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ABSTRACT

This study aims to characterize the vulnerability of road networks to fluvial flooding using a
network diffusion-based method. Various network diffusion models have been applied widely for
modeling the spreading of contagious diseases or capturing the opinion dynamics in social networks. By
comparison, their application in the context of physical infrastructure networks has just started to gain
some momentum, although physical infrastructure networks also exhibit diffusion-like phenomena under
certain stressors. This study applies a susceptible-impacted-susceptible (SIS) diffusion model to capture
the impact of the fluvial flooding on the road network connectivity. To that end, this paper undertakes the
following four steps. First, we modeled the road network as primal graphs and identified nodes that are
flood-prone (or the origins of the fluvial flood). Second, temporal changes in the flood depth within the
road network during a flooding event were obtained using hydraulic models. Third, based on the
relationship between vehicle speed and flood depth on road networks, at each time step, the nodes in the
road network were divided into two discrete categories, namely functional and closed, standing for
Susceptible and Impacted in the SIS diffusion model, respectively. Then, two parameters of the SIS
model, average transition probabilities between states, were estimated using the results of the hydraulic
simulation. Fourth, the robustness of the road network under various SIS diffusion scenarios was
estimated, which was used to test the statistical significance of the difference between the robustness of
the road network against diffusions started from the randomly chosen nodes and nodes with high
centrality measures. The methodology mentioned above was demonstrated using the road network in the
Memorial Super neighborhood in Houston. The results show that a diffusive disruption which starts from
nodes with high centrality values does not necessarily cause more significant loss to the connectivity of
the road network. The proposed method has important implications for applying link predictions on road
networks, and it casts significant insights into the mechanism by which cascading disruptions spread from
flood control infrastructure to the road networks, as well as the diffusion process in the road networks.
Keywords: Road Network; Fluvial Flooding; SIS Diffusion; Network Vulnerability; Giant Connected
Component (GCC); Diffusion Patterns; Network Centrality Measures



I. INTRODUCTION

Changes in the earth climate, potential global warming, and unprecedented and ever-increasing
urbanization, coupled with the increased interdependence among different sectors, are putting the critical
infrastructure systems under increasing pressure (Rodin, 2014). In the meantime, failures in critical
infrastructure systems are becoming prohibitively costly, mainly due to the possible cascading failures
that are initiated from one sector and subsequently cause a series of failures in other dependent sectors.
Thus, the resilience of interdependent critical infrastructure (ICI) systems is one of the grand challenges
facing engineers and policy-makers in the 21% century (Heller, 2002; O’Rourke, 2007; van Laere et al.,
2017). Over the past two decades, the body of knowledge on ICI resilience has advanced in the domains
of modeling, simulation methods, and theoretical frameworks. Despite the growing literature (Duefias-
Osorio, Craig, Goodno, & Bostrom, 2007; Haimes & Jiang, 2001; Reed, Kapur, & Christie, 2009) on ICI
resilience, our understanding of the dynamics and mechanisms of disruptions in ICI systems that shape
resilience patterns in these complex networks is somewhat limited. This is particularly evident in urban
areas where transport systems are frequently affected by weather-related hazards.

