
Adversarial Jamming Attacks on Deep
Reinforcement Learning Based Dynamic

Multichannel Access
Chen Zhong, Feng Wang, M. Cenk Gursoy, and Senem Velipasalar

Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY 13244

Email: czhong03@syr.edu, fwang26@syr.edu, mcgursoy@syr.edu, svelipas@syr.edu

Abstract—Adversarial attack strategies have been widely stud-
ied in machine learning applications, and now are increasingly
attracting interest in wireless communications as the application
of machine learning methods to wireless systems grows along
with security concerns. In this paper, we propose two adversarial
policies, one based on feed-forward neural networks (FNNs) and
the other based on deep reinforcement learning (DRL) policies.
Both attack strategies aim at minimizing the accuracy of a
DRL-based dynamic channel access agent. We first present the
two frameworks and the dynamic attack procedures of the two
adversarial policies. Then we demonstrate and compare their
performances. Finally, the advantages and disadvantages of the
two frameworks are identified.

Index Terms—Adversarial policies, dynamic channel access,
deep reinforcement learning, feed-forward neural networks.

I. INTRODUCTION

There has recently been growing interest in employing ma-
chine learning to address certain problems in communication
systems, such as modulation classification [1], and dynamic
multichannel access [2]. However, this increasing interest
brings forth potential security risks due to adversarial attacks.
Since machine learning methods are highly data-driven al-
gorithms, even a minor modification in the observation data
can lead to dramatic changes in the learning-based decision
policies. Therefore, adversarial machine learning has been
intensively studied to better understand the vulnerabilities of
machine learning methods. Motivated by this, we in this paper
investigate the learning-based wireless jamming attacks on
deep reinforcement learning policies on dynamic multichannel
access.

In the literature, adversarial attacks have been considered
and widely applied to deep learning-based classification prob-
lems, such as the classification of images [3], time series
[4] and sound events [5]. In these cases, the victim models
are trained and fixed, and the input data is accessible to
the attacker, so that the attack can be realized by crafting
adversarial examples to mislead the victim’s decisions. This
idea is also used in the attack on reinforcement learning-
based tasks [6] and [7]. However, in certain control problems,
the observations of the reinforcement learning agents are
not available to the attacker, making it infeasible to craft
any adversarial examples. To tackle this difficulty, in [8],
the authors trained a reinforcement learning-based adversarial
policy instead.

A deep learning-based wireless jamming attack has been
studied in [9] and [10], in both of which, the system consists
of a single transmitter, a receiver, one background traffic
source and a deep learning-based jammer. Inspired by the
framework presented in the literature, we address a more
general channel model introduced in [11], and we propose
two different jamming attackers, namely a feed-forward neural
network (FNN) attacker and a deep reinforcement learning
(DRL) attacker, to perform the jamming attacks on a user
performing dynamic multichannel access using a DRL agent
itself [11].

Fig. 1. Round-robin switching pattern when two of the 16 channels is in
good condition and the switching probability is ρ = 0.95. The channel in good
state at a given time is indicated by white squares.

II. DYNAMIC CHANNEL ACCESS POLICIES OF THE VICTIM

USER

In this section, we introduce the background on dynamic
multichannel access. As noted above, we consider an actor-
critic DRL agent proposed in [11] as the victim user to be
attacked.

A. Channel Switching Pattern
In the considered dynamic multichannel access problem, the

time is slotted and the user selects one channel to access
at the beginning of each time slot. We assume that the
state of each channel switches between good and bad in a
certain probabilistic pattern. When the channel is in good
condition, the user can transmit data successfully. Otherwise,
a transmission failure will occur. We also assume that the
channel switching pattern can be modeled as a Markov chain,
and in each state of which, there are k out of the N channels in
good condition. At the beginning of each time slot, the channel
pattern can either switch to the next state with probability of
ρ, or remain to be the same as the state in the last time slot
with probability of (1−ρ). In Fig. 1, we display a round-robin
switching pattern with two out of 16 channels being good in
each time slot and each channel has the same probability to
be in good state.

