
made by a dot product of the capsules at current layer (uj|i)
with a weight matrix W ij as given in Eqn. (2). This initial
guess is similar to dense network between each capsules.
The coupling coefficients cij, which are log probabilities, are
updated iteratively by an agreement between consecutive cap-
sule layers. At the final iteration, these coefficients are used
as weights to either suppress or encourage the contribution
of lower level capsules to certain higher ones. The weighted
sum of the predictions (ûj|i) are calculated with cij’s and then
squashed as defined in Eqn. (1) to produce the capsules at
the next layer (vj). Fig. 1 illustrates routing operation for
capsule vi.

sj =
∑
i

cijûj|i, ûj|i = W ijuj|i (2)

C. 3D OBJECT CLASSIFICATION WITH
CAPSULE NETWORKS
A capsule network can be defined as a convolutional deep
neural network, which contains at least two capsule layers,
where a specialized routing happens in between. A capsule
layer can be used as a stand alone classifier as in [9]. Oth-
erwise, it can be used as a regular feature extractor and its
output is routed to another feature layer or to a classifier.

In our model, we use a series of 3D convolutional layers
as the initial feature extractor, which takes 3D voxel grids

27396 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

FIGURE 2. 3D Capsule Network architecture for
ModelNet-10 classification. Three convolutional layers with 3D kernels
extract low level features from input data. Primary capsule applies one
more layer convolutional feature extraction and re-organizes the
activations as capsules as 8 dimensional vectors. The iterative dynamic
routing happens between primary and class capsules, where the features
are classified into 10 categories.

as inputs. These initial layers are responsible for extracting
basic features, such as curvatures, corners, edges etc., as well
as more abstract features, such as table tops, chair legs etc.
A pair of capsule layers follows the convolutional layers
for better investigation of the extracted features’ interrela-
tions and classification. It should be noted that the minimum
number of capsule layers in a capsule network is two given
the fact that learning on capsules is done by the dynamic
routing by agreement algorithm between consecutive capsule
layers during back propagation. The structure of the proposed
3D CapsNet model is shown in Fig. 2. It should also be
noted that it does not contain pooling layers for rotation and
translation invariance. Instead, it accommodates the variance
of conceptually and visually similar, but different objects.

IV. NETWORK OPTIMIZATION
As mentioned in Section II, it has been shown in prior work
that there is significant redundancy in CNNs, and pruning,
which reduces the number of weights in neural networks, has
been extensively studied [12], [13], [34].

Our proposed 3D CapsNet is intended for 3D object clas-
sification tasks. Compared with the CNNs designed for 2D
datasets, the added third dimension introduces more redun-
dancy in the network. Moreover, we add extra convolutional
layers with large kernels (e.g., 5 × 5 × 5) to extract the
pose features of the 3D objects. Although these added layers
significantly improve the accuracy of 3D CapsNets, they
also add to the redundancy. ADMM-based weight pruning
has been proven to be an effective pruning method, and
achieves the state-of-the-art pruning ratio [12]. Therefore,
we integrate the ADMM-based pruning into our 3D CapsNet
to significantly reduce the redundancy while maintaining our
3D CapsNet’s accuracy, so that it would be possible to deploy
our 3D CapsNet on resource-constrained platforms.

A. ADMM METHOD
ADMM has been demonstrated to be a powerful optimiza-
tion framework for solving a non-convex optimization prob-
lem that is difficult to solve directly [35], [36]. Through
decomposing the original problem into subproblems that can
be solved relatively easily, and through iteratively solving
the subproblems, the original problem can converge to a

satisfactory solution. For example, the optimization problem

min
x

f (x)+ g(x) (3)

can be solved with ADMM if two conditions are satisfied: i)
f (x) is differentiable, and ii) g(x) has some special structure
that can be exploited. By introducing an auxiliary variable z,
the problem can be re-written as

min
x,z

f (x)+ g(z),

subject to x = z. (4)

Next, the above problem can be decomposed into two sub-
problems on x and z, using augmented Lagrangian [37]. The
first is minx f (x)+q1(x), where q1(x) is a quadratic function.
In the case of training neural networks, subproblem 1 can be
solved via back-propagation. Subproblem 2 is minz g(z) +
q2(z), where q2(z) is a quadratic function. Since function g
is required to have some special structure, it can be solved
analytically. The problem (4) is solved via iteratively solving
the two subproblems.