Flooding, especially ones due to excessive and intense rainfall precipitation, has been the
predominant cause of the weather-related disruptions to the transportation infrastructure (Pregnolato,
Ford, Wilkinson, & Dawson, 2017). Such events could undermine the vital functionality of transportation
systems, especially road networks. Many studies have shown that roads are among the major causes of
deaths in cities during flooding; this is mainly due to the vehicles being driven through flooded roadways
(Ashley & Ashley, 2008; Drobot, Benight, & Gruntfest, 2007; FitzGerald, Du, Jamal, Clark, & Hou,
2010; Kreibich et al., 2009). Locations, such as Texas, where road mobility through cars is the primary
mode of passenger transportation, are especially vulnerable to the impact of flooding (Blackburn, 2017),
as the advantage of having the largest road networks in the U.S. could become a curse when the majority
of the road networks are closed due to flooding events and there are few other alternatives to go around
the city, as was the case during Hurricane Harvey in 2017 (ASCE, 2017). In addition, during the
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vital role in repairing and restoring other infrastructure systems when they are disrupted. In order to cope
with disruptions efficiently and take active precautionary measures, it is critical to understand the
mechanisms and patterns with which the disruptions unfold in the transportation network. Due to the
planar nature of transportation networks, they tend to lend themselves readily to being represented as
graphs, and therefore graph theory-based approaches have been one of the standard tools to study the
vulnerability in the transportation systems (Tamvakis & Xenidis, 2013). Graph theory reduces a road
network to a mathematical matrix where the vertices (nodes) represent road intersections and the edges
are the road sections between these nodes (Leu, Abbass, & Curtis, 2010). This type of matrix abstraction
of road networks not only facilitates the accessibility and connectivity analysis but also assists in the
identification of critical locations using available graph-theoretic centrality measures. However, there are
two crucial challenges in network modeling of transportation networks. On the one hand, transportation
networks, like many other critical infrastructure networks, are spatially embedded (Bashan, Berezin,
Buldyrev, & Havlin, 2013) and the configurations of the environment in which network elements (nodes
or edges) operates are inherently heterogeneous, which, coupled with the possible spatial or temporal
variance of the magnitude of the disruptive events, makes failure probabilities vary significantly from
node to node. On the other hand, the topology of most critical infrastructure networks is intrinsically
dynamic and evolving, especially during disruptive events. While an understanding of the patterns for
temporal shifts in the functional topology of the critical infrastructure networks during disastrous events
remains a crucial step in devising efficient plans to reduce their vulnerabilities, the almost complete
absence of the time dimension in such problem definitions can be attributed to: (1) the graph theory
ancestry of the field, and in (2) the limited number of dynamic data sources available when the area of
complex networks analysis emerged (Rossetti et al., 2018).

Flooding in urban roadways is a process that presents both of the challenges mentioned above.
Relevant studies in the literature that aimed at tackling the flood vulnerability of critical infrastructure
networks could be categorized into two main types: (1) graph-theory based topological approaches that

focus on topological integrity of the network; (2) hydrological approaches that models the flood



propagation process in (or around) critical infrastructure in urban areas (Singh, Sinha, Vijhani, & Pahuja,
2018). Each of these methods tackles the flood vulnerability problem from different angles; consequently,
it only paints some parts of the whole picture. Most of the studies which attempted to apply dynamic
network modeling approaches focused on complete or random graphs to demonstrate its applicability in
real-world network failure problems. However, transportation networks are neither random nor complete.
They have a unique configuration manifested in a relatively small range of node-degrees and spatial
constraints which is not observed in other types of networks. This historical decoupling between two
types of methods could largely be attributed to the lack of granular flood data which could be inputted to
the network modeling.

Recently, for identifying the probability of flooding in a road network, the coupling of remotely
sensed data with hydrodynamic models has been used. Such an approach was used to identify the most
critical and vulnerable nodes (intersections) in a transportation network. Sadler et al. (2017) combined
storm surge levels associated with different return periods, provided by the Federal Emergency
Management Administration (FEMA), with High-resolution Digital Elevation Models (DEMs), compiled
from data collected by Light Detection and Ranging (LiDAR). The authors then compared the surge
elevations with the road elevations to assess different scenarios and reported the most vulnerable roadway
segments based on the frequency of flooding. In another study, Kalantari et al. (2017) developed a
LiDAR-based data-driven model to quantify the risk of flooding and sediment transport at different
roadway intersections in Sweden. While these efforts are essential to study the impacts of the most severe
inundation scenarios, they do not provide enough information on how the internal components of the
system behave during a flood event. This restriction is mainly due to the use of only one snapshot of the
flood rather than a time series of water depth. In contrast, other researchers have coupled the results of
hydrodynamic models to estimate the probability of flooding during the flooding events. Courty et al.
(2017), Lagmay et al. (2017), and Pyatkova et al. (2019) coupled the results of MIKE FLOOD,
LISFLOOD-FP, and FLO-2D GDS PRO, respectively, to LIDAR elevations and reported the risk of