B. Actor-Critic Agent
It is assumed that the channel switching pattern is unknown

to the user, and the user can only observe the channel selected
in the current time slot. Hence, the multichannel access is a
partially observable Markov decision process (POMDP). To
help the user to access the good channels as frequently as
possible under such conditions, we proposed in [11] an actor-
critic deep reinforcement learning based agent to make the
channel access decisions in each time slot.

The proposed agent is designed to learn the channel switch-
ing pattern through past decisions and the corresponding
feedback from the channels. We assume that, at time t, the
channel state can be denoted as Xt = {x1, x2, ..., xN}, where

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

N is the total number of channels, xi stands for the state of
the ith channel. For each channel i, where i = 1, 2, ..., N ,
we have xi = 1 if the channel is in good state, or xi = 0 if
the channel is in bad state. And each time the agent senses a
channel, the state of the sensed channel is revealed to be either
good or bad. Therefore, we define the reward (feedback) as
follows: if a good channel is chosen, the reward rt will be
+1; otherwise, the reward rt will be −1.

The agent’s observation can be denoted as Ot =
{o1, o2, ..., oN}, where N is the total number of channels. If
channel i, i = 1, 2, ..., N , is chosen, the agent senses it and
learns its state, so we define oi = rt; otherwise, the agent will
record oi = 0. The agent will learn on the basis of its previous
experience. We assume that the agent keeps an observation
space O that consists of the most recent M observations. The
observation space is initialized as an all-zero N ×M matrix,
and at each time t, the latest observation Ot will be added to
the observation space, and the oldest observation Ot−M will
be removed. The updated observation space O at time t + 1
can be denoted as Ot+1 = {Ot;Ot−1; ...;Ot−(M−1)}.

Next, we consider a discrete action space denoted by
A = {1, 2, ..., N}, where N is the total number of channels.
Each valid action in the action space describes the index of
the channel that will be accessed. Hence, when an action is
chosen, the agent will access the corresponding channel and
receive the reward which reveals the condition of the chosen
channel. The agent can only choose one channel to sense/learn
in each iteration. The aim of the agent is to find a policy π,
which maps the observation space O to the action space A,
that maximizes the long-term expected reward R of channel
access decisions:

π∗ = argmax
π

R

where π∗ denotes the optimal decision policy, and in a finite
time duration T , we express R as

R =
1

T

T∑
t=1

rt.

And according to the definition of R, we have R ∈ [−1, 1].

C. Performance in the Absence of Jamming Attacks
We consider the channel switching pattern shown in Fig.

1, and evaluate the accuracy of the good channel access by
the user with N = M = 16. The evaluation is performed in
the absence of any jamming attacks and after the DRL agent
is well trained. In Fig. 2, we test the model in two cases.
First, we consider the ε-greedy policy with ε = 0.1, with
which the user accesses a random channel with probability
0.1, and chooses the channel selected by the reinforcement
learning policy with probability 0.9. Note that the ε-greedy
policy allows the model to access bad channels by chance
during exploration. In addition, we also consider the case in
which ε is set to 0 to identify the performance of the pure
DRL policy. We note that ε-greedy policies with ε > 0 are
generally employed to enhance the DRL agent’s ability against
changes in the channel patterns, as will be discussed in detail
in Section V. We observe in the figure that high average
accuracies (higher than 85% and around 95% with ε = 0.1 and
ε = 0, respectively) are attained in the absence of jamming
attacks.

III. FNN JAMMING ATTACKER

In this section, we analyze the FNN method to perform
jamming attacks on the actor-critic DRL dynamic multichannel
access agent described in Section II-B. A presumptive attacker
is able to choose and jam a single channel in each time slot to
significantly reduce the selection accuracy of the actor-critic
agent. We assume that the attacker employs a feed-forward

Fig. 2. Accuracy of the good channel access in the absence of jamming
attacks.

neural network (FNN) to make the decision on which channel
to attack.

