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Abstract—Autonomous vehicles often benefit from the Global
Positioning System (GPS) for navigational guidance as people do
with their mobile phones or automobile radios. However, since
GPS is not always available or reliable everywhere, autonomous
vehicles need more reliable systems to understand where they
are and where they should head to. Moreover, even though GPS
is reliable, autonomous vehicles usually need extra sensors for
more precise position estimation. In this work, we propose a
localization method for autonomous Unmanned Aerial Vehicles
(UAVs) for infrastructure health monitoring without relying on
GPS data. The proposed method only depends on depth image
frames from a 3D camera (Structure Sensor) and the 3D map of
the structure. Captured 3D scenes are projected onto 2D binary
images as templates, and matched with the 2D projection of
relevant facade of the structure. Back-projections of matching
regions are then used to calculate 3D translation (shift) as
estimated position relative to the structure. Our method estimates
position for each frame independently from others at a rate of
200Hz. Thus, the error does not accumulate with the traveled
distance. The proposed approach provides promising results with
mean Euclidean distance error of 13.4 cm and standard deviation
of 8.4cm.

I. INTRODUCTION

Small Unmanned Aerial Vehicles (UAVs), a.k.a drones,
are getting increasingly popular and they have already been
employed in many applications such as homeland security, res-
cue missions, disaster monitoring, film making, sports broad-
casting, and journalism [1]–[3]. Reasons for this increasing
popularity include their agility, ever decreasing costs, and the
availability of more powerful onboard embedded processing
capabilities. Another interesting application area of UAVs is
inspection and health monitoring of civil infrastructures [4]–
[7]. This type of application follows a well-defined procedure,
and requires auditors to observe many, sometimes difficult to
access parts of the structure. Thus, this application area is a
perfect fit for UAVs; since they can access almost every part of
the structure and carry out an autonomous inspection mission
on a pre-defined path and procedure.

GPS is the main localization component used for au-
tonomous missions. However, GPS data is either unavailable
or unreliable in indoor environments as well as near or under
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(a) Test site on San Rafael Bridge
and our UAV platform.

(b) RViz 3D visualization software
screen.

Fig. 1. Proposed approach precisely localizes the drone by estimating the
vehicles position by using only the Structure Sensor. (b) shows drone position
with the estimated path (red line) and the ground truth (green line)

some outdoor structures. Besides, precision of GPS is only 3-
4 meters in good conditions unless new RTK-based modules,
which are significantly more expensive, are used. The imme-
diate approach for position estimation in GPS-denied areas
is the use of odometry from inertial measurements. However,
this approach is rarely used on real-time, practical systems,
since it introduces a significant amount of noise drift, which
increases with the distance traveled. To overcome the noise
drifting, visual odometry can be fused with Inertial Measure-
ment Units (IMUs) [8]–[11]. Many Simultaneous Localization
and Mapping (SLAM)-based techniques use this approach, as
discussed in Section II.

In this paper, we propose a method for autonomous localiza-
tion of UAVs in 3D space without relying on GPS data. With-
out loss of generality, we use the inspection and monitoring
of bridges as an example application. The proposed method
utilizes a Structure Sensor, which is a special, inexpensive
and widely available camera that can acquire 3D model of the
scene. The proposed method uses the existing 3D model of
the space that it is intended to work in. By knowing the large
3D map of the whole space and continuously capturing the 3D
region in front of the camera, our method robustly localizes
the 3D position of the UAV on the map. The proposed method
is designed to be used for 3D position estimation of UAVs,
which can operate in large, GPS-denied, complex and cluttered
environments/structures on a regular basis.

Our approach presented in this paper is applied to the au-
tonomous bridge inspection using UAVs. In our experiments,
the 3D scan of San Rafael Bridge at San Rafael, California is
used (see Fig. 1(a)), and an actual UAV is employed to record
data during several flights on the bridge. The UAV used for
the flights can be seen in Fig. 1(a).
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The presented approach enables the UAV to know its
position and orientation with respect to the bridge when
GPS data is unavailable or unreliable so that it can continue
inspection without needing a stable GPS connection. The
application areas can be extended to factory sites, mines,
rescue missions in damaged structures, indoor surveillance and
any other complex indoor environments.