inundation for roads during flooding events. Though more accurate hydrodynamic models are useful tools



in storm surge and flood simulation/prediction, they are expensive to apply because of lengthy
computational time, expensive equipment and the need for skilled users. In addition, an extensive
calibration of the model using observed data is required to make the model results reliable. In summary,
existing methods are either focused on a single point in the duration of the disastrous event and there is a
lack of understanding about the internal mechanism of the disruptive events on road networks; or are
computationally or operationally too expensive. This study aims to bridge the gaps mentioned above
between these two closely related fields. Furthermore, given the improved computational powers and
relatively wide availability of the data, the condition is mature enough to do a more granular and detailed
temporal analysis on the road network. This study is motivated as such. In this study, a simple
methodology was developed to have both the reliability of using the field measured data directly and the
advantage of using time series water depth instead of one snapshot. To be more specific, the measured
high-water marks (HWMs) after a flooding event were combined with the observed pattern in water
surface elevation (WSE) of nearby rivers recorded by USGS to create a WSE time series at the location of
the HWMs. Each time series was then compared with LIDAR elevations to calculate the water depth at
any given point.

When it comes to analyzing the effect of flooding on network vulnerability, it is important to
know how a phenomenon spreads through a network. Based on authors’ interview with stakeholders of
critical infrastructure systems in Houston, after flood control infrastructures (Bayous, channels, creeks,
and stormwater systems) reached their capacity under an excessive rainfall, road networks become part of
the flood control infrastructure and play the role of conducting excessive water into lower elevation areas
or releasing into storm-water drainage systems. In this context, the process of spreading the floodwater
around the road network could be assumed as a diffusion process, which is analogous to the spread of
contagious diseases among human beings. The origin of the diffusion modeling could be traced back to
the spread of epidemics and mathematical modeling of epidemics predates most of the studies on
networks by many years (Newman, 2010). The traditional diffusion modeling approaches avoid

discussing contact networks by making use of fully mixed or mass-action approximation, in which it is



assumed that every individual (node in the network) has an equal chance, per unit of time, of coming into
contact with every other (Newman, 2018). According to the assumptions of this approach, nodes (people)
mingle and meet completely at random, which is not a realistic representation of any real-world networks.
This is because nodes in real-world networks are spatially embedded and have a heterogeneous exposure
to diffusion mechanisms. Shakarian et al. (2015) have provided a comprehensive review of the papers and
recent research work in the field of network diffusion.

In conclusion, the majority of the research in the field of network vulnerability is focused on
theoretical networks; relatively, a fewer number of published research papers are focused on real-world
networks. Due to their unique topological structure and the configuration, road networks represent one
unique type of real-world networks. Understanding, characterizing, and theorizing these networks could
bridge the gap between advancement in the field of theoretical networks and real-world networks. The
proposed method facilitates the assessment of the vulnerability of the road network which contributes to
the advancement of network science in the realm of real-life networks. This is because this type of
flooding happens all around the globe, the findings from this research are directly applicable to other road

networks.