A. Initial FNN Model
We build the FNN with TensorFlow as the attacker model.

To collect initial training data for this FNN, we assume the
attacker has another actor-critic agent which has a similar
performance as the victim model does. These two models do
not necessarily have the same parameters, as we need to retrain
the initial FNN before attack. From this attacker actor-critic
agent, we obtain the channel selection during 53 consecutive
time slots as training data for FNN.

The FNN model feeds on 3 previous channels as input, and
gives the probability among each channel in the next time
slot as output. It has 2 hidden layers with 16 hidden neurons
in each layer, with sigmoid activation function, RMSProp
optimizer, and mean squared error loss function. With 50 sets
of 3-previous-1-future data pairs from attacker’s actor-critic
agent, we set random weights in the FNN, and run 4000
iterations to train the FNN model (hereinafter referred to as
the initial FNN), which has 88% accuracy on extra testing
data. We intentionally limit the amount of training data and
iterations to avoid overfitting to the initial policy of the victim
actor-critic agent, which will greatly change under attack.

B. Channel Observation and Record
Before the attacker starts the jamming attack with FNN, it

observes one channel and the reward of the victim user to
determine if its attack is successful. The attacker also records
the history of channel selection as input to the FNN to predict
the next attacking choice. However, if the attacker simply
records the attacked channel, once FNN misses to predict the
victim user’s channel selection, the attacker will lose track of
the victim, and it will take some time to accurately predict the
victim’s chosen channel again. Thus, we suggest an alternative
strategy, utilizing the initial FNN as a good channel detector.
This initial FNN always keeps the initial parameter, and thus
it is different from the adapting FNN which is affected by
victim policy during the dynamic attack, as we will describe
in Section III-C.

As depicted in Fig. 3, we use two sets of history records and
FNNs. First, the initial FNN keeps its record of “ideal channel”
and makes its own prediction. Since the initial FNN imitates
the high-performance victim, the ideal channel generated by
initial FNN is close to the good channels. Second, the adapting
FNN keeps another set of “attacked channel” record and
decides which channel to attack in the next time period. The
observation of the channel and reward determines the next

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

�����
���		��

�	�
�����

�

�����
���		��

����
�	���

�

���

�������
��	
�

���
���������

Fig. 3. The diagram of the history records and FNNs

channel to observe, and which channel to enter in both channel
records. This is explicitly explained in Algorithm 1 below.

Algorithm 1 The loop of predicting, recording and observing

during each time slot:

predict using adapting FNN, and attack the channel

record “attacked channel” as adapting FNN prediction

predict using initial FNN

record “ideal channel” as initial FNN prediction

if last time “attacker success” then
observe the last different attacked channel

else if last time “observed success” then
observe ideal channel

else if last time “failed” then
observe the last observed channel

end if
if victim is observed and reward is positive then

record observation as ideal channel and attacked channel

mark as “observed success”

else if reward is negative then
record observation as attacked channel

mark as “attacker success”

else
record attacked channel as ideal channel

mark as “failed”

end if

C. Dynamic Attack
Based on the attacked channel record, we can use FNN

to perform real-time jamming attacks against the victim.
Although the initial FNN works well with the original policy
of the victim actor-critic agent, it is not as accurate when the
victim adapts to the attack with a new policy. As a control
problem, there are two major considerations.

On the one hand, attacker FNN needs to retrain. When
the attacker jams one of the good channels that the victim
tends to choose, the victim will have low accuracy for the
first few thousand time slots. After that, as the victim’s actor-
critic agent adapts to the attack, it learns a new policy to find
the good channel and at the same time, mislead the attacker’s
FNN attack. Thus, the attacker should retrain the initial FNN
(instead of starting with random weights), and attack with this
retrained FNN to adapt the new victim policy.

