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Abstract. We review recent progress on Horn’s problem, which asks for a
description of the possible eigenspectra of the sum of two matrices with known
eigenvalues.

After revisiting the classical case, we consider several generalizations
in which the space of matrices under study carries an action of a compact
Lie group, and the goal is to describe an associated probability measure on
the space of orbits. We review some recent results about the problem of
computing the probability density via orbital integrals and about the locus
of singularities of the density. We discuss some relations with representation
theory, combinatorics, pictographs and symmetric polynomials, and we also
include some novel remarks in connection with Schur’s problem.
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1. Introduction

Horn’s problem deals with the following question: if A and B are two n-by-n Hermitian
matrices with known eigenvalues a; > ... > o, and 1 > ... > ,, what can be said
about the eigenvalues 71 = ... 2> 7y, of their sum C= A + B? After almost a century
of work, starting with Weyl (1912) and including an essential conjecture by Horn [16],
this problem is now solved, in the sense that there is a necessary and sufficient condi-
tion that is known to determine when (7, -+ ,7,) will occur as the spectrum of some
such C'[19, 21]. In a nutshell, the 7’s must satisfy certain linear inequalities, hence live
inside a convex polytope in R"~1.

Horn’s original problem may be generalized in different directions. First, Hermitian
matrices, taken traceless and up to a factor i, may be thought of as living in the Lie
algebra of the group SU(n). One may consider as well the case of other simple Lie
groups, and their so-called coadjoint orbits. Coadjoint orbits are known to carry the
structure of a symplectic manifold and as such, Horn’s problem has attracted the
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attention of symplectic geometers. As we shall see, this coadjoint case may be treated
in a detailed way.

Another direction is to regard the Hermitian matrices as a case of self-adjoint com-
plex n-by-n matrices acted upon by the unitary group SU(n), and to consider in parallel
the two other cases of real symmetric matrices under the action of the real orthogonal
group SO(n), and of quaternionic self-dual matrices under the action of the unitary
symplectic group USp(n).

In this paper we review some recent progress regarding both of these generaliza-
tions. First, we discuss what is known regarding the similarities and differences between
the three self-adjoint cases, and we explain the relationship between Horn’s problem
and Schur’s problem of characterizing the possible diagonal entries of a matrix with
known eigenvalues. Second, the study of coadjoint orbits leads to very interesting con-
nections with representation theory and combinatorics, namely the determination of
multiplicities in the decomposition of tensor products of irreducible representations. It
has been known for a while that Horn’s problem yields a semi-classical approximation
to that problem, in the limit of large representations (i.e. tensor products of irreps
whose highest weights lie deep in the dominant Weyl chamber). We present below an
alternative approach, through an exact relationship between the two problems that is
more precise than the previously known asymptotic relationship.

The questions addressed in this article are primarily of mathematical interest, and
some of the cases that we study are not yet known to have a direct physical applica-
tion. However, many mathematical objects that arise in this investigation, such as
tensor product multiplicities and orbital integrals, are ubiquitous in today’s theoretical
physics, and an improved understanding of these objects represents an expansion of the
future physicist’s toolkit. The possibility to extend the considerations of this paper to
the current (affine) algebras and to the fusion of their representations is an especially
interesting route to explore. At any rate, we hope that with its many facets in many
directions, this subject would have pleased our colleague and friend Vladimir, who was
a man of culture and of tireless curiosity.

2. What is Horn’s problem?

2.1. Introduction

Given two Hermitian n x n matrices A and B, of known spectrum
a z--za, and Sy =2 By,

what can be said about the spectrum v = {y; > 72 > -+ -> 7, } of their sum C' = A + B?

This is an old problem, with a rich history [8, 12]. Obviously, > ,_, 7 — ax — Br = 0,
thus v must lie in an (n — 1)-dimensional hyperplane that we identify with R"~!. Tt is
clear that v must additionally satisfy some linear inequalities to belong to the spec-

trum of A+ B. For example, we have the obvious inequality v < a; + 1 stem-

(¥,(A+B)Y)

ming from the maximum principle 7, = maxy )

, or Weyl’s inequality [27],
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1<4, 7,i+7—-1<n = 71 <o+ B;. Horn [16] conjectured a set of linear
inequalities relating «, # and v which are necessary and sufficient conditions for v to
occur as the spectrum of some A + B:

Z’Yk <Zai+25j

keK iel jed

for some triplets {I, J, K'} of subsets of {1,--- ,n} of the same cardinality, which may
be determined recursively.

If true (and it is!), Horn’s conjecture implies that the possible values of v lie in a
convez polytope in R"~!. This convexity property is not a surprise in the context of
symplectic geometry (Atiyah—Guillemin—Sternberg—Kirwan convexity theorems) [20].

After many contributions by many mathematicians, Horn’s conjecture was finally
proven by Klyachko [19] and Knutson and Tao [22].