II. METHODOLOGY

A summary of the methodology followed in this study is presented in Figure 1. The first step was
modeling the road systems as the primal graph, which is followed by a simulation of the hydraulic
process in the areas where roads located in order to obtain the granular (node-level) flood depth data. A
diffusion model that commonly used to study the spread of communicable disease, Susceptible-Impacted-
Susceptible (SIS Model), is proposed to model the propagation of the flood in road networks. Parameters
of the SIS model were estimated using the temporal flood depth for the nodes in the road network.
Finally, the impact of both the number and locations of the seed nodes on the connectivity of the road

networks during diffusion were evaluated.
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Figure 1 Research Methodology

1. Road Network Modelling

The road network was modeled as a non-planar primal graph, where nodes represent the
intersections in the road network while edges represent the actual road sections. As a proxy for the flood
vulnerability, the elevation of each node in the network was also retrieved using Google API. Road
network topological data and other auxiliary information were obtained from OpenStreetMap using the
OSMnx python package (Boeing, 2017).

2. Simulation of the Hydraulic Process

In this study, the depth of flooding at nodes of the road network was used as a proxy for their
functional status. Therefore, obtaining the granular temporal flood depth information in the road network
during the case study event— Hurricane Harvey, was crucial. During Harvey, flooding in the study started
at 20:00:00 on August 26, 2017. The temporal changes in the flood depth at the node location in the road
network is obtained for a temporal scale of 17 days, observations are in hourly intervals, from 12 AM, 25
August 2017 to 11 PM, 10 September 2017. This study looked into the time between 22:00:00 on August
26, 2017, and above peak period, which is 11:00:00 on August 30, 2017.

The methodology applied in this study to calculate the water depth at each node of the road
network is similar to what Kiaghadi et al. (2019) developed. The main difference was converting the
observed HWMs (one snapshot of the flood representing the maximum WSE) into a time series. In other
words, in this study, a water surface elevation over the time of the flooding event (i.e. Hurricane Harvey)
was used instead of a static snapshot of the event. Due to a smaller study area, all calculations were
undertaken at the catchment level and only HWMs within the catchments covering the study area were

used. Catchment boundaries were extracted from the watershed delineation in the Tropical Storm Allison



Recovery Project (TSARP). Figure 2 shows the catchments and associated HWMs used in this study. A

total of 11 HWMs were used.
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Figure 2 Study area and location of High-Water Marks (HWMs) used in this study

To convert the single measured HWM into a WSE time series, the observed pattern in the WSE at
the closest USGS gage to the HMW location was used. Since the majority of the HWMs were measured
close to the banks of rivers and were caused by the river over banking, it was assumed that the WSE time
series at the location of the HWM was similar to the river behavior. The HWM represents the highest
level of water observed at the specific location that is equivalent to the peak of the WSE time-series
recorded by USGS. For the period of simulation and for each USGS gage, the ratio between the WSE at
each time step and the peak were calculated and multiplied to the reported values of nearby HWMs to
generate the WSE time series at the location of each HWM. For HWMSs located on the tributaries (see
HWM?2 in Figure 2), the pattern observed in the difference between recorded discharges from two USGS
gages (one upstream and one downstream) was applied to the HWMs. Here, it was assumed that the
difference in the discharge rates was solely caused by the input from the tributary and not by the direct

runoff from the drainage areas between the two USGS gages. To automate the process of generating a



WSE at each time step (one hour) a model was built in ArcMap. Several existing tools in ArcMap were
applied to (1) Convert the HWMs within the catchments into a WSE raster with a resolution of 1 m by 1
m for each time step; (2) Subtract the surface elevation raster (LIDAR DEM) from the WSE raster to
calculate the water depth at time steps; (3) Extract the water depths at the locations of specific nodes
(intersections) for each time step; (4) Filter the depths to only consider nodes with a positive depth. A
negative value indicates that the river water is contained within the original river bank; (5) Export the
excel file containing the locations and associated water depths. In the end, A MATLAB code was also
developed to combine all the excel files and create a metafile with the locations of the nodes and water
depth at each time step over the length of the simulation.

