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ABSTRACT 

This study aims to characterize the vulnerability of road networks to fluvial flooding using a 

network diffusion-based method. Various network diffusion models have been applied widely for 

modeling the spreading of contagious diseases or capturing the opinion dynamics in social networks. By 

comparison, their application in the context of physical infrastructure networks has just started to gain 

some momentum, although physical infrastructure networks also exhibit diffusion-like phenomena under 

certain stressors. This study applies a susceptible-impacted-susceptible (SIS) diffusion model to capture 

the impact of the fluvial flooding on the road network connectivity. To that end, this paper undertakes the 

following four steps. First, we modeled the road network as primal graphs and identified nodes that are 

flood-prone (or the origins of the fluvial flood). Second, temporal changes in the flood depth within the 

road network during a flooding event were obtained using hydraulic models. Third, based on the 

relationship between vehicle speed and flood depth on road networks, at each time step, the nodes in the 

road network were divided into two discrete categories, namely functional and closed, standing for 

Susceptible and Impacted in the SIS diffusion model, respectively. Then, two parameters of the SIS 

model, average transition probabilities between states, were estimated using the results of the hydraulic 

simulation. Fourth, the robustness of the road network under various SIS diffusion scenarios was 

estimated, which was used to test the statistical significance of the difference between the robustness of 

the road network against diffusions started from the randomly chosen nodes and nodes with high 

centrality measures. The methodology mentioned above was demonstrated using the road network in the 

Memorial Super neighborhood in Houston. The results show that a diffusive disruption which starts from 

nodes with high centrality values does not necessarily cause more significant loss to the connectivity of 

the road network. The proposed method has important implications for applying link predictions on road 

networks, and it casts significant insights into the mechanism by which cascading disruptions spread from 

flood control infrastructure to the road networks, as well as the diffusion process in the road networks. 
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Component (GCC); Diffusion Patterns; Network Centrality Measures 

 

 



I. INTRODUCTION  

Changes in the earth climate, potential global warming, and unprecedented and ever-increasing 

urbanization, coupled with the increased interdependence among different sectors, are putting the critical 

infrastructure systems under increasing pressure (Rodin, 2014). In the meantime, failures in critical 

infrastructure systems are becoming prohibitively costly, mainly due to the possible cascading failures 

that are initiated from one sector and subsequently cause a series of failures in other dependent sectors. 

Thus, the resilience of interdependent critical infrastructure (ICI) systems is one of the grand challenges 

facing engineers and policy-makers in the 21st century (Heller, 2002; O’Rourke, 2007; van Laere et al., 

2017). Over the past two decades, the body of knowledge on ICI resilience has advanced in the domains 

of modeling, simulation methods, and theoretical frameworks. Despite the growing literature (Dueñas-

Osorio, Craig, Goodno, & Bostrom, 2007; Haimes & Jiang, 2001; Reed, Kapur, & Christie, 2009) on ICI 

resilience, our understanding of the dynamics and mechanisms of disruptions in ICI systems that shape 

resilience patterns in these complex networks is somewhat limited. This is particularly evident in urban 

areas where transport systems are frequently affected by weather-related hazards. 

Flooding, especially ones due to excessive and intense rainfall precipitation, has been the 

predominant cause of the weather-related disruptions to the transportation infrastructure (Pregnolato, 

Ford, Wilkinson, & Dawson, 2017).  Such events could undermine the vital functionality of transportation 

systems, especially road networks.  Many studies have shown that roads are among the major causes of 

deaths in cities during flooding; this is mainly due to the vehicles being driven through flooded roadways 

(Ashley & Ashley, 2008; Drobot, Benight, & Gruntfest, 2007; FitzGerald, Du, Jamal, Clark, & Hou, 

