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Abstract Conventional water quality measurements
are nearly impossible during and immediately after ex-
treme storms due to dangerous conditions. In this study,
remotely sensed reflectance is used to develop a regres-
sion equation that quantifies total suspended solids
(TSS) in near real-time after Hurricane Harvey. The
application focused specifically on sediment loading
and deposition and its potential impacts on the Houston
Ship Channel and Galveston Bay riverine-estuarine sys-
tem. The European Space Agency’s Sentinel-2 satellite
captured images at critical points in the storm’s progres-
sion, necessitating the development of a new algorithm
for this relatively new satellite mission. Several linear
regressions were analyzed with the goal of developing a
simple one- or two-band equation, and the final model
uses the red and near infrared bands (R2 = 0.74). Results
show that record flows during Harvey delivered unprec-
edented suspended sediment loads to the Gulf of Mex-
ico at concentrations above 125 mg/L with a mean

concentration of 43 mg/L across the bay. The study
findings demonstrated that it took up to 11 days after
the storm for sediment transport to abate.
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Introduction

Hurricanes and severe storms, such as Hurricane Harvey
in 2017, have significant impacts on water quality in
estuarine systems that have yet to be fully elucidated.
Due to safety and access challenges, most characteriza-
tion efforts occur after the event, with delays of up to
several weeks in some cases (Adams et al. 2007;
Amaral-Zettler et al. 2008; Gong et al. 2007; Hagy
et al. 2006; Huang et al. 2013; Mallin and Corbett
2006; Pardue et al. 2005). Storm surge, for example,
can drastically, albeit temporarily, increase bay and es-
tuary salinities (Huang et al. 2013)), while severe rain
events may have the opposite effect (Filippino et al.
2017).

While ambient changes in pollutant sources and
changes in hydrologic and hydrodynamic conditions
within water bodies influence water quality on a contin-
uous basis, the magnitude of change is typically within
historical ranges. Hurricanes and severe weather events,
on the other hand, because of their acute episodic nature,
can have severe impacts on water quantity, quality, and
location of water for the duration of the storm that are
outside historically observed norms. While there is
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evidence that water quality recovers relatively quickly
from severe events (Chen et al. 2017; Greening et al.
2006; Hagy et al. 2006; Huang et al. 2011), other studies
indicate long-term impacts (Beaver et al. 2013)(Wetz
and Yoskowitz 2013).

Record rainfall during hurricanes brings tremendous
amounts of suspended sediment into near-coastal sys-
tems that are often contaminated with a variety of pol-
lutants such as heavy metals and organics (Romanok
et al. 2016; Warren et al. 2012). In addition to the
pollutant loads they may carry, suspended sediment
blocks light from penetrating through the water column,
impacting aquatic life and increasing light scattering that
can increase water temperatures. When solids settle,
they may cover eggs or oyster beds. The upper tolerance
of total suspended solids (TSS) for most species is 80–
100 mg/L, while some bottom invertebrates can be
harmed by TSS concentrations as low as 10–15 mg/L
(Griffiths and Walton 1978; Jha and Swietlik 2003).
Sediments from urban systems often carry pollutant
loads ranging from heavy metals to chlorinated com-
pounds (Rossi et al. 2013; Sikorska et al. 2015).

For instance, Hurricane Katrina had a minor, and
relatively short-term impact on water quality in the Gulf
of Mexico for both conventional water quality measures
of algae, nutrients, salinity, and TSS as well as trace
metals in sediments (Smith et al. 2009; Warren et al.
2012). Bays and estuaries also appear to be more resil-
ient to large coastal storms than other extreme climatic
events such as drought (Smith and Caffrey 2009; Wetz
and Yoskowitz 2013). The 2017 hurricane season may
change perceptions regarding system recovery, howev-
er, particularly in the case of Hurricane Harvey. This
storm was not accompanied by surge along the
Houston-Galveston coast but produced unforeseen
amounts of rainfall for several days and extreme
amounts of suspended sediment that caused the region’s
rivers to be referred to as “rivers of brown.”