The problem is interesting for its many facets and ramifications, its interpretation
in symplectic geometry, its appearance in various guises—algebraic geometry (via a
connection with Schubert calculus), invariant factors, among others—and its connec-
tions with representation theory and combinatorics. We refer the reader to the review
by Fulton [12].

2.2. The classical Horn problem revisited

Horn’s problem may be reformulated as follows. Let O, be the orbit of diag(ay, as, - - , ay)
under the adjoint action of U(n),

O, = {Udiag(ay, ag, -+ ,a,)U* | U € U(n) }

and likewise Og. Then which orbits O, intersect the (Minkowski) sum of orbits
{A+B: AcO,,Bc0s}?

(i) In particular, suppose we take A uniformly distributed on O, (according to the
Haar measure), and likewise B uniform on Og and independent of A. Can one
determine the probability distribution of v, i.e. by explicitly writing down its
probability density function (PDF)?

(ii) Traceless Hermitian n-by-n matrices may be regarded as elements of the dual of
the Lie algebra of SU(n). The action of SU(n) on these matrices by conjugation
is its coadjoint representation. What happens if we consider sums of orbits in
the coadjoint representations of other classical Lie groups? Can we compute the
probability distribution as in (i)?

(iii) Finally, what happens if we replace orbits of complex Hermitian matrices under
the conjugation action of U(n) by

— orbits of real symmetric matrices under the conjugation action of SO(n), or
— orbits of quaternionic Hermitian (aka self-dual) matrices under the
conjugation action of USp(n)?
In all three cases, any matrix A may be brought to a diagonal form diag(ay, ..., a,)
by conjugation by some element of the group.

https://doi.org/10.1088/1742-5468 /ab3bc2 4
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For questions (i) and (ii), as we will see below, the answer is Yes, we can! For the
last question, much less is known. There is, however, a general result by Fulton, which
asserts that Horn’s inequalities relating «, 3,7 are the same in the three ‘self-adjoint’
cases. Hence, for given a and [, the set of possible 7 is the same polytope irrespective
of the class of self-adjoint matrices. What about the distribution of v, if again A and B
are uniformly and independently distributed on their orbits?

It is revealing to make a (numerical) experiment. Take for example n=3
and a=p(=(1,0,—1), and generate using Mathematica [23] many samples of
C = diag(a) + Vdiag(B8)V !, with V drawn randomly from the Haar measure on the
appropriate group. Diagonalize the samples and plot (1, 72). Recall that by convention
M = Y2 =3 = —71 — Y2 See figure 1.

We observe, as expected, that (71,72) lies in the same convex polygon in the three
cases. The fact that the distribution is more concentrated about its mean as we go from
SO to SU to USp is also natural, as a consequence of a Jacobian prefactor in the PDF,
see below. But the most striking (and unexpected) feature is the appearance of lines of
enhancement in the SO(3) case. These lines become even more conspicuous when one
computes the histogram of the three distributions.

It should also be stressed that these features do not depend on the particular choice
of a and 8 that we have made here. See [28] for other examples exhibiting the same
singularities.

Question: Can one compute the PDF for the three cases and understand the origin,
location and nature of the singularities in the orthogonal case?

We shall see below that the PDF for the unitary and symplectic cases admits a
closed-form expression, whereas an explicit expression in the orthogonal case appears
out of reach. Nonetheless, we can determine a great deal about the singularities of the
PDF in all three cases.

2.3. From Schur to Horn

Before we proceed, let us first observe that there is a limiting case of Horn’s problem
where it reduces to another well-studied problem, namely Schur’s problem:

Given a matrix A on the orbit O, (of any of the types previously discussed), what can
be said about the diagonal matriz elements of A?

It is known [15] that the diagonal matrix elements of A lie in the permutahedron P,,
i.e. the convex polytope with vertices (ap(),...,apwm)), P € S,. More precisely, if A is
drawn uniformly at random from its orbit O,, what is the distribution of the diagonal
elements &; := A;;? For SU(n) orbits, it is known that this distribution coincides with
the (normalized) Heckman measure [14], whose density is a piecewise polynomial func-
tion of degree (n — 1)(n — 2)/2. For SO(n) orbits, much less is known [11].

Take first the case n =2 and a traceless diagonal matrix diag(a;, —a;). For SO(2),
resp. SU(2), orbits, the PDF of the A;; element is readily computed

const. SO 2
V a?-A% ( ) for 0 < |A11| < |Oél‘
p(An) = const.  SU(2) (1)
0 otherwise.
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Figure 1. Comparing the action of SO(3) (left), SU(3) (middle) and USp(3) (right)
ona=/=(1,0,-1).

Thus we find that the PDF exhibits an integrable inverse-square-root edge singularity
in the SO(2) case. For SO(3) orbits, numerical experiments show a singular behaviour,
see figure 2.