3. Estimation of the Parameters of the SIS Network Diffusion Model

In this study, it was hypothesized that the propagation of the flooding impacts in the road network
can be modeled using the SIS diffusion approach. In SIS diffusion, there are two types of nodes
(Susceptible and Infected) and the rate of change between these two statuses are characterized by two
parameters called beta and gamma (See Figure 3). The main reason to focus on the nodes, instead of links
(which seemingly is more appropriate in the context of the road network) is because once a node is
flooded enough to be removed from the network, the edges connected to that node will be rendered as

nonfunctional
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Figure 3 Flowchart for the SIS Diffusion Model
The first task in SIS diffusion modeling is to categorize the study population (nodes in this
context) into different classes using certain criteria defined by the user. For this study, it is possible to

categorize the nodes in the road network into functional or closed categories. During a flooding event,



the closed or functional status of the road network is a binary value, but the flooding (depth) status in
different parts of the road network is a continuous variable. It is possible to relate the flood depth to
closed or functional status of roads via vehicle speed. Researchers have studied the relationship between
the depth of the flooding and the speed of the vehicles driving on the roads during the flooding event.
Pregnolato et al. (2017) have estimated the relationship between the depth of standing water and the speed
of different types of vehicles as:

v(w) = 0.0009w? — 0.5529w + 86.9448 (1)
where:
v(w) is the vehicle speed and w is the depth of the floodwater on the road.

Using the above Equationl, nodes in the road network at any given point in time are divided into
two categories based on the vehicle speed. (1) Susceptible Nodes (S): The susceptible group is a node in
the network which is either intact at a given point or flood depth in the node location is less than 140mm.
On these types of nodes, the passenger vehicle speed is more than or equal to 20km/h. (2) Infected
Nodes (I): The Impacted group is the nodes that have been heavily impacted by the flood and are
rendered non-functional. The speed of vehicles on these types of nodes is less than 20km/h.

The next step in SIS diffusion modeling is to identify the seed nodes, the portion of the nodes in
the network, which were already impacted when diffusion started. During a fluvial flooding event, the
nodes located within the flood-prone areas initiate a flood-induced diffusion phenomenon in the road
network. Estimating the flood-proneness of the nodes can be based on the floodplain type, proximity to
flood control infrastructure and relative elevation of the nodes (Abdulla, Mostafavi, & Birgisson, 2019).
The last step is to estimate the other two essential parameters of the SIS diffusion, § and y. Parameters of

the diffusion are solved using equations (2) and (3) provided by Newman (2018):
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where:

B and y: transition parameters of diffusion; S: number of Susceptible individuals (nodes)at a given point
in time; I: number of Infected individuals(nodes)at a given point in time; x(t): the fraction of infected
nodes at a given point in time; xq: the fraction of susceptible nodes at the beginning of diffusion.
Simulation of the SIS diffusion in the road network under hypothetical cascading failures was conducted
using the NDlib python package (Rossetti et al., 2018).

4. Assessing the Diffusion Profile and Connectivity under Different Scenarios

Two impacts of the flood-induced network diffusion on the road network are studied. One is the
impacts of the diffusion started at different locations on the connectivity profile of the road network. The
other one is the impact of diffusion on the overall connectivity of the road network during the flood

propagation process in the road network.

* Connectivity Profile

Due to diverse colocation patterns between road networks and flood control infrastructure
networks, it is possible for the fluvial flooding to occur at any location in the road network. This scenario
analysis estimated the impacts of the locations of nodes with specific centrality measures on the diffusion
profile of the road networks using the relative (to original network size) size of the connected giant
component (GCC) in the road network. Due to the unique topography and layout of the road networks,
nodes with high centrality measures represent unique locations on the road networks. Five considered
scenarios are: (1) diffusion is initiated from a certain number of randomly selected nodes; (2) diffusion
started from a certain number of nodes with the highest betweenness centrality; (3) diffusion started from
a certain number of nodes with highest degree centrality; (4) diffusion started from a certain number of
nodes with highest closeness centrality;(5) diffusion started from a certain number of nodes with highest
eigenvector centrality. For this analysis, the road network in the Memorial super neighborhood was used.