Due to dangerous conditions during and immediately
after extreme storms, conventional water quality and
sediment measurements are nearly impossible. Addi-
tionally, water quality monitoring requires resource-
intensive field events and produces relatively sparse
datasets. Most studies of water quality storm impacts
look at conditions weeks or months after the event has
passed (Chen et al. 2017; Du et al. 2019; Filippino et al.
2017; Romanok et al. 2016). Satellite imagery offers an
increasingly valuable resource for inland and coastal
water quality characterization although it has limited

scope for narrow/smaller waters where low spatial res-
olutions and obstacles, such as overhanging trees, and
clouds impede the satellite view of the water surface
(Matthews 2011; Mouw et al. 2015; Tyler et al. 2016).
Remotely sensed satellite imagery can provide informa-
tion immediately after a large storm, before field teams
are able to mobilize, thus, providing valuable insights
not otherwise available with conventional water quality
assessments. With spatial resolutions ranging from 30m
to as little as 0.3 m, various satellites such as Landsat
and Sentinel-2 satisfy the minimum spatial, temporal,
and spectral resolution needed for inland and coastal
water quality characterization (Tyler et al. 2016). Satel-
lite data can be used to capture the aforementioned
changes in natural water systems due to hurricanes and
extremeweather events since remote sensing reflectance
(Rrs) data is information-rich and has a satisfactory
spatial and temporal resolution.

Certain water quality constituents, e.g., TSS and
chlorophyll-a, are considered optically active, which
means that changes in their concentrations will produce
proportional changes in reflectance at specified wave-
lengths allowing their concentrations to be quantified
(Morel and Prieur 1977; Werdell and Bailey 2005).
Improved spatial and radiometric resolution in recent
years has made this technology more applicable to in-
land water quality applications. The use of remote sens-
ing to quantify the concentrations of suspended sedi-
ment in surface waters has been in place for decades
(Curran and Novo 1988; Gitelson et al. 1993; Lee et al.
2002; Mertes et al. 1993; Ritchie et al. 2003). The
literature is replete with studies that have utilized reflec-
tance data for water quality characterization under non-
extreme conditions (Brando and Dekker 2003;
Caballero et al. 2014; Gurlin et al. 2011; Hamidi et al.
2017; Sakuno et al. 2014; Zheng et al. 2015). However,
none of these studies specifically applied remote sensing
tools to investigate the water quality impacts of extreme
climatic events. Additionally, the timing of a storm’s
passage and satellite image capture is unpredictable.
Hurricane Harvey happened to coincide well with sev-
eral Sentinel-2 images. The lack of existing Sentinel-2
algorithms, in addition to the previously discussed lim-
itations in existing TSS algorithms, prompted the devel-
opment of a new algorithm which was assessed along
with some previously developed for other multi-spectral
satellites (Caballero et al. 2014; D’Sa et al. 2007;
Nechad et al. 2010; Pahlevan et al. 2017; Zheng et al.
2015). This research demonstrates the viability of using
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remote sensing reflectance to elucidate the water quality
impacts of extreme climatic events (e.g., hurricanes) on
surface water in near real-time. This is a novel approach
and to the best of the knowledge of the authors has not
been attempted previously for inland waterways and
coastal estuarine systems such as the Houston Ship
Channel and Galveston Bay System (HSC-GBS) that
are studied here post Hurricane Harvey.

Methods

Study area and event

Figure 1 shows the study area that was the focus of the
research: the Trinity and San Jacinto Rivers are the
primary water bodies that drain to the Galveston Bay
(GB) estuary system and discharge into the Gulf of
Mexico. The GB system encompasses a variety of
waterbody types including relatively smaller freshwater
and tidal streams, large fresh and tidal rivers, several
lakes, and a shallow turbid estuary/bay system. Flat
topography, low slopes, and high clay soil content result
in relatively low infiltration and a propensity for
flooding. Developed land that covers much of the study
area today is due to the expansion of the City of
Houston’s, which has led to an increase in spatial extent
of impervious cover.

Between August 25th and 31st of 2017, Hurricane
Harvey released approximately 63 to 127 cm (25–50 in.)
of rain on the Trinity and San Jacinto River Basins and
the Galveston Bay estuary. The record rainfall generated
record flows containing significant amounts of
suspended solids. Flow data were obtained from the
USGS, while the TSS historical data record was obtain-
ed from the Texas Commission on Environmental Qual-
ity (TCEQ) database (TCEQ 2018).