II. RELATED WORK

Pose estimation of a vehicle, or a robot in general, is
one of the main targets of the SLAM approaches, which
is one of the most studied areas in robotics research in
recent decades. There has been ever-increasing amount of
work published in the SLAM area. G-mapping [12], Hec-
tor SLAM [13], Cartographer [14] are among the popular
approaches in addition to numerous others. Grid maps are
used together with Rao-Blackwellized Particle Filters for 2D
SLAM in [8]. This approach is more robust compared to
its predecessors thanks to the adaptive re-sampling approach
[12]. A robust and lightweight system for online 3D SLAM
is presented in [13]. It learns the map and efficiently localizes
the robot by matching the scans captured by LIDAR. A
lightweight and precise loop closure technique is presented
for real-time 2D SLAM applications in [14]. It achieves 5 cm
precision in real-time indoor loop closure by using branch-and-
bound approach for computing scan-to-submap matches as
constraints. However, most of the existing SLAM approaches
are not readily applicable in complex 3D environments. Many
of them depend on floor-plan-like 2D maps. If one takes
different 2D slices, similar to those 2D maps, at every height
of a complex 3D environment, each of those slices will be
completely different from each other. If a UAV were to use
one of these approaches, it must keep track of different maps
at every altitude and potentially at different sensor orientations
that are not parallel to the ground. On the other hand, there are
some 3D approaches, which simply are extensions of their 2D
counterparts. They, indeed, build a 3D map of the environment,
but still localize themselves on a 2D map as they heavily
depend on the assumption that robot (usually a UAV in 3D
case) will be cruising at a certain height from the ground level.
In fact, a real 3D SLAM technique must account for both
mapping and localization in 3D. Therefore, these approaches
would not be feasible for UAV applications, where the vehicle
will navigate through complex structures at arbitrary altitudes.

3D Match [15] and SegMatch [16] are two promising ap-
proaches for 4-Degrees of Freedom (DoF) (6-DoF under level-
world assumption) pose estimation. In fact, in our preliminary
studies, we applied these approaches to our application as
they seem to be great fits. They follow a similar pipeline
with different techniques. The approach in [15] encodes the
occupied point cloud regions by Truncated Distance Function
and voxelizes into 30×30×30 volumetric grids. Then, it uses a
3D-Convolutional Siamese Neural Network to match different
pairs of voxelgrids. Finally, it filters out extra matchings by
looking for geometric correspondences. The approach in [16],
on the other hand, uses a region growing based algorithm

Fig. 2. 3D renders of San Rafael Bridge point cloud (left) and captured point
cloud from Structure Sensor (right).

to extract segments in point clouds. Then a global feature
descriptor is used to describe those segments, and they are
matched with a random forest classifier. Similarly, it applies a
geometric verification step to remove false matches.

After using the approaches presented in [15] and [16] in our
preliminary studies, we observed that these methods are not
applicable to a scenario like bridge inspection due to several
reasons. First, although the acquired information is a depth
map or 3D point cloud, the nature of it is more like 2D, since
the area being captured on the bridge is flat and spans the
field of view of the camera. Therefore, the data looks like a flat
region in 3D space. Second, the scale of the entire structure (in
this case the entire bridge) is much larger compared to the field
of view and what is captured by the sensor. Therefore, only
small parts of the segments or feature points can be captured
at a time. Third, features/segments are not unique. Since most
bridges are engineered in a very repetitive manner, one feature
or captured segment will possibly match correctly with many
other locations on the bridge. Last but not least, computational
complexity should be minimal due to the requirement of real-
time on-board processing, and the aforementioned methods
require substantial amount of resources such as high-end
GPUs.