B. DESIGN DETAILS OF ADMM PRUNING
ON 3D CAPSULES
In order to apply ADMM-based weight pruning to the
proposed 3D CapsNets, we need to formulate the prob-
lem as shown in (4). First of all, we will add con-
straints to each layer of the neural network as Sl =
{the number of nonzerowegiths at lthlayer is less thanαl},
l = 1, . . . ,N , and integrate the constraints into the loss
function. Then the pruning problem becomes

minimize
{Wl },{bl }

f
(
{Wl}

N
l=1, {bl}

N
l=1
)
,

subject to Wl ∈ Sl, l = 1, . . . ,N . (5)

where Wl and bl are weights and biases in the lth layer,
respectively. By introducing an auxiliary variable Zl = Wl
and an indicator function

g(Wl) =

{
0 ifWl ∈ Sl,
+∞ otherwise,

the problem (5) can be rewritten as

minimize
{Wl },{bl }

f
(
{Wl}

N
l=1, {bl}

N
l=1
)
+

N∑
l=1

g(Zl),

subject to Wl = Zl, l = 1, . . . ,N . (6)

Next, ADMM plays a role in solving problem (6). It decom-
poses the problem into two subproblems, using augmented
Lagrangian. The first subproblem is written as

minimize
{Wl },{bl }

f
(
{Wl}

N
l=1, {bl}

N
l=1
)
+

N∑
l=1

ρl

2
‖Wl − Z kl + U

k
l ‖

2
F ,

(7)

whereU k
l := U k−1

l +W k
l −Z

k
l is the dual variable updated in

each iteration, and ρl is referred to as the penalty term. This

VOLUME 8, 2020 27397

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

subproblem can be seen as a loss function with a dynamically
updated weight decay regularization, where the regulariza-
tion target Z kl is solved in the second subproblem. Therefore,
the first subproblem can be solved via back-propagation.

On the other hand, the second subproblem is written as

minimize
{Zl }

N∑
i=l

g(Zl)+
N∑
l=1

ρl

2
‖W k+1

l − Zl + U k
l ‖

2
F . (8)

Since g(·) is an indicator function, it has an analytical solution
that can be written as

Z k+1l = 5Sl (W
k+1
l + U k

l), (9)

where 5Sl (·) represents the Euclidean projection ofW k+1
l +

U k
l onto the set Sl . The details of the solution to this sub-

problem is problem-specific. For our weight pruning prob-
lem, the solution of Z k+1l is obtained by keeping the first
αl weights that have the largest magnitude. In other words,
the weights at the lth layer are sorted according to their
magnitudes |wij|. Then the top αl weights are kept and the
rest are eliminated.

In each iteration, subproblem 1 and subproblem 2 are
solved, and the solutions W k+1

l and Z k+1l are used to update
the dual variableU k+1

l . After one to several tens of iterations,
the problem (5) will converge and a satisfactory solution
can be obtained. It should be noted that the solution is
not guaranteed to be optimal because of two reasons: first,
ADMM is used to solve a problem that itself is hard to
solve directly, and thus ADMM can guarantee a satisfactory
solution rather than the optimum; second, the solution to the
loss function f

(
{Wl}

N
l=1, {bl}

N
l=1

)
cannot be guaranteed to be

optimal. However, we can still claim that the solution is good
enough to produce high performance for a neural network.

Since 3D CapsNet is responsible for classifying 3D objects
that impart 4D activations, and 5D kernels as a result,
it is more difficult for 3D CapsNet to converge when the
ADMM-based weight pruning is applied. Therefore, in order
to make the ADMM-based weight pruning over 3D CapsNets
more stable, we adopt a dynamic penalty term adjusting
strategy [37]. That is, we evaluate the primal residual rk =
||W k+1

l − W k
l ||

2
2 and dual residual sk = ||Z k+1l − Z kl ||

2
2 in

each iteration. When the primal residual is greater than the
dual residual by u, that is rk

sk > u, the penalty ρl is increased
by t . On the other hand, if the dual residual is greater than the
primal residual by u, that is sk

rk > u, the penalty ρl is divided
by t . The typical values for u and t are 10 and 2, respectively.
After solving the ADMM-based pruning, we still need to

run a masked re-training, because the pruned 3D CapsNet
still contains many nonzero weights with small magnitudes
that are close to zero. These weights need to be set to zeros
and masked during the re-training stage, that is, those zero
weights will not be updated.

V. EXPERIMENTAL RESULTS
We have conducted an extensive set of experiments with
the proposed 3D CapsNets and network optimization on

FIGURE 3. Base model architecture, which is a standard 3D CNN,
is designed and used for commensurate comparison with the proposed
3D CapsNets. The role and significance of the base model is that it is
composed of basic building blocks of a traditional CNN in order to show
that the evident improvement is due to capsules, rather than complex
and domain-dependent modifications.

TABLE 1. Performance comparison on standard datasets without weight
pruning*.

various datasets with different data splits (by using decreas-
ing amounts of data for training). ModelNet dataset is
one of the synthetic datasets, which contains various cat-
egories of 3D CAD objects from public online sources
with ground truth [20]. ModelNet has two benchmarks,
namely ModelNet-10 and ModelNet-40, which are 10-class
and 40-class subsets of most common objects, respectively.
ShapeNetCore55 is another synthetic dataset, similar to
ModelNet, which contains CAD models of 55 most common
objects [38]. In our experiments, in order to show the perfor-
mance of the proposed 3D CapsNets on decreasing amounts
of training data, we used varying portions of training sets
while keeping the validation and testing sets fixed.