2010; Kreibich et al., 2009). Locations, such as Texas, where road mobility through cars is the primary 

mode of passenger transportation, are especially vulnerable to the impact of flooding (Blackburn, 2017), 

as the advantage of having the largest road networks in the U.S. could become a curse when the majority 

of the road networks are closed due to flooding events and there are few other alternatives to go around 

the city, as was the case during Hurricane Harvey in 2017 (ASCE, 2017). In addition, during the 

disastrous events, the road system functions as a lifeline system for rescuing people and assets and plays a 



vital role in repairing and restoring other infrastructure systems when they are disrupted. In order to cope 

with disruptions efficiently and take active precautionary measures, it is critical to understand the 

mechanisms and patterns with which the disruptions unfold in the transportation network. Due to the 

planar nature of transportation networks, they tend to lend themselves readily to being represented as 

graphs, and therefore graph theory-based approaches have been one of the standard tools to study the 

vulnerability in the transportation systems (Tamvakis & Xenidis, 2013). Graph theory reduces a road 

network to a mathematical matrix where the vertices (nodes) represent road intersections and the edges 

are the road sections between these nodes (Leu, Abbass, & Curtis, 2010). This type of matrix abstraction 

of road networks not only facilitates the accessibility and connectivity analysis but also assists in the 

identification of critical locations using available graph-theoretic centrality measures.  However, there are 

two crucial challenges in network modeling of transportation networks. On the one hand, transportation 

networks, like many other critical infrastructure networks, are spatially embedded (Bashan, Berezin, 

Buldyrev, & Havlin, 2013)  and the configurations of the environment in which network elements (nodes 

or edges) operates are inherently heterogeneous, which, coupled with the possible spatial or temporal 

variance of the magnitude of the disruptive events,  makes failure probabilities vary significantly from 

node to node. On the other hand, the topology of most critical infrastructure networks is intrinsically 

dynamic and evolving, especially during disruptive events. While an understanding of the patterns for 

temporal shifts in the functional topology of the critical infrastructure networks during disastrous events 

remains a crucial step in devising efficient plans to reduce their vulnerabilities,  the almost complete 

absence of the time dimension in such problem definitions can be attributed to: (1) the graph theory 

ancestry of the field, and in (2) the limited number of dynamic data sources available when the area of 

complex networks analysis emerged (Rossetti et al., 2018).  

Flooding in urban roadways is a process that presents both of the challenges mentioned above.  

Relevant studies in the literature that aimed at tackling the flood vulnerability of critical infrastructure 

networks could be categorized into two main types: (1) graph-theory based topological approaches that 

focus on topological integrity of the network; (2) hydrological approaches that models the flood 



propagation process in (or around)  critical infrastructure in urban areas (Singh, Sinha, Vijhani, & Pahuja, 

2018). Each of these methods tackles the flood vulnerability problem from different angles; consequently, 

it only paints some parts of the whole picture. Most of the studies which attempted to apply dynamic 

network modeling approaches focused on complete or random graphs to demonstrate its applicability in 

real-world network failure problems. However, transportation networks are neither random nor complete. 

They have a unique configuration manifested in a relatively small range of node-degrees and spatial 

constraints which is not observed in other types of networks.  This historical decoupling between two 

types of methods could largely be attributed to the lack of granular flood data which could be inputted to 

the network modeling.  

Recently, for identifying the probability of flooding in a road network, the coupling of remotely 

sensed data with hydrodynamic models has been used. Such an approach was used to identify the most 

critical and vulnerable nodes (intersections) in a transportation network. Sadler et al. (2017) combined 

storm surge levels associated with different return periods, provided by the Federal Emergency 

Management Administration (FEMA), with High-resolution Digital Elevation Models (DEMs), compiled 

from data collected by Light Detection and Ranging (LiDAR). The authors then compared the surge 

elevations with the road elevations to assess different scenarios and reported the most vulnerable roadway 

segments based on the frequency of flooding. In another study, Kalantari et al. (2017) developed a 

LiDAR-based data-driven model to quantify the risk of flooding and sediment transport at different 

roadway intersections in Sweden. While these efforts are essential to study the impacts of the most severe 

inundation scenarios, they do not provide enough information on how the internal components of the 

system behave during a flood event. This restriction is mainly due to the use of only one snapshot of the 

flood rather than a time series of water depth. In contrast, other researchers have coupled the results of 

hydrodynamic models to estimate the probability of flooding during the flooding events. Courty et al. 