Data acquisition and processing

The European Space Agency’s (ESA) Sentinel-2 is a
multi-spectral satellite with 10-m pixel resolution in the
visual and near infrared (NIR) bands, and 2–10 day re-
visit time depending on latitude. The Sentinel-2 satellite
captured nearly cloud-free images at critical dates in the
storm’s path: three days before storm arrival (8/22/
2017), and one day after its passing (9/1/2017). Figure 2
provides a true-color image of Galveston Bay, captured
by Sentinel-2, for each of the aforementioned dates as

well as an image captured on 9/11/2017. The Sentinel-2
mission launched in the summer of 2015, so there was a
limited record for satellite images captured coincidently
with water quality samples. The spectral bands of inter-
est were visible (RGB) and NIR bands (832–852 nm).
Select water quality monitoring (WQM) stations were
identified within the Galveston Bay (GB) estuary based
on the availability of data and their representativeness
across the waterbody (Fig. 1).

At the time of the study, Sentinel-2 Level 1C imagery
was only available in top of the atmosphere (TOA)
reflectance format, without any atmospheric correction.
Sentinel images were viewed and processed in the Sen-
tinel Application Platform (SNAP), an open source soft-
ware and user interface provided by the ESA. The
Sen2Cor processor, also provided by the ESA (ESA
2017), was applied to perform the atmospheric-, terrain,
and cirrus correction of Top-Of- Atmosphere Level 1C
input data. Sen2Cor produces Bottom-Of-Atmosphere
(Level 2A), optionally terrain- and cirrus corrected re-
flectance images as well as Scene Classification Maps.
More details on the atmospheric correction algorithm
are found in (ESA 2017). Standard assumptions were
used, including the “AUTO” setting, which accounts for
seasonality and aerosol type. The Sen2Cor classification
map, which identifies land, water, ice, clouds, and cloud
cover, was applied to isolate water pixels, since white
caps, high wind speeds, and foam formation are infre-
quent in Galveston Bay, and visual inspection confirmed
that pixel classification was of sufficient quality. Gal-
veston Bay is a characteristically turbid waterbody;
however, water column depth and transparency were
compared to account for the possible influence of bot-
tom reflectance. The ratio between transparency (Secchi
disc, m) to depth (m) in coincident samples ranged from
4.5 to 41.4%. This indicates that the transparency of the
water column never reaches even 50% of the water
depth, so the influence of bottom reflectance is assumed
to be negligible.

There have been several hundred TSS samples col-
lected (EPA Method 160.2) within the GB estuary since
the Sentinel-2 satellite launch. The mean TSS concen-
tration for the developed dataset was 30 mg/L, with a
median concentration of 21 and a range of 3–137 mg/L.
Coincident TSS samples and Rrs datasets were matched
and processed. An allowance of up to three days be-
tween sample collection and image capture resulted in a
total of 46 data pairs (see Fig. 1) from eight Sentinel-2
scenes. Using this approach, 64% of data pairs were
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collected within one day or less. Data pairs collected
between two and three days were only included if no
rainfall was recorded in the preceding five days, so TSS
concentration changes were assumed to be minimal.
High chlorophyll-a concentrations can interfere with

the TSS spectral signal (Reisinger et al. 2017). Where
coincident chlorophyll-a samples were available, data
pairs with chlorophyll-a concentrations greater than
30 μg/L were removed (n = 2). Since cloud shadow
identification is not as robust for the Sentinel-2 mission,

Fig. 1 Study area map including
land use, spatial coverage of
Sentinel 2 satellite, and water
quality monitoring (WQM)
stations

Fig. 2 Sentinel-2 true-color images of Galveston Bay before and after Hurricane Harvey including 8/22/17, 9/1/17, 9/11/17, and 10/1/17
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the Sentinel-2 images were visually inspected at the
locations of each data pair to remove any points con-
taining cloud shadow or other fine-scale variability such
as ships and barges.