III. PROPOSED METHOD

We propose an approach for 3D position estimation of UAVs
from 3D cameras, such as a Structure Sensor, without relying
on GPS data. We present a robust algorithm, which will run
onboard and provide position information at a sufficient rate at
bridge inspection missions. Therefore, the algorithm must take
the nature of the data into account and should be lightweight in
order to run on an onboard processor. Our method relies on a
pre-captured 3D map of the structure or area where the drone
will monitor. A possible analogy can be a person locating
himself on the city map by examining the landmarks nearby.

In a nutshell, our method applies 2D template matching on
projected 3D data of bridge model for 3D localization. First, a
depth image is acquired from a scene with the Structure Sensor
installed on the UAV, and converted to a 3D point cloud.
Point clouds of the scanned bridge model and the captured
scene can be seen in Fig. 2. Then, the captured point cloud of
the scene is projected onto a 2D binary projection image and
matched on the large 2D binary projection of the entire bridge
model. Mean of the 3D points which are projected on the same
2D pixel are calculated for each pixel and average 3D vector
from model projection to scene projection is calculated as the
estimated position.
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A. Projection

The first step after acquiring the 3D point cloud is to project
it onto a 2D binary image. An important consideration during
this procedure is to perform it without loss of any information.
A projection would normally cause loss of a dimension and
quantization of data into a matrix structure. Once a projection
is performed, the original data cannot be recovered. In our
approach, we avoid this issue by defining a container for each
pixel of the binary image to store the actual 3D points that
projected to that pixel’s coordinates. In other words, every
pixel of the binary image is a mini point cloud, which keeps
the 3D points that are projected on itself. As a result, the
combination of these containers or mini point clouds will give
the actual 3D point cloud. By doing this, we know exactly
which 3D points belong to which pixel on the binary image
after projection, and the 3D point cloud can be fully recovered.
Projection P ′ of point cloud PN×3 onto projection plane ax+
by + cz + d = 0 is calculated as follows:

~n = [a, b, c] ~dN×1 =
PN×3 · ~n
‖~n‖

VN×3 = ~dN×1 · ~n P ′ = P − V

In our experiments, we used y = 0 as projection plane.
Our assumption for projection of the bridge model is that

the drone’s heading is fixed to the bridge and the side of
inspection is known. More specifically, the heading is known
with respect to the bridge, which enables the sensor projections
to be aligned with the bridge model. We project only the
visible surface of the model. Surface points are the ones that
lie in the median value of an empirically defined depth from
the visible surface of the model.

B. Projection Matching

There are several reasons that we employ 2D alignment
instead of the 3D approaches, such as [15] and [16]. In
order to align/register two sets of point cloud data, first,
some 3D features should be calculated in both point clouds
and these features should be matched across the two clouds.
Descriptions of these features must be invariant to rotation, and
they should be replicable and unique. The nature of data in
our application violates some of these criteria, which makes it
hard to extract reliable features. Many identical features would
be extracted because of repetitive patterns. Because of limited
visible surface, it gets harder to replicate the same feature
description for every location. Besides, the onboard operation
criteria limits the computational resources, and this makes it
harder to employ and process 3D approaches.

(a) Scene
projection

(b) Matching result

Fig. 3. Scene projection image and matching result is shown as the black
bounding box on the projection image of the bridge model

An OpenCV implementation of correlation coefficient-based
template matching algorithm is used to match the projections
[17]. The scene projection, which is the 2D binary projection
of the point cloud captured by the Structure Sensor, is used
as the template to be matched on the projection of the bridge
model. Projection matching step returns a bounding box where
the scene projection best fits on the model projection. This
bounding box is then fed into position estimation step that
correlates mapped points in the bounding box region.

One parameter that can be tuned for projection matching is
the area of search region. As can be seen in Fig. 3, the bridge
has a repetitive pattern, and the projection of the captured
part can perfectly fit to many different sections of the bridge.
In order to prevent this, and reduce computational burden, we
limit the area that a scene can be matched by defining a search
region around the previously matched position, and applying
projection matching only in the limited search region. The
initial search window is provided manually in our experiments.