(2017),  Lagmay et al. (2017), and Pyatkova et al. (2019) coupled the results of MIKE FLOOD, 

LISFLOOD-FP, and FLO-2D GDS PRO, respectively, to LiDAR elevations and reported the risk of 

inundation for roads during flooding events. Though more accurate hydrodynamic models are useful tools 



in storm surge and flood simulation/prediction, they are expensive to apply because of lengthy 

computational time, expensive equipment and the need for skilled users. In addition, an extensive 

calibration of the model using observed data is required to make the model results reliable. In summary, 

existing methods are either focused on a single point in the duration of the disastrous event and there is a 

lack of understanding about the internal mechanism of the disruptive events on road networks; or are 

computationally or operationally too expensive.  This study aims to bridge the gaps mentioned above 

between these two closely related fields. Furthermore, given the improved computational powers and 

relatively wide availability of the data, the condition is mature enough to do a more granular and detailed 

temporal analysis on the road network. This study is motivated as such. In this study, a simple 

methodology was developed to have both the reliability of using the field measured data directly and the 

advantage of using time series water depth instead of one snapshot. To be more specific, the measured 

high-water marks (HWMs) after a flooding event were combined with the observed pattern in water 

surface elevation (WSE) of nearby rivers recorded by USGS to create a WSE time series at the location of 

the HWMs. Each time series was then compared with LiDAR elevations to calculate the water depth at 

any given point.  

When it comes to analyzing the effect of flooding on network vulnerability, it is important to 

know how a phenomenon spreads through a network. Based on authors’ interview with stakeholders of 

critical infrastructure systems in Houston, after flood control infrastructures (Bayous, channels, creeks, 

and stormwater systems) reached their capacity under an excessive rainfall, road networks become part of 

the flood control infrastructure and play the role of conducting excessive water into lower elevation areas 

or releasing into storm-water drainage systems. In this context, the process of spreading the floodwater 

around the road network could be assumed as a diffusion process, which is analogous to the spread of 

contagious diseases among human beings. The origin of the diffusion modeling could be traced back to 

the spread of epidemics and mathematical modeling of epidemics predates most of the studies on 

networks by many years (Newman, 2010). The traditional diffusion modeling approaches avoid 

discussing contact networks by making use of fully mixed or mass-action approximation, in which it is 



assumed that every individual (node in the network) has an equal chance, per unit of time, of coming into 

contact with every other (Newman, 2018).  According to the assumptions of this approach, nodes (people) 

mingle and meet completely at random, which is not a realistic representation of any real-world networks. 

This is because nodes in real-world networks are spatially embedded and have a heterogeneous exposure 

to diffusion mechanisms. Shakarian et al. (2015) have provided a comprehensive review of the papers and 

recent research work in the field of network diffusion.  

In conclusion, the majority of the research in the field of network vulnerability is focused on 

theoretical networks; relatively, a fewer number of published research papers are focused on real-world 

networks. Due to their unique topological structure and the configuration, road networks represent one 

unique type of real-world networks. Understanding, characterizing, and theorizing these networks could 

bridge the gap between advancement in the field of theoretical networks and real-world networks. The 

proposed method facilitates the assessment of the vulnerability of the road network which contributes to 

the advancement of network science in the realm of real-life networks. This is because this type of 

flooding happens all around the globe, the findings from this research are directly applicable to other road 

networks.    

II. METHODOLOGY  

A summary of the methodology followed in this study is presented in Figure 1. The first step was 

modeling the road systems as the primal graph, which is followed by a simulation of the hydraulic 

process in the areas where roads located in order to obtain the granular (node-level) flood depth data. A 

diffusion model that commonly used to study the spread of communicable disease, Susceptible-Impacted-

Susceptible (SIS Model), is proposed to model the propagation of the flood in road networks. Parameters 

of the SIS model were estimated using the temporal flood depth for the nodes in the road network. 

Finally, the impact of both the number and locations of the seed nodes on the connectivity of the road 

networks during diffusion were evaluated.  



 

Figure 1 Research Methodology  

1. Road Network Modelling 

The road network was modeled as a non-planar primal graph, where nodes represent the 

intersections in the road network while edges represent the actual road sections. As a proxy for the flood 

vulnerability, the elevation of each node in the network was also retrieved using Google API. Road 

network topological data and other auxiliary information were obtained from OpenStreetMap using the 

OSMnx python package (Boeing, 2017).  

2. Simulation of the Hydraulic Process  

In this study, the depth of flooding at nodes of the road network was used as a proxy for their 

functional status.  Therefore, obtaining the granular temporal flood depth information in the road network 

during the case study event− Hurricane Harvey, was crucial. During Harvey, flooding in the study started 

at 20:00:00 on August 26, 2017. The temporal changes in the flood depth at the node location in the road 

network is obtained for a temporal scale of 17 days, observations are in hourly intervals, from 12 AM, 25 

August 2017 to 11 PM, 10 September 2017. This study looked into the time between 22:00:00 on August 

26, 2017, and above peak period, which is 11:00:00 on August 30, 2017. 