Sentinel-2 regression development

The final dataset included eight Sentinel-2 images, 32
TSS samples for calibration, and 12 for validation col-
lected (see Fig. 1). Figure 3 provides a schematic of data
analysis and regression development for the satellite
TSS modeling. After isolating water pixels, Rrs values
for the visible and NIR bands (Bands 2–4 and 8) were
extracted from within a 20-m buffer around each WQM
station. Image processing and extraction of Rrs values
were all completed using the ArcGIS model builder and
ArcPy extension. Summary statistics for each pixel win-
dow included water pixel count, mean Rrs, median Rrs,
minimum and maximum Rrs, and standard deviation.
Pixels that lie along the boundary of the buffer were
included if at least half of the pixel’s area was within the
20 m buffer.

Band ratios and other band relationships were select-
ed to be consistent with literature values and which most
frequently show higher correlations with TSS concen-
tration (Caballero et al. 2014; Candiani et al. 2005; D’Sa
et al. 2007; Matthews 2011; Nechad et al. 2010; Zheng
et al. 2015). Table 1 lists the spectral variables that were
evaluated in developing the regression. The resulting
matched TSS- Rrs dataset (2016–2017) was semi-
randomly split into calibration (n = 32) and validation
(n = 12) stages, ensuring that both parts were represen-
tative over time, space, season, and concentration (Fig.
1). Lastly, 11 linear regressions were analyzed with the
goal of developing a simple one- or two-band equation.
Themost correlated spectral variables (see Table 2) were
included in the linear regression to find the optimal
coefficients for

WQ ¼ ∑
n

i¼1
CiX i þ Co ð1Þ

Where WQ is the concentration of the water quality
variable of interest (TSS in this case), and Ci is the
coefficient for the corresponding spectral variable; Xi
is the spectral variable, listed in Table 2, and Co is the
regression intercept. Correlations between TSS and
band ratios were lower than the other spectral variables,

so these were not included in the regression analysis.
The regression was optimized to minimize the root
mean square error (RMSE) and maximize R2 within
Microsoft Excel with the goal of developing a simple
one- or two-band equation. The RMSE and coefficient
of determination were chosen to evaluate the perfor-
mance of the developed models in predicting the error
magnitude and variance, respectively. The median ab-
solute error and the ratio between mean and median
were also calculated to address potential non-Gaussian
behavior. Mean absolute error and the slope of the
regression line (with 1 being ideal) were calculated for
the validation datasets. The model with the best overall
performance in both calibration and validation was
selected.

In addition to the new algorithm investigated, pre-
viously developed algorithms were applied to the
spectral dataset including the red/green band ratio in
D’Sa et al. 2007, the NIR band in Caballero et al.
2014 and Zheng et al. 2015, and three algorithms
using the red, green, and NIR bands from Nechad
et al. 2010 and Pahlevan et al. 2017. The aforemen-
tioned evaluation metrics were used to compare the
performance of these algorithms with the newly de-
veloped ones in this study.

Sentinel-2 regression model application

Out of the developed models based on Eq. 1, the one
with the best performance in evaluation metrics was
used to model TSS concentrations for four critical dates
that had images captured by Sentinel-2:

& 8/22/17: Baseline condition, three days before storm
arrival

& 9/1/17: Immediate effects, one day after storm
passing

& 9/11/17: Residual effects, 11 days after storm
passing

& 10/1/17: Extent of recovery, 31 days after storm
passing

The application of the regression equations to the
four dates allowed for a relatively comprehensive pic-
ture of Harvey’s impacts, from a pre-storm baseline to
post-event recoveries. As before, the regression equa-
tion was only applied to pixels identified as containing
water according to the Sen2Cor mask unique to each
scene. Figure 4 shows the location of select flow gages
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in the GB system and displays the storm hydrograph or
water surface elevation for tidally influenced gages. The
points illustrate the hydrologic condition in the vicinity
of the gages at the time of Sentinel-2 image capture for
dates the regression was applied. As can be seen in
Fig. 4, flows during the pre-storm scene were at near
zero or baseflow levels, representing an ideal reference
condition. For the image captured on 9/1/17, flows were
either at their peak level or on the falling limb of the
hydrograph, indicating that the scene is indicative of
flooding conditions. By the third date, flows had
returned to pre-storm levels in most locations, and did
not rise again before the last date.