¢ Overall Connectivity



While connectivity profile could cast some insights into the sensitivity of the diffusion at different
levels on the connectivity of the road network, it is not an aggregate measure of the overall impact of
flooding on the road connectivity. Therefore, a measure called overall connectivity (OC) is introduced to
assess the connectivity of the network during the diffusive disruptive events. The connectivity changes
due to diffusive disruptions are quite uneven under different scenarios. In order to make the magnitude of
the impacts of different diffusions on road network comparable, the area under the performance curve is
calculated. OC is defined in below way (see Equation 4):

0C = [ GC(t)dt 4
where:
to — the starting time for the disruptive event;
t; — the time the disruptive event ends;
GC(t) — the relative size of the connected giant compoent in road network.

In order to examine the impacts of the location of the initial diffusive set seeds on the
vulnerability of the road network, this study has conducted a two-sample significance test. The working
hypothesis is road network is more vulnerable to the contagious disruptions which start from those
significant nodes. Because removal of these nodes alone usually caused a greater magnitude of loss to the
connectivity of the network. If we assume the road networks under the disruptions of random diffusive
failures as group 1, road networks under the targeted diffusive failures (failures originate from those
nodes which are considered significant, i.e. high degree centrality, high betweenness, nodes with low
closeness centrality and nodes with high Eigenvector centrality) as group 2. Overcall connectivities of the
network in these two groups have been studied. OC values for each of the 88 super neighborhoods are

studied.

III. CASE STUDY RESULTS AND DISCUSSIONS

* Road Network and Hydraulic Process



This study demonstrated the estimation of the parameters of the SIS model using the road
network in Memorial Super Neighborhood (SN-16), which is located on the west side of Houston and one
of those areas suffered heavily from road closures chiefly due to fluvial flooding during Hurricane
Harvey. This road network has 4073 nodes and more than 9785 edges, with an average node degree of
2.398. As a proxy for the flood vulnerability, the elevation of each node in the network was also retrieved
using Google API. Data for the road network was obtained from OpenStreetMap using the OSMnx
python package (Boeing, 2017). During Harvey, flooding in the study started at 20:00:00 on August 26,
2017. The temporal changes in the flood depth at the node location in the road network is obtained for a
temporal scale of 17 days, observations are in hourly intervals, from 12 AM, 25 August 2017 to 11 PM,
10 September 2017. A snapshot of the road network when the most severe flooding occurred can be seen
from Figure 4, which happened at 11:00:00 on August 30", 2017, when the maximum number of nodes
(937 nodes out of 4073) flooded in the network. This study looked into the time between 22:00:00 on
August 26, 2017, and above peak period, which is 11:00:00 on August 30, 2017. A temporal change in
the fraction of flooded nodes (as long as a node is under non-zero flood water, it was considered as
flooded) can be seen from below Figure 4. As can be seen from Figure 5, using the size of the giant
component in the network, resilience triangles were obtained for the road network under different node-

removal criteria (which corresponds to road closure to different types of vehicles).
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* Obtaining the Network Diffusion Parameters

Three parameters, as discussed in the methodology section, needed to be estimated for an SIS
diffusion model. The initially impacted parameter was estimated based on the number of nodes within a
certain type of flood plain. The transition rate parameters (§ and y) were estimated by minimizing residual
sum of squares method. In other words, the sum of squares of the difference between predicted and
observed node numbers in each category is minimized. Table 1 presents a summary of the parameter
estimation for the SIS model under four different flood threshold scenarios. These four scenarios are
considered because these values represent the threshold values for the propagation of flood-induced road
closure in the road network for different types of vehicles. As discussed in methodology section, 150mm
represents the maximum flood depth in which sedan cars can travel on the road while 300 mm represents
the depth for SUV vehicles, whereas 600mm represents the threshold flood depth for the fire trucks. The
Omm shows the results when the threshold value for the flood is binary, as long as there is a flood on the
location where nodes lie, the node is considered flooding.