The methodology applied in this study to calculate the water depth at each node of the road 

network is similar to what Kiaghadi et al. (2019)  developed. The main difference was converting the 

observed HWMs (one snapshot of the flood representing the maximum WSE) into a time series. In other 

words, in this study, a water surface elevation over the time of the flooding event (i.e. Hurricane Harvey) 

was used instead of a static snapshot of the event. Due to a smaller study area, all calculations were 

undertaken at the catchment level and only HWMs within the catchments covering the study area were 

used. Catchment boundaries were extracted from the watershed delineation in the Tropical Storm Allison 
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Recovery Project (TSARP). Figure 2 shows the catchments and associated HWMs used in this study. A 

total of 11 HWMs were used. 

 

Figure 2 Study area and location of High-Water Marks (HWMs) used in this study 

To convert the single measured HWM into a WSE time series, the observed pattern in the WSE at 

the closest USGS gage to the HMW location was used. Since the majority of the HWMs were measured 

close to the banks of rivers and were caused by the river over banking, it was assumed that the WSE time 

series at the location of the HWM was similar to the river behavior. The HWM represents the highest 

level of water observed at the specific location that is equivalent to the peak of the WSE time-series 

recorded by USGS. For the period of simulation and for each USGS gage, the ratio between the WSE at 

each time step and the peak were calculated and multiplied to the reported values of nearby HWMs to 

generate the WSE time series at the location of each HWM. For HWMs located on the tributaries (see 

HWM2 in Figure 2), the pattern observed in the difference between recorded discharges from two USGS 

gages (one upstream and one downstream) was applied to the HWMs. Here, it was assumed that the 

difference in the discharge rates was solely caused by the input from the tributary and not by the direct 

runoff from the drainage areas between the two USGS gages.  To automate the process of generating a 



WSE at each time step (one hour) a model was built in ArcMap. Several existing tools in ArcMap were 

applied to (1) Convert the HWMs within the catchments into a WSE raster with a resolution of 1 m by 1 

m for each time step; (2) Subtract the surface elevation raster (LiDAR DEM) from the WSE raster to 

calculate the water depth at time steps; (3) Extract the water depths at the locations of specific nodes 

(intersections) for each time step; (4) Filter the depths to only consider nodes with a positive depth. A 

negative value indicates that the river water is contained within the original river bank; (5) Export the 

excel file containing the locations and associated water depths. In the end, A MATLAB code was also 

developed to combine all the excel files and create a metafile with the locations of the nodes and water 

depth at each time step over the length of the simulation. 

3. Estimation of the Parameters of the SIS Network Diffusion Model 

In this study, it was hypothesized that the propagation of the flooding impacts in the road network 

can be modeled using the SIS diffusion approach. In SIS diffusion, there are two types of nodes 

(Susceptible and Infected) and the rate of change between these two statuses are characterized by two 

parameters called beta and gamma (See Figure 3). The main reason to focus on the nodes, instead of links 

(which seemingly is more appropriate in the context of the road network) is because once a node is 

flooded enough to be removed from the network, the edges connected to that node will be rendered as 

nonfunctional 

 

Figure 3 Flowchart for the SIS Diffusion Model 

The first task in SIS diffusion modeling is to categorize the study population (nodes in this 

context) into different classes using certain criteria defined by the user. For this study, it is possible to 

categorize the nodes in the road network into functional or closed categories.  During a flooding event, 



the closed or functional status of the road network is a binary value, but the flooding (depth) status in 

different parts of the road network is a continuous variable.  It is possible to relate the flood depth to 

closed or functional status of roads via vehicle speed. Researchers have studied the relationship between 

the depth of the flooding and the speed of the vehicles driving on the roads during the flooding event. 

Pregnolato et al. (2017) have estimated the relationship between the depth of standing water and the speed 

of different types of vehicles as:  

 𝑣(𝑤) = 0.0009𝑤! − 0.5529𝑤 + 86.9448 (1)  

𝑤ℎ𝑒𝑟𝑒:     

v(w)  is  the  vehicle  speed  and  w  is  the  depth  of  the  floodwater  on  the  road.   