On the other hand, attacker FNN needs to stop the attack,
and retrieve the initial FNN parameters before retraining
occasionally. If the attacker keeps retraining FNN, the victim
accuracy would still recover gradually. There are two reasons
for this. First, the parameters of FNN deviates from the initial

Fig. 4. Retrieve-retrain-attack-stop procedure of dynamic attack: 1© initial
attack 2© stop attack 3© retrieve parameters and start retrain 4© stop retrain
and start attack 5© stop updating the model (only for the DRL attacker)

FNN during long-term retraining, and lose the basic features
(for example, taking the difference between channel values).
This means that the attacker sets the FNN parameters to
their initial values, and retrains to fit to the current victim
policy. Second, if the attacker keeps on attacking, the data for
retraining would reflect the setting in which the victim is under
attack and is operating with low accuracy of good channel
access. This prevents the attacker FNN from learning the
desired victim pattern. One way to solve this problem is to stop
attacking when the victim accuracy begins to recover, so the
victim will converge fast to a stable policy with high accuracy.
Then the attacker can retrieve, retrain using observations from
this converged policy and perform better and more accurate
attacks. Another benefit is that the attacker will not stay long
in the recovering stage, where the victim average accuracy is
up to 50% (which is much higher than the desired accuracy),
so that the attacker can significantly reduce the overall average
accuracy.

Therefore, we develop a retrieve-retrain-attack-stop (RRAS)
procedure as depicted in Fig. 4 to perform dynamic attacks.
At time 1© shown in Fig. 4, we start the initial attack with
the initial FNN, which is guaranteed to perform well at first.
Then, the attacker will gradually lose control of the victim
as it adapts to the initial attack. At time 2©, the victim
accuracy grows up to a lower threshold, so the attacker gives
up attacking, and lets the victim recover fast from the initial
attack, to reduce the time span between 2© and 3© and reach a
higher accuracy threshold at time 3©. At time 3©, the attacker
retrieves the initial FNN parameters and collects the retraining
data until time 4©. Finally, the attacker initiates another attack
at time 4©, and the entire procedure is repeated as depicted in
Fig. 4.

IV. DRL JAMMING ATTACKER

In this section, we introduce an actor-critic deep reinforce-
ment learning (DRL) based agent to perform the jamming
attack on the aforementioned victim user without having any
prior information about the channel switching pattern or the
victim’s action policy. The DRL attacker is also assumed to
observe only one channel in each iteration. Different from the
FNN attacker, however, we assume that the DRL attacker is
able to observe the victim’s interaction the environment for a
period of time that is sufficiently long for the DRL attacker
to learn the activity pattern.

A. Actor-Critic Model
In Fig. 5, we show the diagram of the actor-critic structure

and the DRL attacker-environment interactions. The actor-
critic structure consists of two neural networks, namely the
actor network and critic network. The channels and victim’s
channel selection model form the environment to be observed
by the attacker. Each time, after the DRL attacker observes
the environment, an action will be selected based on this
observation by the actor neural network. Then, the reward and

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

���������	
�

�
����
�

� ���������
����	
�

���������	�
������
��

��
����

��
����	�
������
��
�������
�������
������

�������
���������

�������
�����
���	

��������
�����

��������
����
������

����
���	

���
����

Fig. 5. Diagram of actor-critic structure and DRL attacker-environmental
interactions.

the new state of the environment after executing the chosen
action will be sent to the critic neural network to calculate the
temporal difference (TD) error. This TD error will be used to
update both critic and actor neural networks. When the update
of network is completed, the DRL attacker model is ready to
make the next decision.

At the beginning of each time slot t, the DRL attacker can
select one channel based on its own action policy learned
by the actor-critic neural networks. The action of the DRL
attacker and the victim at time t are denoted as aAt and aVt
respectively. Since both the DRL attacker and the victim select
one out of the N channels, the sizes of their action spaces are
the same. We assume that there are proper mechanisms and
measurements (such as SINR levels, ACK signals) through
which the attacker learns if the victim has selected the same
channel as the attacker itself, i.e., aAt = aVt , and if the victim
has transmitted successfully. The goal of the attacking DRL
agent is to learn the victim’s activity pattern so that it can jam
the channels selected by the victim as much as possible. Based
on this objective, we define the reward of the DRL attacker at
time t as

rt =

⎧⎪⎪⎨
⎪⎪⎩

+1 if aAt = aVt and victim selects a good channel,

+0.5 if aAt = aVt and victim selects a bad channel,

−0.5 if aAt �= aVt and victim selects a bad channel,

−1 if aAt �= aVt and victim selects a good channel.
(1)

Within this setting, the DRL agent is encouraged to select the
same good channels as the victim as its first priority. We also
consider the case in which the attacker and victim select the
same bad channel as partial success in terms of jamming.