Table 1 Summary of Diffusion Parameters under Different Diffusion Threshold

Diffusion Threshold (in mm) | Beta () | Gamma (y) | Initially Impacted (% of nodes)
0 0.025 0.02 1
150 0.02 0.013 0.8
300 0.03 0.024 0.5
600 0.02 0.015 0.4

* Experiment One: Assessing the Impact of Diffusion on Connectivity Profile

This study first estimated the parameters of the SIS diffusion based on the actual hydraulic
process in the road network, which facilitated simulations of the road network diffusion under various
hypothetical fluvial flooding events. A better understanding of the impact of parameters of the SIS

diffusion model on the diffusion profile of the road networks is crucial as different combinations of § and



y values represent a different flooding profile, like the intensity of precipitation, runoff, the capacity of
the flood control infrastructure or drainage systems. Furthermore, once an estimate of the values for the
SIS diffusion parameters, Beta () and Gamma (y), are obtained, it is possible to conduct scenario
analysis by initiating the diffusion from different locations in the road network, which represents areas
fluvial flooding most likely starts. The diffusion which starts from randomly selected seed nodes is a
baseline scenario in which the flood originates in the road network from a set of randomly chosen nodes.
Figure 6 (highlighted in red) shows a set of randomly chosen nodes that serve as the seed nodes for the
diffusion. In order to facilitate a comparison between different scenarios, 5% of the total node number
were selected for all the scenarios and diffusions are simulated in the same network in Memorial Super

Neighborhood.
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Figure 7 Diffusion Profile of Road Network under Different Seed Locations
As could be seen from Figure 7, the rate at which the connectivity of the road network is reduced
under different diffusion scenarios varies significantly. There is an apparent non-linear pattern of
reduction in the connectivity of road networks when diffusion in the road network is initiated from nodes

with high betweenness, degree and closeness centralities. At different magnitudes of disruption (as the



fraction of removed nodes varies in x-axis), the overall reduction of the connectivity of the road network
is also different.
* Experiment Two: Characterization of Road Network Vulnerability to Diffusive Disruptions

A separate simulation of diffusion on the road network was conducted for each of the scenarios
(random, BE, DC, CC, and EC). The working hypothesis is that a diffusion starts from nodes with high
centrality values will cause a greater loss in the connectivity. According to this hypothesis, the average
connectivity of the road network under these scenarios (Uap , Upc> Ucc> HEc) 1S less than connectivity of
the road network under a diffusive failure which starts from a set of nodes randomly chosen. The
parameters of the diffusion are initially impacted seed size a (a =1%, 5% and 10%) ,f = 0.04; y =
0.02. This process was conducted for 88 super neighborhoods in Houston, in order to get the sample of
the road network connectivity under these scenarios. Independence between samples was assumed, as the
number of samples is more than 30, the z-test was used for testing the hypothesis. Table 2 presents a
summary of the hypothesis testing when the seed size parameter is « = 10%. When larger seed size
values (1% and 5%) are used, the results for tall high centrality scenarios (high DC, EC, CC and BC)

centrality scenarios are not significantly different from the diffusion initiated from randomly chosen

seeds.
Table 2 Results of the Hypothesis Tests (on the different networks)
Initial Seed Type Working Hypothesis z-statistics Conclusion (at « = 0.1)
high DC Uap < Urandom 0.214921 Fail to reject the Null
high BC Upc < Urandom 2.078136 Reject the Null
high CC Hee < Urandom 0.677877 Fail to reject the Null
high EC Uee < Urandom 1.780124 Reject the Null

As could be inferred from the results in Table 2, contrary to the initial belief, diffusion started

from high significance nodes do not cause the expected greater decrease in the network connectivity.