Using the above Equation1, nodes in the road network at any given point in time are divided into 

two categories based on the vehicle speed. (1) Susceptible Nodes (S):  The susceptible group is a node in 

the network which is either intact at a given point or flood depth in the node location is less than 140𝑚𝑚.  

On these types of nodes, the passenger vehicle speed is more than or equal to 20𝑘𝑚/ℎ. (2) Infected 

Nodes (I):  The Impacted group is the nodes that have been heavily impacted by the flood and are 

rendered non-functional. The speed of vehicles on these types of nodes is less than 20𝑘𝑚/ℎ.  

The next step in SIS diffusion modeling is to identify the seed nodes, the portion of the nodes in 

the network, which were already impacted when diffusion started. During a fluvial flooding event, the 

nodes located within the flood-prone areas initiate a flood-induced diffusion phenomenon in the road 

network.  Estimating the flood-proneness of the nodes can be based on the floodplain type, proximity to 

flood control infrastructure and relative elevation of the nodes (Abdulla, Mostafavi, & Birgisson, 2019). 

The last step is to estimate the other two essential parameters of the SIS diffusion, 𝛽 and 𝛾. Parameters of 

the diffusion are solved using equations (2) and (3) provided  by Newman (2018):  

 𝑑𝑆 
𝑑𝑡

= 𝛾𝑥 − 𝛽𝑠𝑥 
(2) 

 
𝑥(𝑡) = 𝑥!

𝛽 − 𝛾 𝑒(!!!)!

𝛽 − 𝛾 + 𝛽𝑥!𝑒 𝛽 − 𝛾 𝑡
 

(3) 



𝑤ℎ𝑒𝑟𝑒:   

β and γ: transition parameters of diffusion;  S: number of Susceptible individuals (nodes)at a given point 

in time; I: number of Infected individuals(nodes)at a given point in time; 𝑥 𝑡 : the fraction of infected 

nodes at a given point in time;  𝑥!: the fraction of susceptible nodes at the beginning of diffusion. 

Simulation of the SIS diffusion in the road network under hypothetical cascading failures was conducted 

using the NDlib python package (Rossetti et al., 2018).  

4. Assessing the Diffusion Profile and Connectivity under Different Scenarios 

Two impacts of the flood-induced network diffusion on the road network are studied. One is the 

impacts of the diffusion started at different locations on the connectivity profile of the road network. The 

other one is the impact of diffusion on the overall connectivity of the road network during the flood 

propagation process in the road network.  

• Connectivity Profile 

Due to diverse colocation patterns between road networks and flood control infrastructure 

networks, it is possible for the fluvial flooding to occur at any location in the road network. This scenario 

analysis estimated the impacts of the locations of nodes with specific centrality measures on the diffusion 

profile of the road networks using the relative (to original network size)  size of the connected giant 

component (GCC) in the road network. Due to the unique topography and layout of the road networks, 

nodes with high centrality measures represent unique locations on the road networks.  Five considered 

scenarios are: (1) diffusion is initiated from a certain number of randomly selected nodes; (2) diffusion 

started from a certain number of nodes with the highest betweenness centrality; (3) diffusion started from 

a certain number of nodes with highest degree centrality; (4) diffusion started from a certain number of 

nodes with highest closeness centrality;(5) diffusion started from a certain number of nodes with highest 

eigenvector centrality. For this analysis, the road network in the Memorial super neighborhood was used.  

• Overall Connectivity  



While connectivity profile could cast some insights into the sensitivity of the diffusion at different 

levels on the connectivity of the road network, it is not an aggregate measure of the overall impact of 

flooding on the road connectivity. Therefore, a measure called overall connectivity (OC) is introduced to 

assess the connectivity of the network during the diffusive disruptive events.  The connectivity changes 

due to diffusive disruptions are quite uneven under different scenarios. In order to make the magnitude of 

the impacts of different diffusions on road network comparable, the area under the performance curve is 

calculated. OC is defined in below way (see Equation 4):  

 𝑂𝐶 = 𝐺𝐶(𝑡)!!
!!