A. MODEL ARCHITECTURE AND
EXPERIMENTAL SETTINGS
Our proposed 3D CapsNet architecture is shown in Fig. 2.
It contains four 3D convolution layers followed by two
capsule layers. The first capsule layer consists of 1728
8-dimensional vectors as primary capsules. The second
capsule layer, namely class capsules, consists of C-many
16 dimensional vectors as class capsules, where C is the
number of categories in the training set. Thus, the class cap-
sule layer changes across different datasets. Since the class
capsule is already being used for classification, there are no
dense layers in our 3D CapsNet architecture. We defined and
trained a base model, which is similar to the VoxNet [21] in
its architecture, but with wider and deeper layers, i.e., more

27398 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

TABLE 2. Performance comparison with smaller training sets and weight pruning*.

parameters, in order to make a fair and commensurate com-
parison with our 3D CapsNet architecture. The base model,
shown in Fig. 3, contains four convolutional layers, as in
the 3D CapsNets, which are followed by three dense layers
with dropout for classification. The role and significance
of the base model is that it is composed of basic building
blocks of a traditional CNN in order to show that the evi-
dent improvement is due to capsules, rather than complex
and domain-dependent modifications. All of the trainings is
performed in a supervised manner, i.e., with ground truth
labels, via backpropagation using Adam optimization [39]
with minibatches of 32. We used 0.0005 as the learning rate
during the pretraining of 3D CapsNet as well as during the
two weight optimization stages defined in Section IV. Our
experiments are performed onNVIDIATitanX (Pascal) GPU
with Tensorflow implementations of the presented models.

As elaborated in Section I, traditional deep learning meth-
ods require large amounts of training data to perform well.
One of our goals in this paper was to show that the proposed
approach can perform better than other methods, especially
when limited amount of training data is available. The perfor-
mance improvement provided by our approach becomesmore
apparent when training data size gets smaller, since other
traditional approaches need large amounts of training data.
This is the reason that we performed experiments by using
decreasing amounts of training data to compare different
methods. For instance, the default (provided by the authors)
training set size is 78% of the entire data in the ModelNet-40
dataset. We randomly subsampled only the training data in
a stratified manner to generate different training data corre-
sponding to 30% and 60% of the entire dataset. It should be
noted that the test set remains same and does not overlap
with any of the training set. All accuracies reported for a
dataset are evaluated on the same test set. We presented the
results in Table 2, while the Table 1 shows the results with the

original training set sizes. This is discussed in more detail in
Section V-B.

B. CLASSIFICATION RESULTS
We evaluated the classification accuracy of 3D CapsNets on
both ModelNet-10 and ModelNet-40 [20] subsets as well as
on the ShapeNetCore55 [38] dataset. We consistently show
across these datasets that when the given training data pro-
gressively gets smaller, the performance margin between our
model and other approaches increase. This signifies the better
generalization capability of our model with less data. The
results are presented in Tables 1 and 2, where we compare our
results with the state-of-the-art and other approaches. In fact,
there are many results are reported on ModelNet benchmark
and the performance of the latest models are similar to each
other. Therefore, to compare with our model we chose the
Point2Sequence model [26], which is one of the recent works
among the state-of-the-art, and the VoxNet model [21], which
is one of the pioneer works and has a simple traditional CNN
architecture. Although the VoxNet is an earlier approach with
lower accuracy, it is a perfect candidate for highlighting the
improvement by the capsule layers in our work, similar to the
purpose of the base model mentioned earlier.

Table 1 summarizes the results obtained with different
methods without weight pruning so that the performance of
the proposed 3D CapsNet (before pruning) can be compared
with others. For Table 1, the results on the ModelNet-10 and
ModelNet-40 sets have been obtained by using the default
training-testing split of the ModelNet dataset, in which the
training data is the 78% of all data. As can be seen, with
the ModelNet-10 dataset, the proposed 3D CapsNet provides
the highest accuracy. However, overall, its advantages and
strength are not as pronounced when using a larger portion
of the training dataset, i.e. when more data is available, since
the proposed approach outperforms others, especially when

VOLUME 8, 2020 27399

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

limited amount of training data is available. More discussion
on this is provided below by referring to Table 2.
Table 2 shows the classification performance of and the