As mentioned before, the DRL agent has no knowledge
about the channels and the victim user. Hence, from the
perspective of the DRL agent, the channels and victim form
an unknown environment. We assume that in each time
slot t, the observation of the DRL attacker is denoted as
St = {st,1, st,2, . . . , st,N}. Then each element st,i, for i =
1, 2, . . . , N , stands for the observation on the ith channel at
time t. As assumed before, the DRL attacker can only choose
one channel at a time, so we have

si,t =

{
rt if the ith channel is selected in time slot t,
0 if the ith channel is not selected in time slot t.

(2)

Above, 0 indicates that the corresponding channels are not se-
lected and therefore there is no information on these channels.

B. Operational Modes
Once the DRL agent is initialized, it switches between two

different modes: listening mode and attacking mode.

• Listening mode: In this mode, the DRL agent only ob-
serves the environment and updates its own policy based
on the reward, but does not jam the selected channels so
that the victim is not influenced and updates to a new
policy.

• Attacking phase: In this mode, the DRL agent jams the
selected channels and decides whether to update its neural
networks based on the victim’s performance. When the
victim performs well, the DRL agent should evolve its
policy as the victim gradually adapts to the attacker’s
influence. However, when the victim performs poorly, the
DRL agent should stop learning from the reward. Because
in this situation the victim frequently chooses the bad
channels, and the reward may misguide the attacker.

We assume that the victim’s model is pre-trained so that
the victim’s activity pattern is stable when the attacker starts
to train its own neural networks. In this training phase, the
DRL agent works in the listening mode. And when the DRL
agent is well trained, it can start the dynamic attack which we
describe in detail in the following subsection.

C. Dynamic Attack
Similar to the FNN attacker, the DRL attacker also uses

the RRAS procedure shown in Fig. 4. We note that the DRL
agent requires less prior information about the victim’ activity
pattern than the FNN attacker. However, due to the differences
in the learning method, the DRL attacker needs to observe
the victim over a longer period to train a reliable policy.
DRL attacker also aims at avoiding the situation in which
the victim learns a totally new action policy once the model
is well trained. For this purpose, the duration of each cycle of
the DRL attacker is fixed at a certain value that prevents the
victim to update to a new policy.

As shown in Fig. 4, the DRL attacker also starts its first
attack at time 1© when the victim model has been working in
a stable fashion and working well. Before this point, the DRL
attacker works in listening phase to learn the victim’s activity
pattern, and we assume that at time 1©, the DRL attacker
can also function well with high stability. Once the attack is
initiated, the performance of the victim drops rapidly. In this
process, the victim keeps updating its model to overcome the
influence of the attacks, and at the same time, the attacker also
keeps updating its model to adapt to the victim’s changing
policy. However, we should note that the attacker is always
encouraged to choose the same channel as the victim does.
Hence, when the victim is forced to explore other channels
which are not attacked in order to find a new policy to
counteract against the attacks, it cannot avoid but try bad
channels in order to find the good ones. From the perspective
of DRL attacker, there is no need to follow the victim’s
selection because the victim’s model updates dramatically and
the policy may perform worse initially. On the one hand, it
is difficult for the attacker to learn an unstable policy. On
the other hand, copying the bad policy may give victim the
chance to recover its performance. Based on this idea, the DRL
attacker stops updating when the performance of the victim is
lower than a threshold and we mark this time instant as time
5©. Though the DRL attacker model stops learning, it still

works in attacking mode, so the performance of the victim
continues to decrease. As mentioned before, the DRL attacker
should stop jamming the channels before the victim adapts to
its attacks, because the victim is also a reinforcement learning
agent that has the ability to act against attacks naturally. At
time 2©, the victim’s performance starts to recover, meaning
that a new policy is being formed in the victim model. To
avoid pushing the victim to the new policy further, the DRL
attacker needs to switch to the listening mode at time 2© to
encourage the victim to return to its old policy as quickly as
possible. And at time 3©, the victim is able to perform as well