𝑑𝑡   (4) 

𝑤ℎ𝑒𝑟𝑒:   

𝑡! − 𝑡ℎ𝑒  𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑡𝑖𝑚𝑒  𝑓𝑜𝑟  𝑡ℎ𝑒  𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒  𝑒𝑣𝑒𝑛𝑡; 

  𝑡! − 𝑡ℎ𝑒  𝑡𝑖𝑚𝑒  𝑡ℎ𝑒  𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑣𝑒  𝑒𝑣𝑒𝑛𝑡  𝑒𝑛𝑑𝑠; 

𝐺𝐶 𝑡 − 𝑡ℎ𝑒  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝑠𝑖𝑧𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑  𝑔𝑖𝑎𝑛𝑡  𝑐𝑜𝑚𝑝𝑜𝑒𝑛𝑡  𝑖𝑛  𝑟𝑜𝑎𝑑  𝑛𝑒𝑡𝑤𝑜𝑟𝑘.   

In order to examine the impacts of the location of the initial diffusive set seeds on the 

vulnerability of the road network, this study has conducted a two-sample significance test. The working 

hypothesis is road network is more vulnerable to the contagious disruptions which start from those 

significant nodes. Because removal of these nodes alone usually caused a greater magnitude of loss to the 

connectivity of the network.  If we assume the road networks under the disruptions of random diffusive 

failures as group 1, road networks under the targeted diffusive failures (failures originate from those 

nodes which are considered significant, i.e. high degree centrality, high betweenness, nodes with low 

closeness centrality and nodes with high Eigenvector centrality)  as group 2. Overcall connectivities of the 

network in these two groups have been studied. OC values for each of the 88 super neighborhoods are 

studied.  

III. CASE STUDY RESULTS AND DISCUSSIONS 

• Road Network and Hydraulic Process 



This study demonstrated the estimation of the parameters of the SIS model using the road 

network in Memorial Super Neighborhood (SN-16), which is located on the west side of Houston and one 

of those areas suffered heavily from road closures chiefly due to fluvial flooding during Hurricane 

Harvey. This road network has 4073 nodes and more than 9785 edges, with an average node degree of 

2.398.  As a proxy for the flood vulnerability, the elevation of each node in the network was also retrieved 

using Google API. Data for the road network was obtained from OpenStreetMap using the OSMnx 

python package (Boeing, 2017).  During Harvey, flooding in the study started at 20:00:00 on August 26, 

2017. The temporal changes in the flood depth at the node location in the road network is obtained for a 

temporal scale of 17 days, observations are in hourly intervals, from 12 AM, 25 August 2017 to 11 PM, 

10 September 2017. A snapshot of the road network when the most severe flooding occurred can be seen 

from Figure 4, which happened at 11:00:00 on August 30th, 2017, when the maximum number of nodes 

(937 nodes out of 4073) flooded in the network.  This study looked into the time between 22:00:00 on 

August 26, 2017, and above peak period, which is 11:00:00 on August 30, 2017.  A temporal change in 

the fraction of flooded nodes (as long as a node is under non-zero flood water, it was considered as 

flooded) can be seen from below Figure 4. As can be seen from Figure 5, using the size of the giant 

component in the network, resilience triangles were obtained for the road network under different node-

removal criteria (which corresponds to road closure to different types of vehicles).   

 



 

 

Figure 4 Road Network under Maximum Flooding (top); Temporal Change in the Number of 

Inundated Nodes in the Road Network (bottom) 

  

A: Size of Giant Component (when 150mm threshold 

is used for removal)  

B: Size of Giant Component (when 300mm threshold is 

used for removal)  

Figure 5 Sizes of GC in Road Network under Two Different Closure Thresholds 



• Obtaining the Network Diffusion Parameters 

Three parameters, as discussed in the methodology section,  needed to be estimated for an SIS 

diffusion model. The initially impacted parameter was estimated based on the number of nodes within a 

certain type of flood plain. The transition rate parameters (β and γ) were estimated by minimizing residual 

sum of squares method. In other words, the sum of squares of the difference between predicted and 

observed node numbers in each category is minimized.   Table 1 presents a summary of the parameter 

estimation for the SIS model under four different flood threshold scenarios. These four scenarios are 

considered because these values represent the threshold values for the propagation of flood-induced road 

closure in the road network for different types of vehicles. As discussed in methodology section, 150mm 

represents the maximum flood depth in which sedan cars can travel on the road while 300 mm represents 

the depth for SUV vehicles, whereas 600mm represents the threshold flood depth for the fire trucks. The 

0mm shows the results when the threshold value for the flood is binary, as long as there is a flood on the 

location where nodes lie, the node is considered flooding.  