number of parameters for the compared models before
and after ADMM-based weight pruning is applied, for the
ModelNet-10 and ModelNet-40 datasets. Moreover, Table 2
presents these results for decreasing amounts of training data,
which shows the strength of the proposed 3D CapsNet when
smaller amounts of training data is used. It can be observed
from Tables 1 and 2 that when the training set is larger our
model’s performance is on par with [26], which is among
the-state-of-the-art. However, as the size of the training data
decreases, as shown in Table 2, our model performs better
than all the other methods, and our model is more robust to
decreasing the size of the training set than any other method.
This indicates a better generalization of the objects’ geo-
metric properties by agreement of their parts. More specif-
ically, for ModelNet-10 dataset, when 60% of the dataset
is used for training, the proposed method provides 4.05%
and 2.12% increase in accuracy compared to VoxNet and
Point2Sequence, respectively. When the training data size
is decreased to only 30% of the dataset, the performance
improvement provided by our method increases, and it pro-
vides 7.75% and 3.32% increase in accuracy compared to
VoxNet and Point2Sequence, respectively. It should be noted
that when 30% of the data is used for training, there are
only 1052 and 3693 training samples for ModelNet-10 and
ModelNet-40 datasets, respectively. When training dataset
size is to 60% of all data, there are only 2104 and 7386 train-
ing samples for ModelNet-10 and ModelNet-40 datasets,
respectively. In order to show that these results are not due
to a specific split, we have also performed a three-fold cross
validation when 30% of the dataset is used for training.
For this, we first separated the test set. Then, folds have
been created by randomly sampling (without replacement)
the remaining training set in a stratifiedmanner (proportion of
each object class is preserved in the subsampled sets). In other
words, three different subsets were sampled from the training
data and the subset size corresponded to 30% of the size
of the entire ModelNet10 or ModelNet40 dataset (training
+ test sets). After three-fold cross validation, for ModelNet-
10 dataset, the average accuracies obtained are 93.21% and
90.95% for our proposed 3DCapsNet and Point2Sequence,
respectively. For ModelNet-40 dataset, the average accu-
racies obtained are 82.75% and 81.22% for our proposed
3DCapsNet and Point2Sequence, respectively. Thus, even
before weight pruning, our proposed 3DCapsNet performs
better when only limited amount of training data is available.
It can also be seen from Tables 1 and 2 that the base model
we employ performs comparably to VoxNet [21], which are
similar in their architecture with some subtle differences in
hyperparameters. For instance, the base model has deeper
and wider convolutional layers than VoxNet and it has larger
dense layers.

Table 2 also shows the significant decrease in the num-
ber of network parameters obtained with the ADMM-based

pruning approach that we use on the base model and the
3D CapsNet. More discussion on this will be provided in
Section V-C. Overall, the proposed 3D CapsNet model per-
forms better than the other methods, even with much fewer
parameters after weight pruning. We also observe that 3D
CapsNet consistently performs better on the objects with
rounded parts. This shows that 3DCapsNets aremore capable
of adapting surfaces with smoother curvatures, while main-
taining the accuracy of the objects with more aggressive
curvatures, such as sharp edges. In order to show the supe-
riority of our model in extreme scenario, Table 3 presents
the individual class accuracies of the proposed 3D CapsNets
trained on the ModelNet-10 dataset with only 5% training set
split ratio.

ShapeNetCore55, on the other hand, is a very challenging
dataset due to large variations within a class. Furthermore,
it is highly unbalanced, and it did not yield to a stable
training when the whole dataset is fed during the training at
once. In order to evaluate the classification accuracy of 3D
CapsNets, we followed an iterative approach to train our
network with ShapeNetCore55 data. We divided the dataset
into batches of 10 classes, which are sorted in descending
order based on the number of samples. We started the training
with the data only in the first batch of classes, which has
the largest representation in the dataset. The network quickly
adapted to the given training set and we introduced second
batch of class together with the previous one.We repeated this
until all 55 classes are finally started to being trained stably.
We sampled 20% of the data in a stratified manner based on
the class labels as the training set and used the rest as the test
set. Due to the complexity of the training procedure, we only
compare the base network and the proposed 3D CapsNet
model. Since ADMM-based weight pruning is not applied
to models trained on ShapeNetCore55 dataset, the results are
presented in Table 1. The large margin proves the superiority
of the proposed model on this very challenging dataset.

Fig. 7 shows a few correct and incorrect classification
samples from ModelNet-10 with 3D CapsNets. We observe
that our architecture distinguishes the object with strong
confidence in most of the cases. The failure cases of 3D
CapsNets include the ones in which the objects are similar
in their appearance and nature, such as desk and table, table
and night-stand. Since there is no softmax applied and the
squashing function normalizes the length of each capsule vec-
tor to 1, represented values on the table are the length of the
corresponding capsules in the class capsule layer. Therefore
the value indicates how strong the given capsule, which is the
class itself for the last layer, is represented in the object, rather
than indicating the probability of belonging to that class.

C. NETWORK OPTIMIZATION
From Table 2, it can be seen that almost all proposed Cap-
sNet models provide higher accuracy than their base model
counterparts, even though the base models have more weight
parameters. It can demonstrate that CapsNet has stronger
capability to extract 3D features with smaller amounts of

27400 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

TABLE 3. Individual class accuracies (%) on ModelNet-10 with 5% training set without weight pruning.

FIGURE 4. Rendered meshes (top) from ShapeNet database and
corresponding voxel grid representations (bottom) of their visible
surfaces. Viewpoints of voxel grid representations are adjusted to
illustrate the effect of self-occlusion better. Objects from top to bottom:
table, chair, bathtub, bed, sofa.

training data. Moreover, the CapsNet models can achieve
higher compression ratio than their base model counterparts.
This is because the capsules are more powerful in extracting
pose information, so less parameters are needed for CapsNet
tomaintain the accuracy.When comparing themodels trained
with 30% data with the models trained with 60% data, it can
be found that higher compression ratios are achieved on the
30% data-trained models. This is because the training data
size is smaller, so the 30% data-trained models are more over-
parameterized than the 60% data-trained models. Overall, 3D
CapsNet models, on which ADMM-based weight pruning
applied, perform the best among all other methods in terms
of classification accuracy with very significant model com-
pression and fewer network parameters.