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Victim’s accuracy under FNN attacker’s RRAS procedure. The victim
works without a ε-greedy policy.

as that before the attack, and the DRL attacker will retrieve the
initial model and keep working in listening mode to adjust its
policy based on the victim’s activity until time 4© when the
DRL attacker switches to attacking mode and starts a new
cycle. In our implementation, the duration of each cycle is
fixed to 2000 time slots, and the gap between time 3© and
4© is fixed at 200 time slots. Also, in the experiments, the
duration between time 2© and 3© is very small.

V. EXPERIMENTS

In this section, we test the proposed FNN attacker and DRL
attacker with a well-trained victim model and channel pattern
introduced in Section II. In the following experiment, the FNN
attacker starts attacking at time slot t = 0, and the DRL
attacker starts attacking at time slot t = 2000.

First, we test both the FNN attacker and DRL attacker under
the condition that the victim model works with ε = 0 to show
its full power. In Figs. 6 and 7, we plot the victim’s accuracy
over time to show the attackers’ performance. For the FNN
attacker, the victim’s model crashes after about 5000 time slots
and never recovers which means the victim’s DRL agent has
failed to adapt to the FNN attacker when it is not trying any
random channels (due to the fact that ε = 0). And for the
DRL attacker, the victim’s policy crashes immediately after
the DRL attacker starts jamming the channels at time slot
t = 2000. However, the victim’s policy can recover for a short
period of time after a few thousands of time slots. We should
note that as a reinforcement learning-based agent, the DRL
attacker always works with an ε-greedy policy with ε = 0.1.
The randomness in the DRL attacker’s policy leads to a small
chance for the victim to recover its performance from time to
time. Overall, it is not challenging for the proposed to attackers
to jam the channels selected by the victim most of the time,
and considering this, we test the victim model with ε = 0.1
in the following experiments to show the performance of the
proposed attackers facing with a stronger victim user.

In Figs. 8 and 9, we plot the accuracy of the victim under
FNN attacker’s RRAS procedure and DRL attacker’s RRAS
procedure respectively. The FNN attacker retrieves and retrains
when the victim’s accuracy reaches 80% , and stops attacking
when the victim’s accuracy goes below 40%. Each retraining
takes 100 samples, and runs over 850 iterations. Under the
FNN attacker’s RRAS procedure, the victim’s accuracy drops
rapidly after the attack begins. For the FNN attacker’s initial
attack cycle, the victim’s performance recovers slowly. After
that, the victim’s performance can recover quickly when the
attack is stopped and drops sharply once the attack resumes
after retraining in each of the following RRAS cycles. This
means that the FNN can make the victim perform poorly as
much as possible in each RRAS cycle. The DRL attacker stops
updating the policy when the victim’s accuracy is lower than

Fig. 7. Victim’s accuracy under DRL attacker’s RRAS procedure. The victim
works without a ε-greedy policy.

Fig. 8. Victim’s accuracy under FNN attacker’s RRAS procedure. The victim
works with ε = 0.1.

30% and switches to the listening mode when the victim’s
accuracy recovers to higher than 30% or if the duration
of the current cycle is longer that 2000 time slots. In the
listening mode, the DRL attacker reloads its initial policy
and retrains for 200 time slots before the next attacking
mode begins. In Fig. 9, the DRL attacker is able to have
the victim’s performance drop substantially and the recovery
occurs over a short period of time but the performance drops
again significantly, which means that the victim operates with
very low accuracy most of the time. We note that under the
DRL attacker’s RRAS procedure, the victim’s accuracy is
more effectively constrained at a lower level.