Table 1 Summary of Diffusion Parameters under Different Diffusion Threshold 

Diffusion Threshold (in mm) Beta (𝜷) Gamma (𝜸) Initially Impacted (% of nodes) 

0 0.025 0.02 1 

150 0.02 0.013 0.8 

300 0.03 0.024 0.5 

600 0.02 0.015 0.4 

• Experiment One: Assessing the Impact of Diffusion on Connectivity Profile 

This study first estimated the parameters of the SIS diffusion based on the actual hydraulic 

process in the road network, which facilitated simulations of the road network diffusion under various 

hypothetical fluvial flooding events. A better understanding of the impact of parameters of the SIS 

diffusion model on the diffusion profile of the road networks is crucial as different combinations of 𝛽 and 



𝛾 values represent a different flooding profile, like the intensity of precipitation, runoff, the capacity of 

the flood control infrastructure or drainage systems. Furthermore, once an estimate of the values for the 

SIS diffusion parameters, Beta (𝛽) and Gamma (𝛾), are obtained, it is possible to conduct scenario 

analysis by initiating the diffusion from different locations in the road network, which represents areas 

fluvial flooding most likely starts.   The diffusion which starts from randomly selected seed nodes is a 

baseline scenario in which the flood originates in the road network from a set of randomly chosen nodes. 

Figure 6 (highlighted in red) shows a set of randomly chosen nodes that serve as the seed nodes for the 

diffusion. In order to facilitate a comparison between different scenarios, 5% of the total node number 

were selected for all the scenarios and diffusions are simulated in the same network in Memorial Super 

Neighborhood.  

 

A: Randomly Chosen Seeds 

 

B: High Betweenness Centrality Seeds 

 

C: High Degree Centrality Seeds 



 

D: High Eigen Value Centrality Seeds 

 

E: High Closeness Centrality Seeds 

Figure 6 Locations of Seed Nodes in Road Network 

 

Figure 7 Diffusion Profile of Road Network under Different Seed Locations 

As could be seen from Figure 7,  the rate at which the connectivity of the road network is reduced 

under different diffusion scenarios varies significantly. There is an apparent non-linear pattern of 

reduction in the connectivity of road networks when diffusion in the road network is initiated from nodes 

with high betweenness, degree and closeness centralities. At different magnitudes of disruption (as the 



fraction of removed nodes varies in x-axis), the overall reduction of the connectivity of the road network 

is also different.   

• Experiment Two: Characterization of Road Network Vulnerability to Diffusive Disruptions 

A separate simulation of diffusion on the road network was conducted for each of the scenarios 

(random, BE, DC, CC, and EC). The working hypothesis is that a diffusion starts from nodes with high 

centrality values will cause a greater loss in the connectivity.  According to this hypothesis, the average 

connectivity of the road network under these scenarios (𝜇!" ,  𝜇!" , 𝜇!! , 𝜇!") is less than connectivity of 

the road network under a diffusive failure which starts from a set of nodes randomly chosen. The 

parameters of the diffusion are initially impacted seed size α (α =1%, 5% and 10%) ,𝛽 = 0.04;   𝛾 =

0.02.  This process was conducted for 88 super neighborhoods in Houston, in order to get the sample of 

the road network connectivity under these scenarios. Independence between samples was assumed, as the 

number of samples is more than 30, the z-test was used for testing the hypothesis.  Table 2 presents a 

summary of the hypothesis testing when the seed size parameter is α = 10%.   When larger seed size 

values (1% and 5%) are used, the results for tall high centrality scenarios (high DC, EC, CC and BC)  

centrality scenarios are not significantly different from the diffusion initiated from randomly chosen 

seeds.  

Table 2 Results of the Hypothesis Tests (on the different networks) 

Initial Seed Type Working Hypothesis z-statistics Conclusion (at 𝜶 = 𝟎.𝟏) 

high DC 𝜇!" < 𝜇!"#$%& 0.214921 Fail to reject the Null 

high BC 𝜇!" < 𝜇!"#$%& 2.078136 Reject the Null 

high CC 𝜇!! < 𝜇!"#$%& 0.677877 Fail to reject the Null 

high EC 𝜇!" < 𝜇!"#$%& 1.780124 Reject the Null 

 

As could be inferred from the results in Table 2, contrary to the initial belief, diffusion started 

from high significance nodes do not cause the expected greater decrease in the network connectivity. 