C. Position Estimation
Projection matching registers captured projection onto

model projection. This will provide a rough positioning as
a form of 2D bounding box. In order to fully register captured
point cloud onto model point cloud in 3D, and to estimate
the 3D position of the vehicle, we make use of the correspon-
dences of the points that are stored in the container of each
2D pixel location.

As the first step, the mean of the points which are projected
on the same pixel are calculated for all pixels. These means are
depicted in Fig. 4 as blue and green points for model image
and scene projection image, respectively. Then, the Euclidean
distance vector between each corresponding mean points is
calculated. Since our assumption before this procedure is
that orientations of both point clouds are already matching,
captured point cloud can be viewed as a translated version of
a patch on the model, which is parallel to its original position
in 3D space. Thus, distance vectors must be very close to
each other; or in the ideal case they must be the same vector.
Therefore, as the final step, the average of all distance vectors
is calculated as the estimated position by the following:

~pij =
1

K

K∑
k=1

Cijk
~PE =

1

R2

R∑
i

R∑
j

~pMij − ~pSij

where R is the resolution of the projection, Cijk is the kth

3D point in the container Cij with K points at location (i,j) on

Fig. 4. Illustration of the position estimation from matched 2D binary
projections. Each binary pixel holds a point container, which keeps the points
that are projected on the pixel. Mean of each container is depicted as blue and
green points for model and captured scene, respectively. The mean (average)
of the difference of the mean tables is defined as the estimated position.
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the binary images and ~pij is the mean point of the container
at pixel location (i,j). M and S denote model projection and
scene projection, respectively.

Our algorithm provides independent and absolute position
estimation for each captured point cloud. In other words, it
does not depend on the previous captures and the output is the
exact position of the drone with respect to the bridge model.
Therefore, there is no need for loop closure and map correction
as opposed to most SLAM approaches. In contrast to most
prior work, our proposed method does not suffer from drift or
error accumulation as the traveled distance increases.

IV. EXPERIMENTAL RESULTS

A. Platform and Software

Our UAV platform is used for data collection. It is composed
of the DJI Matrice 210 drone, J130 with TX2, a forward-facing
Hokuyo UST-10LX laser range finder, and a forward-facing
Structure Sensor. The J130 communicates with the DJI Drone
over a TTL cable and DJI OSDK.

For data collection, the drone is manually flown to the
position of the interest on San Rafael Bridge, and the logging
process is initiated by pressing of a button on the remote.
Upon receiving the log signal, the logging is initiated and the
data in the form of bag files is recorded. The 3D scan of the
San Rafael Bridge is obtained with the same platform and a
similar procedure.

We have collected a set of five different flight data for
experimental results. Duration of flights ranges between 30
to 150 seconds and they contain a total of 3590 frames (point
clouds) from all flights. UAV has flown in a range of 1 to 10
meters in each XYZ direction with different trajectories, seen
in Fig. 5.

B. Obtaining Ground Truth
In order to obtain the ground truth information for the UAV

position, we used Hokuyo 2D laser scanner sensor and laser
altimeter onboard. The altitude (Z) is provided by the altimeter.
To obtain the XY position, two vertical poles were placed on
the bridge at both sides of the drone before takeoff. These
poles are positioned sufficiently away from any object so that
they can be easily identified and tracked. These poles can be
seen in Fig. 1(a).

It should be noted that the proposed algorithm does not use
and does not need poles for localization. They are only used to
obtain the ground truth, and validate the proposed localization
approach.

C. Data and Localization Module

Bag files in ROS are flashbacks of real-time experiments
and provide the benefit of repeating the same experiment over
and over again. In our experiments, we recorded our data as
bag files, which contain series of point clouds from structure
sensor as well as other necessary sensor data over a period
of time. Using these recordings, we are able to replicate the
experiments and tune the parameters without actually flying
so many times.

Side view (XZ).
+X direction is towards right and
+Z direction is towards up on the

paper.