To further compare the FNN and DRL attackers, we plot
the corresponding probability density function (PDF) and
cumulative distribution function (CDF) of the moving average
of victim’s accuracy in Figs. 10-13 based on the accuracy

Fig. 9. Victim’s accuracy under DRL attacker’s RRAS procedure. The victim
works with ε = 0.1.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. PDF of victim’s accuracy under FNN attacker’s RRAS procedure.

Fig. 11. CDF of victim’s accuracy under FNN attacker’s RRAS procedure.

curves shown in Figs. 8 and 9. Note that, the PDF and CDF
under DRL agent’s attacks starts collecting the accuracy data
starting from the initial attacking phase at time t = 2000.

In Fig. 10, we observe that with the FNN attacker’s jamming
attacks, the victim’s accuracy is more concentrated in the range
of (0.3, 0.4). Correspondingly, in Fig. 11, the CDF increases
at the fastest rate and approximates to 80% when the accuracy
is 50%. For the DRL attacker, the victim’s accuracy is highly
concentrated at the level of 0.1 as shown in Fig. 12, and the
corresponding CDF in Fig. 13 exceeds 80% when the accuracy
is 20%. Since both proposed attackers stop attacking under
specific conditions, the victim is able to recover its accuracy
periodically. Hence, we can observe the increased distribution
of the victim’s accuracy at about 80% under both types of
attacks.

As analyzed above, the DRL attacker can perform more
effectively in the experimental environment. Additionally, the
DRL attacker does not require any other auxiliary neural
network as the FNN attacker does. However, if we consider the
difference in the information regarding the victim-environment

Fig. 12. PDF of victim’s accuracy under DRL attacker’s RRAS procedure.

Fig. 13. CDF of victim’s accuracy under DRL attacker’s RRAS procedure.

interactions required by these two attacker, we note the ad-
vantage of the FNN attackers. The FNN attacker only needs
to obtain the victim’s activity records for a short period of
time (50 or 100 time slots) and repeat the learning of the
records over thousands of iterations to train and retrain its
policy. However, the DRL attacker has to observe the victim-
environment interactions for about 10000 time slots to train
a stable policy after initialization. Therefore, if the channels
patterns vary suddenly, the FNN is more promising in terms
of adapting to a new policy quicker than the DRL attacker.

VI. CONCLUSION

In this paper, we have proposed two adversarial wireless
jamming attackers aimed at minimizing the accuracy of the
dynamic multichannel access performed by a DRL agent. We
have introduced the frameworks of the proposed FNN and
DRL attackers, and then presented their corresponding RRAS
working procedures. Via simulations and numerical results,
we have evaluated the performances of the two adversarial
policies in terms of the victim’s accuracy. In this analysis, we
have specifically conducted experiments with a stronger victim
that applies the ε-greedy policy. Finally, we have identified the
advantages and disadvantages of the two frameworks.

REFERENCES

[1] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for
automatic modulation recognition in cognitive radios,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, April
2019.

[2] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257–265, June 2018.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[4] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller, “Ad-
versarial attacks on deep neural networks for time series classification,”
arXiv preprint arXiv:1903.07054, 2019.

[5] V. Subramanian, E. Benetos, N. Xu, S. McDonald, and M. San-
dler, “Adversarial attacks in sound event classification,” arXiv preprint
arXiv:1907.02477, 2019.

[6] Y. Zhao, I. Shumailov, H. Cui, X. Gao, R. Mullins, and R. Anderson,
“Blackbox attacks on reinforcement learning agents using approximated
temporal information,” arXiv preprint arXiv:1909.02918, 2019.

[7] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[8] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” arXiv
preprint arXiv:1905.10615, 2019.

[9] Y. Shi, T. Erpek, Y. E. Sagduyu, and J. H. Li, “Spectrum data poisoning
with adversarial deep learning,” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018, pp. 407–412.

[10] T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and
mitigating wireless jamming attacks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 1, pp. 2–14, 2018.

[11] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “Actor-critic deep
reinforcement learning for dynamic multichannel access,” in 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP).
IEEE, 2018, pp. 599–603.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 28,2020 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