Results and discussion

Figure 5 shows a sample image processing flow for
a typical Sentinel-2 scene and also shows a sample
of the 20-m buffer applied for the pixels surrounding
each station of interest. Table 2 provides the

correlations between each spectral variable and
TSS concentration. Rrs and the square of Rrs pro-
duced the highest correlations. The red and NIR
bands, and their squares, showed the highest corre-
lations. This is consistent with existing literature due
to increased scattering from particulate matter in the
red and NIR (Caballero et al. 2014; Matthews 2011;
Tyler et al. 2016). Though correlations with the blue
band were high, less variability was observed in the
band.

Table 3 describes the resulting variables and coeffi-
cients produced for several TSS regression models de-
veloped based on Eq. 1. As noted, the blue band did not
perform as well during the linear regression, and the
resulting regression equation utilized the red and NIR
bands. The red and NIR coefficients had similar magni-
tudes, while the square of the NIR band was somewhat
less influential.

Table 4 provides the performance metrics for each
model. Model 1 was selected as the final model because
it met the goal of a simple 1 to 2 band model and its

Fig. 3 Workflow depicting data
processing and regression
development for remotely sensed
surface reflectance water quality
characterization

Table 1 Spectral variables evaluated for correlation and inclusion in regression equations

Type Spectral variable

Band Rblue, Rgreen, Rred, RNIR

Band squared Rblue
2, Rgreen

2, Rred
2, RNIR

2

Band ratio
Rgreen

Rblue
, Rred
Rblue

, RNIR
Rred

, RNIR
Rgreen

, Rred
2

Rblue
, Rgreen

2

Rblue
2 ,

Rgreen
3

Rblue
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superior performance in the validation dataset. Although
model 2 has slightly lower mean and median absolute
errors, model 1 has a slope much closer to one. The
negative bias in model 1 indicates bias towards
underprediction while the positive value in model 2
indicates overprediction. The mean-to-median ratio for
all models was close to one. In selecting model 1, the
one-to-one line was prioritized over the error metrics
due to the importance of preventing over- or

underestimating of the large TSS concentrations that
occur during extreme events.

All of the previously developed models showed high
correlations but large errors for the other evaluation
metrics (except (D’Sa et al. 2007) and the green band
in (Nechad et al. 2010)). The green band (Nechad et al.
2010) showed comparable values with model 1; how-
ever, the slope of the regression line was substantially
lower for the validation dataset. Additionally, model 1

Table 2 Correlations between TSS and spectral variables as measured by Sentinel-2

Spectral variables All Calibration Validation

Pearson Spearman Pearson Spearman Pearson Spearman

Rblue 0.81 0.87 0.83 0.89 0.83 0.82

Rgreen 0.80 0.86 0.83 0.88 0.83 0.82

Rred 0.81 0.84 0.83 0.87 0.83 0.75

RNIR 0.86 0.86 0.85 0.86 0.85 0.79

Rblue
2 0.82 0.87 0.82 0.89 0.82 0.82

Rgreen
2 0.81 0.86 0.82 0.88 0.82 0.82

Rred
2 0.81 0.84 0.81 0.87 0.81 0.75

RNIR
2 0.82 0.86 0.79 0.86 0.79 0.79

RNIR/Rgreen 0.80 0.80 0.80 0.82 0.80 0.75

RNIR/Rred 0.82 0.83 0.80` 0.84 0.80 0.79

Rred/Rblue 0.60 0.62 0.66 0.68 0.66 0.42

Rred
2/Rblue 0.78 0.82 0.80 0.85 0.80 0.79

Rgreen/Rblue − 0.65 − 0.72 − 0.65 − 0.70 − 0.65 − 0.64
Rgreen

2/Rblue − 0.65 − 0.72 − 0.65 − 0.70 − 0.65 − 0.64

Fig. 4 Hydrologic context for
Hurricane Harvey. A hydrograph
or water surface elevation (WSE)
plot is shown for each gauge in
the study area (triangles). The
points on each plot represent the
timing of the Sentinel-2 satellite
pass (8/22/17, 9/01/17, 9/11/17,
and 10/01/17)
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performed better than models reported in similar studies
with an RMSE of 2.22 mg/L compared to RMSE values
ranging from 6 to 106 mg/L (Nechad et al. (2010)
reported 6–7 mg/L, Zheng et al. (2015) 6–12, and Ca-
ballero et al. (2014) 54–106). To compare the existing

and developed models, the mean absolute percentage
error (MAPE) was also calculated. Model 1 has a
MAPE of 27.65% and 47.23%, respectively for calibra-
tion and validation, while similar studies reported values
of 11–88% (Caballero et al. 2014; Nechad et al. 2010;