TABLE 4. Partial data classification results.

FIGURE 5. Average Precision-Recall curves for partial data training.

FIGURE 6. 3D binary voxel grid (left) and TDF encoded 3D voxel grid
(right). Smaller and darker (red) points are far from a surface whereas
lighter (yellow) and larger points are close to a surface.

D. PARTIAL DATA RESULTS
Synthetic CAD models are usually the exact replica of the
objects and they possess all of their geometric properties.
However, when an actual object is captured by a sensor or ren-
dered in a software, the captured data usually corresponds to
only a small fraction of the object. First, only the surface can
be captured, and the internal parts are completely invisible
to the sensor or the renderer. Second, the back part of the
object cannot be captured from a single viewpoint, since
object itself occludes the sensor’s or renderer’s view. A well-
designed classifier model should be able to work with such

VOLUME 8, 2020 27401

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

FIGURE 7. Examples of three correct (left) and three false classifications (right). We observed that falsely classified objects are usually confused with
semantically or geometrically similar classes, such as table-desk, nightstand-table, bed-bathtub etc.

data since it is not very likely to have the full object in
an application. With this in mind, we tested our approach
with 3D surfaces from different views of the objects using
a small subset of ShapeNetCore55 dataset. We used Blender
software [40] to get the depth map of the object meshes from
various viewpoints. These depth maps are then converted to
point clouds and voxelized. We extracted surface data from
12 different viewpoints for each mesh in the dataset. Fig. 4
shows mesh samples of 5 common objects and voxel grid
representations corresponding to their rendered depth maps
from 6 different viewpoints.

Four experiments have been performed on both 3D
CapsNet architecture and the base model. Each of these
experiments are the combination of following two condi-
tions: 1) With and without test-time voting, 2) 5% and
40% training dataset. Test-time voting is the majority voting
accuracy where the predicted label of an object is deter-
mined based on the prediction of its different viewpoints.
Without majority voting (i.e., individual), all test data is
calculated independently in the overall accuracy calcula-
tion. Table 4 shows that, with or without majority voting,
3D CapsNet performs considerably better than the base
model in both 5% and 40% training data split rates. Fig. 5
shows the precision-recall curve comparsion for partial data
results of the 3D CapsNet and base model with varying
threshold.

E. INPUT ENCODING RESULTS
The representation of the data is of great importance in 3D.
An object can be represented by various different ways, which
may or may not convert to each other. Point cloud representa-
tion of a 3D object, P, can be generated from a depth mapM
by the equation PN×3 = f (MH×W , θ), where θ is the intrinsic
camera parameters and f is a linear mapping and bijection.
If the initial representation of the object is a 3D mesh, such

as a synthetic object, the 3D point cloud representation can
be created by pseudorandom sampling of the mesh represen-
tation. Then these point clouds are quantized into regular 3D
grids, which is also known as voxelization, for processing in
a neural architecture. Although some information (detail) is
lost while quantizing a 3D point cloud into a voxel grid (vox-
elization), the resulting voxel grid is still rich in preserving
geometric properties of the input object.

We used the standard binary occupancy voxel grid encod-
ing throughout all the experiments above. In order to validate
the classification accuracy of 3D CapsNets, we performed
a comparison analysis with other 3D encodings. In the first
scheme, point normal vectors are used instead of binary
occupancies.We used 0.5% of the size of the object as normal
estimation radius. The shape of input object became 30×30×
30 × 3 where the last dimension holds the XYZ values of
normal vectors while leaving the values for empty regions as
zero.

Beyond the binary occupancies and point normals, there
is an encoding scheme called Truncated Distance Function
(TDF), proposed in [41], in which each voxel contains a
floating point number value which is the distance to the clos-
est surface. TDF is the absolute value of TSDF (Truncated
signed distance function) encoded data, which is often used
in computer graphics [42]. Examples of a TDF encoded voxel
grid can be seen in Fig. 6. We tested our algorithm with TDF
encoded voxel grids. With TDF encoded data, the network
is fed with some information about the surfaces beforehand,
which helps the training to catch curvature features better.
The shape of the TDF encoded data is still 30 × 30 × 30
as in the binary grids, while the values become continuous
between [0− 1].
Table 5 shows the comparison result of three encoding

schemes used to train 3D CapsNets. Although the accuracy
increase is not very large, we observe that introducing

27402 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

TABLE 5. Accuracy comparison with different input encodings.

prior information for surface and curvature with point nor-
mals or TDF helps in classification.