Top-down view (XY).
+X direction is towards right and
+Y direction is towards up on the

paper.

Fig. 5. Resulting drone flight paths of five different flight experiments from
side (XZ) and top-down (XY) views. Green and red lines are ground truth
and estimated paths, respectively. Figures span approximately 10 meters-wide
length in the real world. The origin (0, 0, 0) is defined as the initial position
of the drone and the bridge is 1 to 2 meters away in +Y direction from the
origin depending on the experiment.

We created a ROS package for this project. All necessary
data stored in bag files are streamed into the package. After
loading the bridge model, and creating its projection, the
algorithm only depends on the point cloud data from struc-
ture sensor for localization. As mentioned above, the steps
described in Section IV-B are only used for ground truth
generation and evaluation purposes.

D. Discussion

What we have achieved in this project is to obtain a
highly accurate 3D position estimation with a fixed heading
assumption. Our experimental results show that the proposed
algorithm is able to accurately estimate the position of the
drone. Fig. 5 shows qualitative results of our approach for
five different flights with different flight trajectories. Green
line represents the ground truth path and red line represents
the estimated positions. In each of the five subfigures, left part
shows paths from side view whereas right part shows paths
from top-down view. It can be observed from Fig. 5 that in
some experiments, estimated path in the side-view does not
reach the highest point where ground truth hits. It is because
the structure sensor looses view of the bridge, and it provides
an empty point cloud. In this case, the algorithm does not
update the position and waits for sufficient view of the bridge.
Once it gets a clear view, it continues the estimation process
from where it left off.

Since the algorithm estimates the position for each frame
independently from others, we did not carry out an error
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Fig. 6. Measuring the effect of increasing projection resolution on the mean
position error (Averaged over all experiments).
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Fig. 7. Mean elapsed time linearly increases with projection resolution factor.

propagation analysis over time. Instead, we measured the
mean and the standard deviation of distance error between
the estimated position and ground truth for all frames. In some
cases, algorithm fails and reports high errors. These cases only
happen when the Structure Sensor completely loses the sight
of the bridge. When these outliers are excluded, we measured
a mean error of 13.4 cm with 8.4 cm standard deviation over
the set of 3590 frames. It should be emphasized that these
values are independent of the traveled distance, since our
proposed approach treats each captured 3D scene individually
and independent from the others. Furthermore, we analyzed
the effect of projection resolution factor on the mean distance
error. Fig. 6 shows the result.

We analyzed the robustness of our approach as it is one of
the main criteria of our application. Average computation time
of this approach with 20×20 projection resolution is as low as
5 ms, which means that the position can be updated at a rate
of 200 Hz. 3.2 ms processing time is reported in [15] for 3D
feature matching. However, they also report that the complete
procedure of registration of two surfaces takes in the order of
minutes on a high-end desktop with GPU. [16] is more on par
with our work in terms of the processing time. They report
an average rate of 10.5Hz localization performance. Yet, our
procedure runs 20 times faster without requiring a GPU. We
also made an analysis to see how projection resolution affects
the computational complexity. It is observed from Fig. 7 that
the projection resolution is inversely proportional to the overall
computation time of the algorithm.

We have also observed that increasing the projection reso-
lution does not significantly reduce the mean error. Besides,
as discussed above, smaller resolution decreases the computa-
tional demand. Thus, we have found that 20 × 20 projection
resolution is a sweet spot for our bridge inspection application
as it is faster to compute and shows promising performance.

V. CONCLUSION

Accurate and reliable localization is crucial for autonomous
operations of UAVs. In this work, we have presented an

algorithm for 3D position estimation of UAVs from 3D sensor
data without relying on GPS data. We only used 3D point
cloud data from the UAV and 3D point cloud model of the
structure, which is a bridge in our application, to estimate
the position. Differently from the prior work, our method
does not suffer from drift or error accumulation as traveled
distance increases, and it can work in and around complex
environments, such as bridges.
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