Fig. 5 Image processing
workflow for a true-color Senti-
nel-2 scene captured on February
2nd, 2016 with (a) TOA reflec-
tance, (b) BOA reflectance from
the Sen2Cor processor, (c)
Sen2Cor produced water mask,
(d) WQM stations overlaid on
water pixels, and (e) a sample
station 20-m buffer for mean pixel
extraction

Table 3 TSS-Sentinel 2 regression model equation coefficients and variables

Model Description/notation Spectral variable (X)

Cblue Cred CNIR Cgreen Cblue
2 Cred

2 CNIR
2 Cgreen

2 Co

1 1 (Rred, RNIR, RNIR
2) 0 230 250 0 0 0 3200 0 0

2 2 (all bands and band squares) 192 64 207 43 786 0 1840 54 0

3 Rblue 615 0 0 0 0 0 0 0 0

4 Rred 0 465 0 0 0 0 0 0 0

5 RNIR 0 0 882 0 0 0 0 0 0

6 Rgreen 0 0 0 429 0 0 0 0 0

7 Constant 0 0 0 0 0 0 0 0 36

8 Rblue
2 0 0 0 0 8088 0 0 0 0

9 Rred
2 0 0 0 0 0 3929 0 0 0

10 RNIR
2 0 0 0 0 0 0 11,535 0 0

11 Rgreen
2 0 0 0 0 0 0 0 4135 0
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Zheng et al. 2015). Figure 6 shows plots for perfor-
mance for the calibration and validation datasets for
the final model selected based on the validation metrics.
The RMSE of the selected model was 2.22 mg/L for the
calibration and the correlation was 0.85. The mean and
median absolute errors for the validation dataset were
9.69 and 9.18 mg/L, respectively, while the slope was
0.96.

Figure 7 shows the results of the Sentinel-2 regres-
sion modeling for the four scenes of interest for extreme
weather impacts. The median TSS concentration for
each day was 7, 43, 21, and 10 mg/L, respectively.
Before the storm, TSS concentrations were low across
the bay with little to no rainfall in the previous two
weeks. Concentrations over 125 mg/L can be seen in
the lower portion of the bay 1-day after Harvey (09/01/
17). Almost no parts of GB were less than 25 mg/L, and
most had at least 50 mg/L. These values are well within
the range that would have negative impacts to aquatic
life and the relatively high TSS concentrations in the
lower parts of the bay are well above the upper tolerance
of many aquatic species (> 80 mg/L) (Griffiths and
Walton 1978; Jha and Swietlik 2003). The largest

concentrations appeared to follow the outflow path from
the SJR that had the highest discharge compared with
other bay inputs. As can be seen from Fig. 7, it is evident
that a significantly large sediment plume was being
transported to Galveston Bay. The high TSS concentra-
tion, when combined with high storm flows (Fig. 4),
suggests that immediately after the storm (9/1/2017),
most of the sediment load would export directly to the
Gulf of Mexico. In other words, sediment transport
shortly after the storm is dominated by advection over
deposition due to high flow rates discharging into the
GB estuary.