Diffusion which originates from seeds of nodes that have high betweenness and high eigenvector 

centrality causes greater loss to the connectivity loss when the seed size is large, compared to ones that 

started from randomly selected nodes. In contrast, diffusion which originates from seeds of nodes that 

have high closeness centrality seems to cause less loss to the connectivity of the network than a diffusion 

started from the randomly chosen nodes. 

Average connectivities in road networks (for the above-mentioned five cases) under different 

seed-size scenarios were also studied (see Figure 8). Diffusion which originates from seeds of nodes that 

have high eigenvector and betweenness centrality seems to cause more significant loss to the connectivity 

loss when the seed sizes are respectively 2% and 4%.  It is also observed that if diffusion starts from a 

larger number of nodes ( above 7% of total nodes) with high betweenness centrality, the impacts on the 

network connectivity would be higher than that of diffusion originated from the randomly chosen nodes 

with the same size.   

 

Figure 8 Average Network Connectivity under different Diffusion Scenarios 

The above findings have important implications for flood management. The figures indicate that 

to ensure the connectivity of the graph or the transportation network, it is crucial to maintain the 

functionality of a number of critical nodes in the network. This paper illustrates that the SIS diffusion 

model can be used to identify critical nodes in transportation road networks. This paper also presented a 

sensitivity analysis of the impact of the number of initially flooded nodes. The second application of the 
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finding is that network size increase may not necessarily result in improved robustness in the network. 

This also means that just adding extra lanes to the roadways may not improve the flood resilience of the 

road network. Instead,  working on ensuring the functionality of a few nodes in road networks is critical 

to the robustness of the road network. 

IV. CONCLUSIONS  

This paper presented the use of SIS diffusion model used to study the spread of communicable 

diseases to study diffusion phenomena in the road network under the influence of the fluvial flooding 

during heavy rainfall.  The results show that this model can be used to study the flood vulnerability of 

road networks. In addition, the results indicate that the road network studied does have critical threshold 

values for the impacted nodes, being above which could lead to the wholesale closure of the roads 

networks, which could lead to serious consequences in terms of the social and economic well-being of the 

people.  It has been observed that the sensitivity of the robustness of the road network is different for the 

random percolation and diffusive network. It has been observed that the rate of the reduction in the 

robustness is faster under the SIS diffusive phenomenon than in the random percolation.  In summary, If 

we are able to predict the configuration of the road network under a given flooding scenario, then we 

would be able to predict various types of accessibilities. There is also a threshold value for the node 

removal portion for the robustness decrease, while the change in the robustness (measured in terms of the 

largest connected component) under the random percolation is relatively moderate. The critical threshold 

value for the removal portion of the nodes under the diffusion phenomenon is about 25%. This has two 

critical implications on the road networks. The first, marginal utility of the investment on improving the 

vulnerability of the road network is different at different disruption levels, the dividend, in terms of the 

ensuring the robustness of the network, on investing to ensure the node-removal doesn’t exceed the 

threshold value, which is about 25% is much larger than investing in ensuring, say 15%, of the node 

removal.   



Even though this study has addressed the limitations of the existing literature by treating the 

condition of the road network (depth of the flooding) as a continuous variable, not as binary variables as 

closed or functional. This does not mean this study is without limitations. For example, even though the 

depth of the standing floodwater in the road network is an important indicator for it's being closed or not, 

in order to render it nonfunctional, there could be numerous other factors like, vehicle conditions (tire 

pressure, roadworthiness etc.), condition of the pavement, visibility and aptitude and behavior of the 

driver during the flooding events, which could contribute to the whether a road network is being “closed” 

or not.  In terms of the granularity of the data, this study has used the hourly flood depth data as input for 

the diffusion.  This granularity could lead to some cases where the depth of the flood in specific nodes is 

zero in one instance and quickly becomes too large to the extent that the node being removed.  This 

process is not captured in the 𝑆à  𝑰à  𝑺  transition process. It is also possible to train diffusion models 

using the data for multiple super neighborhoods or under multiple types of flooding scenarios, which 

could enable the identification of the diffusion model that is best able to model the floodwater diffusion in 

road networks during a given flooding event. 
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