F. ROUTING MECHANISM OPTIMIZATION
We observed in our experiments that tuning the number
of dynamic routing iterations does not lead to considerable
improvement. In fact, we achieved the same accuracy with
routing the capsule activation once without any iteration,
i.e., when the number of iterations is one. Therefore, we opti-
mized the original dynamic routing mechanism. Because
we hypothesize that each capsule will learn certain entity,
the relationship between these abstractions between layers
should also be learnable. Thus, in our modified procedure,
instead of predicting correspondence coefficients iteratively
in a loop based on the predictions of next layer, we made
these parameters trainable. We also used 70% dropout during
training in order to avoid overfitting of these coefficients
to certain capsule connections. These learned coefficients
are then applied as weights to predicted capsules of next
layer. This masking procedure can be thought of as a soft-
attention mechanism [43], which is deterministic in nature,
between capsules in consecutive layers. Finally, the squash-
ing is applied to get the capsule of the next layer. The accuracy
results of the non-iterative method is on par with the vanilla
3D CapsNets while runtime speed gets 15% faster with the
optimized routing.

VI. CONCLUSION
We proposed an improved version of our 3D object classifica-
tion method, referred to as 3D CapsNet, which captures part-
relationships better and requires less data for training. Despite
its ability to extract features from 3D objects, the large model
size of the proposed 3D CapsNet hurdles its deployment on
resource-constrained platforms, such as mobile phones, IoT
devices, and unmanned vehicles. In order to address this,
we have also introduced an ADMM-based weight pruning
method to significantly reduce the number of parameters of
our proposed 3D CapsNet with a further improvement on the
accuracy. We have shown the performance of our proposed
approach on comprehensive set of experiments including
comparison of accuracy, number of weights and compression
ratio between different approaches on different datasets. The
detailed analysis have shown that our proposed 3D CapsNet
models, to which ADMM-based weight pruning is applied,
performs the best among all other methods in terms of clas-
sification accuracy with very significant model compression
and fewer network parameters. The results also show the
strength of the proposed 3D CapsNet (before and after weight

pruning) especially when smaller amounts of training data
is used. Moreover, we further optimized our model for effi-
cient computation by modifying the original dynamic routing
mechanism while maintaining the classification accuracy.

Our presented ADMM-based weight pruning approach is
a technique, which can be easily applied to other models to
improve their performance further while shrinking their size
for efficient memory utilization. This is, in fact, one of the
reasons that we have compared our 3D CapsNet with a base
model, which is composed of basic building blocks of a tra-
ditional CNN, in order to showcase the evident improvement
achieved due to capsules.

REFERENCES
[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:

Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[3] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky, ‘‘Adver-
sarial learning for neural dialogue generation,’’ 2017, arXiv:1701.06547.
[Online]. Available: https://arxiv.org/abs/1701.06547

[4] Y. Liu, Y. Zhou, X. Liu, F. Dong, C. Wang, and Z. Wang, ‘‘Wasserstein
GAN-based small-sample augmentation for new-generation artificial intel-
ligence: A case study of cancer-staging data in biology,’’ Engineering,
vol. 5, no. 1, pp. 156–163, Feb. 2019.

[5] L. Fei-Fei, R. Fergus, and P. Perona, ‘‘One-shot learning of object
categories,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, Apr. 2006.

[6] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, ‘‘Human-level con-
cept learning through probabilistic program induction,’’ Science, vol. 350,
no. 6266, pp. 1332–1338, Dec. 2015.

[7] T. Wang, Z. Miao, Y. Chen, Y. Zhou, G. Shan, and H. Snoussi, ‘‘AED-
Net: An abnormal event detection network,’’ Engineering, vol. 5, no. 5,
pp. 930–939, Oct. 2019.

[8] T. Wang, Y. Chen, M. Zhang, J. Chen, and H. Snoussi, ‘‘Internal transfer
learning for improving performance in human action recognition for small
datasets,’’ IEEE Access, vol. 5, pp. 17627–17633, 2017.

[9] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between cap-
sules,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3859–3869.

[10] B. Kakillioglu, A. Ahmad, and S. Velipasalar, ‘‘Object classification from
3D volumetric data with 3D capsule networks,’’ in Proc. IEEE Global
Conf. Signal Inf. Process. (GlobalSIP), Nov. 2018, pp. 385–389.

[11] A. Ahmad, B. Kakillioglu, and S. Velipasalar, ‘‘3D capsule networks for
object classification from 3D model data,’’ in Proc. 52nd Asilomar Conf.
Signals, Syst., Comput., Oct. 2018, pp. 2225–2229.

[12] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
‘‘ADMM-NN: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,’’ in Proc. 24th Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2019, pp. 925–938.

[13] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[14] T. Chen, J. Lin, T. Lin, S. Han, C. Wang, and D. Zhou, ‘‘Adaptive
mixture of low-rank factorizations for compact neural modeling,’’ in
Proc. NIPS Workshop CDNNRIA, Montreal, QC, Canada, Dec. 2018.
[Online]. Available: https://openreview.net/forum?id=B1eHgu-Fim and
https://nips.cc/Conferences/2018/Schedule?showEvent=10941

[15] L. A. Alexandre, ‘‘3D object recognition using convolutional neural
networks with transfer learning between input channels,’’ in Intelligent
Autonomous Systems. Cham, Switzerland: Springer, pp. 889–898, 2016.