Diffusion which originates from seeds of nodes that have high betweenness and high eigenvector
centrality causes greater loss to the connectivity loss when the seed size is large, compared to ones that
started from randomly selected nodes. In contrast, diffusion which originates from seeds of nodes that
have high closeness centrality seems to cause less loss to the connectivity of the network than a diffusion
started from the randomly chosen nodes.

Average connectivities in road networks (for the above-mentioned five cases) under different
seed-size scenarios were also studied (see Figure 8). Diffusion which originates from seeds of nodes that
have high eigenvector and betweenness centrality seems to cause more significant loss to the connectivity
loss when the seed sizes are respectively 2% and 4%. It is also observed that if diffusion starts from a
larger number of nodes ( above 7% of total nodes) with high betweenness centrality, the impacts on the

network connectivity would be higher than that of diffusion originated from the randomly chosen nodes
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Figure 8 Average Network Connectivity under different Diffusion Scenarios
The above findings have important implications for flood management. The figures indicate that
to ensure the connectivity of the graph or the transportation network, it is crucial to maintain the
functionality of a number of critical nodes in the network. This paper illustrates that the SIS diffusion
model can be used to identify critical nodes in transportation road networks. This paper also presented a

sensitivity analysis of the impact of the number of initially flooded nodes. The second application of the



finding is that network size increase may not necessarily result in improved robustness in the network.
This also means that just adding extra lanes to the roadways may not improve the flood resilience of the
road network. Instead, working on ensuring the functionality of a few nodes in road networks is critical

to the robustness of the road network.

IV.  CONCLUSIONS

This paper presented the use of SIS diffusion model used to study the spread of communicable
diseases to study diffusion phenomena in the road network under the influence of the fluvial flooding
during heavy rainfall. The results show that this model can be used to study the flood vulnerability of
road networks. In addition, the results indicate that the road network studied does have critical threshold
values for the impacted nodes, being above which could lead to the wholesale closure of the roads
networks, which could lead to serious consequences in terms of the social and economic well-being of the
people. It has been observed that the sensitivity of the robustness of the road network is different for the
random percolation and diffusive network. It has been observed that the rate of the reduction in the
robustness is faster under the SIS diffusive phenomenon than in the random percolation. In summary, If
we are able to predict the configuration of the road network under a given flooding scenario, then we
would be able to predict various types of accessibilities. There is also a threshold value for the node
removal portion for the robustness decrease, while the change in the robustness (measured in terms of the
largest connected component) under the random percolation is relatively moderate. The critical threshold
value for the removal portion of the nodes under the diffusion phenomenon is about 25%. This has two
critical implications on the road networks. The first, marginal utility of the investment on improving the
vulnerability of the road network is different at different disruption levels, the dividend, in terms of the
ensuring the robustness of the network, on investing to ensure the node-removal doesn’t exceed the
threshold value, which is about 25% is much larger than investing in ensuring, say 15%, of the node

removal.



Even though this study has addressed the limitations of the existing literature by treating the
condition of the road network (depth of the flooding) as a continuous variable, not as binary variables as
closed or functional. This does not mean this study is without limitations. For example, even though the
depth of the standing floodwater in the road network is an important indicator for it's being closed or not,
in order to render it nonfunctional, there could be numerous other factors like, vehicle conditions (tire
pressure, roadworthiness etc.), condition of the pavement, visibility and aptitude and behavior of the
driver during the flooding events, which could contribute to the whether a road network is being “closed”
or not. In terms of the granularity of the data, this study has used the hourly flood depth data as input for
the diffusion. This granularity could lead to some cases where the depth of the flood in specific nodes is
zero in one instance and quickly becomes too large to the extent that the node being removed. This
process is not captured in the S=> IS transition process. It is also possible to train diffusion models
using the data for multiple super neighborhoods or under multiple types of flooding scenarios, which
could enable the identification of the diffusion model that is best able to model the floodwater diffusion in

road networks during a given flooding event.
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