Ten days later (on 09/11/17), TSS concentrations had
decreased but were still above 25 mg/L for much of the
bay surface. Notably, flow rates returned to pre-storm
levels (Fig. 4), and the sediment plume export to the
Gulf of Mexico had ceased. Much of the remaining
sediment mass can be expected to be deposited to the
bay floor (Du et al. 2019) due to lower water velocities.
As stated above, TSS concentrations continued to be in
a range that stresses aquatic biota across much of the
bay’s surface. Even 11 days after the storm, modeled
TSS concentrations suggested continued aquatic life

Table 4 TSS-Sentinel 2 regression model equation performance

Model Calibration Validation

RMSE Correlation Bias Mean/
median

Mean absolute
error

Median absolute
error

Regressed line
slope

1 (Rred, RNIR, RNIR
2) 2.22 0.85 − 1.95 0.84 9.69 9.18 0.96

2 (all bands and band
squares)

2.04 0.86 0.16 0.84 9.09 8.91 0.75

Rblue 2.43 0.83 2.40 0.90 10.67 10.08 0.56

Rred 2.23 0.83 0.92 0.86 12.01 13.87 0.64

RNIR 2.36 0.85 − 3.65 0.84 10.39 9.83 1.04

Rgreen 2.64 0.83 3.19 0.87 11.66 8.80 0.45

Constant 4.01 0.00 2.64 1.00 17.32 17.50 0

Rblue
2 2.36 0.82 − 1.44 0.82 11.07 9.49 0.86

Rred
2 2.88 0.81 − 6.45 0.94 12.24 13.21 0.83

RNIR
2 3.69 0.79 − 11.52 1.19 15.85 15.77 1.25

Rgreen
2 2.32 0.82 0.11 0.86 11.43 9.84 0.76

Caballero et al. 2014 212.45 0.82 626.01 0.94 817.52 665.39 35.77

Zheng et al. 2015 29.52 0.85 116.55 0.84 124.68 141.38 5.43

D’Sa et al. (2007) 5.13 0.77 − 19.10 0.94 20.31 11.91 0.35

Nechad et al. 2010 (NIR) 53.93 0.85 220.22 0.84 226.20 262.84 8.92

Nechad et al. 2010 (Red) 10.87 0.83 51.78 0.86 51.78 61.93 1.57

Nechad et al. 2010 (Green) 2.88 0.83 − 1.33 0.89 10.86 8.78 0.36
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impacts. Heavy metal and organic pollutant loads asso-
ciated with stormwater runoff are likely to have been
transported directly to the Gulf ofMexico (Kiaghadi and
Rifai 2019) with little deposition in Galveston Bay for
the initial days after the storm. Finally, in the last image
on 10/01/17, 31 days after the storm arrival, TSS con-
centrations returned to near-normal levels, similar to
their concentration counterparts observed before the
storm. Once discharge slowed between 1 and 11 days
after the storm (Fig. 4), deposition likely surpassed
advection as the dominant mechanism.

Conclusions

The flooding, loss of life, and economic impacts of
extremeweather events such as Harvey typically receive

significant amounts of attention. Less publicity
concerning the environmental impacts of these events
is the norm due to the paucity of data. Satellite imagery
offers an essential and cost-effective resource (once the
cloud cover clears) that enables quantification of water
quality impacts in near real-time without the need for
extensive field campaigns during potentially unsafe
post-storm conditions. The methodology and approach
presented here contribute to a better understanding of
solids transport during hurricanes and severe storms and
identifies scope for potential follow-up water and sedi-
ment quality studies that would need to be undertaken to
assess recovery of systems such as Galveston Bay after
Harvey.

It should be noted that the main purpose of this study
was not to develop a universal remote sensing algorithm
for TSS. Rather, it was to demonstrate how remote

Fig. 6 Plots and performance of
the selected model (model 1 from
Table 4) for the calibration (top)
and validation (bottom) datasets
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sensing tools can be used to quantify water quality and
ecosystem impacts in the aftermath of an extreme cli-
matic event. While the developed algorithm might not
be applicable to other waterbodies, the methodology
used in this work could be easily applied to any area
where both spectral and water quality data are available.
Remote sensing can greatly reduce the cost, time, and
safety risks for data acquisition in comparison to con-
ventional measurement techniques. This is of particular
importance during extreme climatic events. Water qual-
ity records often miss peak events, especially for TSS,
due to safety risks associated with elevated flood flows
and levels. Additionally, studies of sediment transport
and deposition that rely on point-based field data col-
lection can be augmented with the two-dimensional
surface concentration gradient that satellite imagery pro-
vides. The research demonstrates the importance of
remotely sensed images for characterizing water quality

during floods and hurricanes and filling knowledge gaps
in water system response and sediment fate and
transport.
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