[16] X. Lv, X. Liu, X. Li, X. Li, S. Jiang, and Z. He, ‘‘Modality-specific and
hierarchical feature learning for RGB-D hand-held object recognition,’’
Multimed Tools Appl, vol. 76, no. 3, pp. 4273–4290, Feb. 2017.

[17] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, ‘‘Multi-view con-
volutional neural networks for 3D shape recognition,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015.

[18] E. Johns, S. Leutenegger, and A. J. Davison, ‘‘Pairwise decomposition of
image sequences for active multi-view recognition,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3813–3822.

VOLUME 8, 2020 27403

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

[19] K. Sfikas, T. Theoharis, and I. Pratikakis, ‘‘Exploiting the PANORAMA
representation for convolutional neural network classification and
retrieval,’’ in Proc. Eurograph. Workshop 3D Object Retr., Lyon, France,
2017, pp. 1–7.

[20] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao, ‘‘3D ShapeNets: A deep representation for volumetric shapes,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1912–1920.

[21] D. Maturana and S. Scherer, ‘‘VoxNet: A 3D convolutional neural network
for real-time object recognition,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[22] C. R. Qi, H. Su, M. Niebner, A. Dai, M. Yan, and L. J. Guibas, ‘‘Volumetric
and multi-view CNNs for object classification on 3D data,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5648–5656.

[23] C. R. Qi, H. Su, K.Mo, and L. J. Guibas, ‘‘Pointnet: Deep learning on point
sets for 3D classification and segmentation,’’ 2016, arXiv:1612.00593.
[Online]. Available: https://arxiv.org/abs/1612.00593

[24] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and
A. J. Smola, ‘‘Deep sets,’’ in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, Inc., 2017, pp. 3391–3401.

[25] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5099–5108.

[26] X. Liu, Z. Han, Y.-S. Liu, andM. Zwicker, ‘‘Point2Sequence: Learning the
shape representation of 3D point clouds with an attention-based sequence
to sequence network,’’ in Proc. AAAI, vol. 33, Aug. 2019, pp. 8778–8785.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, Inc.,
2012, pp. 1097–1105.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[29] A. M. Grachev, D. I. Ignatov, and A. V. Savchenko, ‘‘Neural networks
compression for language modeling,’’ in Proc. Int. Conf. Pattern Recognit.
Mach. Intell. Cham, Switzerland: Springer, 2017, pp. 351–357.

[30] X. Dai, H. Yin, and N. K. Jha, ‘‘NeST: A neural network synthesis tool
based on a grow-and-prune paradigm,’’ IEEE Trans. Comput., vol. 68,
no. 10, pp. 1487–1497, Oct. 2019.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[32] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[33] G. E. Hinton, A. Krizhevsky, and S. D. Wang, ‘‘Transforming auto-
encoders,’’ in Proc. Int. Conf. Artif. Neural Netw. Berlin, Germany:
Springer, 2011, pp. 44–51.

[34] K. Guo, S. Han, S. Yao, Y.Wang, Y. Xie, andH. Yang, ‘‘Software-hardware
codesign for efficient neural network acceleration,’’ IEEE Micro, vol. 37,
no. 2, pp. 18–25, Mar. 2017, pp. 18–25.

[35] H. Ouyang, N. He, L. Tran, and A. Gray, ‘‘Stochastic alternating direction
method of multipliers,’’ in Proc. Int. Conf. Mach. Learn., 2013, pp. 80–88.

[36] T. Suzuki, ‘‘Dual averaging and proximal gradient descent for online
alternating direction multiplier method,’’ in Proc. Int. Conf. Mach. Learn.,
2013, pp. 392–400.

[37] S. Boyd, ‘‘Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,’’ FNT Mach. Learn., vol. 3, no. 1,
pp. 1–122, 2010.

[38] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, and H. Su, ‘‘Shapenet: An information-
rich 3D model repository,’’ 2015, arXiv:1512.03012. [Online]. Available:
https://arxiv.org/abs/1512.03012

[39] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

[40] B. O. Community, Blender—A 3D Modelling and Rendering Package.
Amsterdam, The Netherlands: Blender Foundation, Stichting Blender
Foundation, 2018.

[41] A. Zeng, S. Song, M. Niebner, M. Fisher, J. Xiao, and T. Funkhouser,
‘‘3DMatch: Learning local geometric descriptors from RGB-D recon-
structions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1802–1811.

[42] B. Curless and M. Levoy, ‘‘A volumetric method for building complex
models from range images,’’ in Proc. 23rd Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH), 1996, pp. 303–312.

[43] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, ‘‘Show, attend and tell: Neural image caption
generation with visual attention,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2048–2057.

BURAK KAKILLIOGLU (Student Member, IEEE)
received the B.S. degree in electrical and electron-
ics engineering from Bilkent University, Ankara,
Turkey, in 2015. He is currently pursuing the Ph.D.
degree with the Department of Electrical Engi-
neering and Computer Science, Syracuse Uni-
versity, Syracuse, NY, USA. In 2019, he was a
Research Intern at the Computer Vision Tech-
nologies Group, SRI International, Princeton, NJ,
USA. His research interests include 3D data under-

standing, computer vision, machine learning, and embedded systems.

AO REN (Student Member, IEEE) received the
B.S. degree in integrated circuit design and inte-
grated systems from theDalianUniversity of Tech-
nology, Dalian, China, in 2013, and the M.S.
degree in computer engineering from Syracuse
University, Syracuse, NY, USA, in 2015. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA. His
research interests include neuromorphic comput-

ing, deep neural network acceleration, and low power design.

YANZHI WANG (Member, IEEE) received
the B.S. degree in electronic engineering from
Tsinghua University, in 2009, and the Ph.D. degree
in computer engineering from the University of
Southern California, in 2014. He is currently an
Assistant Professor with the Department of Elec-
trical and Computer Engineering, Northeastern
University. Besides, he works on the application of
deep learning and machine intelligence in various
mobile and IoT systems, medical systems, and

UAVs, and the integration of security protection in deep learning systems. His
works have been published in top venues in conferences and journals (e.g.,
ASPLOS,MICRO, HPCA, ISSCC, AAAI, ICML, ICLR, ECCV, ACMMM,
CCS, VLDB, FPGA, DAC, ICCAD, DATE, LCTES, INFOCOM, ICDCS,
and Nature SP), and have been cited for around 4,000 times according to
Google Scholar. His current research interests are the energy-efficient and
high-performance implementations of deep learning and artificial intelli-
gence systems. He has received four Best Paper Awards, has another seven
Best Paper Nominations and two Popular Papers in IEEE TCAD. His group
is sponsored byNSF, DARPA, IARPA, AFRL/AFOSR, and industry sources.

27404 VOLUME 8, 2020

B. Kakillioglu et al.: 3D Capsule Networks for Object Classification With Weight Pruning

SENEM VELIPASALAR (Senior Member, IEEE)
received the B.S. degree in electrical and elec-
tronic engineering from Bogazici University,
Istanbul, Turkey, in 1999, the M.S. degree in
electrical sciences and computer engineering
from Brown University, Providence, RI, USA,
in 2001, and the M.A. and Ph.D. degrees in
electrical engineering from Princeton Univer-
sity, Princeton, NJ, USA, in 2004 and 2007,
respectively.

From 2001 to 2005, she was with the Exploratory Computer Vision Group,
IBMT. J.Watson Research Center, NY, USA. From 2007 to 2011, she was an
Assistant Professor with the Department of Electrical Engineering, Univer-
sity of Nebraska-Lincoln, Lincoln. She is currently an Associate Professor
with the Department of Electrical Engineering and Computer Science,

Syracuse University. The focus of her research has been on mobile camera
applications, wireless embedded smart cameras, multicamera tracking and
surveillance systems, and automatic event detection from videos. Dr. Veli-
pasalar received a Faculty Early Career Development Award (CAREER)
from the National Science Foundation, in 2011. She was a recipient of
the 2014 Excellence in Graduate Education Faculty Recognition Award.
She is the coauthor of the paper, which received the 2017 IEEE Green
Communications and Computing Technical Committee Best Journal Paper
Award. She received the Best Student Paper Award at the IEEE International
Conference on Multimedia and Expo, in 2006. She was a recipient of the
EPSCoR First Award, IBM Patent Application Award, and Princeton and
Brown University Graduate Fellowships. She is a member of the Editorial
Board of the IEEE TRANSACTIONS ON IMAGE PROCESSING and Springer Journal
of Signal Processing Systems.

VOLUME 8, 2020 27405

	INTRODUCTION
	RELATED WORK
	3D OBJECT CLASSIFICATION
	METHODS BASED ON DEPTH MAPS
	MULTI-VIEW AND PANORAMIC METHODS
	3D VOXEL GRID-BASED METHODS
	POINT CLOUD-BASED METHODS

	NETWORK OPTIMIZATION

	3D CAPSULE NETWORKS
	CAPSULE LAYERS
	DYNAMIC ROUTING
	3D OBJECT CLASSIFICATION WITH CAPSULE NETWORKS

	NETWORK OPTIMIZATION
	ADMM METHOD
	DESIGN DETAILS OF ADMM PRUNING ON 3D CAPSULES

	EXPERIMENTAL RESULTS
	MODEL ARCHITECTURE AND EXPERIMENTAL SETTINGS
	CLASSIFICATION RESULTS
	NETWORK OPTIMIZATION
	PARTIAL DATA RESULTS
	INPUT ENCODING RESULTS
	ROUTING MECHANISM OPTIMIZATION

	CONCLUSION
	REFERENCES
	Biographies
	BURAK KAKILLIOGLU
	AO REN
	YANZHI WANG
	SENEM VELIPASALAR
	