There is an obvious relationship with Horn’s problem. Given two matrices A € O,
and B = diag(/), Horn’s problem for C'= tA + B, ¢ small, reduces to Schur’s problem.
Indeed to first order in perturbation theory in ¢, the eigenvalues «(t) of C are

Yi(t) = Bi + tAu + O(t?).

Thus to first order, the Horn polytope is nothing but the permutahedron P, shifted by
the vector . It is interesting to see how the polygon of support and the singular lines
deform as t grows, see figure 3 and the discussion in the next section.

2.4. The locus of singularities in Horn’s problem

Compare the three ‘self-adjoint cases’ of real symmetric, complex Hermitian or qua-
ternionic self-dual, n x n (traceless) matrices. We label these cases by a parameter

0= %, 1, 2, i.e. half the Dyson index familiar from random matrix theory, as follows:

0 M° Go

1 Real symmetric SO(n)
1 Complex Hermitian SU(n

2 Quaternionic self-dual USp(n)

For given n and «, 8, not only the support of the distribution of 7 is the same [12],
but also the locus of singularity of the PDF (although the singularities themselves are
of quite a different nature). We may state the following proposition [7]:

https://doi.org/10.1088/1742-5468 /ab3bc2 6
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b0 ;Ii“”n“"““
0.0006',
B

ooz}
0.0000 :."

Figure 2. Histogram of the diagonal elements (A;1, Agy), for A = Odiag(7,4,—11)071,
O € SO(3).

{1=,022062) [
{t=.1.3305)

Figure 3. Interpolating polygon and singular lines from Schur to Horn, for #g(7,
4, —11)g '+ (11, — 1, — 10). For 0 < t < %, the singular lines are the diagonals of
the (shifted) permutahedron; for % <t< %, a triple point appears along with a new
side of the polygon, for 2/3 < ¢ < 7/4, a second triple point appears etc.

The PDF is a piecewise real-analytic function of v. Non-analyticities occur only when
v lies on hyperplanes of the form

Z’Ykzzai—FZﬁj 2)

keK iel jeJ

with I,J, K C {1,---,n}, |{| =|J| = |K|, independently of 0.

Hint at proof. Consider the map ® : Gx G — MY (g,g0) = C=A+B =
gragyt + goBgy . If Cis a regular value of ® in the sense that the differential d® is
surjective at all points of the preimage ®~1(C), then the PDF is real analytic at ~.
Non-analyticities can therefore only occur at v that are spectra of non-regular values of
®, and it is easy to see that these lie on hyperplanes of the form (2), see details in [7].

Remarks.

— This condition encompasses boundary facets of Horn’s domain other than those
lying on the hyperplanes 7; = 7it+i, where indeed the PDF vanishes in a non-
analytic way.

https://doi.org/10.1088/1742-5468 /ab3bc2 7
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— Equation (2) gives a necessary, but not sufficient, condition for non-analyticity.
It does not say where singularities do in fact occur. Typically, we will find that
singularities appear only on subsets of the hyperplanes defined by (2).

3. Computing the PDF

3.1. The orbital integrals

As will appear, in all cases a central role is played by the orbital integral (aka general-
ized or multivariate Bessel function). In the self-adjoint cases, we write

Mol A, X) = [ expltr (XgA9™))dyg
Go

where A, X € M’ and dg is the normalized Haar measure. In the coadjoint cases, we

rather write it as

Ho(A,X) = [ exp((X,Ad, ) dg )
G
where A, X € g, the Lie algebra of G, and (-,-) is a G-invariant inner product. When
the case under consideration is clear, we shall suppress the subscript and write both
types of integral as H(A, X).
Note that:

e As a function of X, H4(A, iX) is the Fourier transform of the orbital measure at A,
i.e. the unique G-invariant probability measure concentrated on the orbit of A.

e Hy(A, X)depends only on the eigenvalues o and z of A and X. Likewise, H4(A, X)
depends only on a and z, representatives of the orbits of A and X in the dominant
chamber of a Cartan subalgebra t. With a small abuse of notation, we shall often
write the integral as H(«, x).

In the unitary (f = 1) case with Hermitian (or anti-Hermitian) matrices, the explicit
formula is well known to physicists under the HCIZ acronym [13, 17]. For A and X
‘regular’, i.e. a; # a; and z; # z;,

n—1

. « d t ixiaj ii<n
Hi(a,iz) = / eltr (XVAV®) q1/ — Hpg et (e )1<ij< ’
SU(n) et

Aiz)A«)

where A(z) = I;<j(x; — z;) is the Vandermonde determinant of the z’s.
This is a particular case of a general formula due to Harish-Chandra [13], see also [23]
ol (w(a).2)
Hg(.ﬁE) = const. Z E(w)m (4)

Here W is the Weyl group, e(w) is the signature of w € W, and

Ag(l') = H(a,x), (5)

a>0

https://doi.org/10.1088/1742-5468 /ab3bc2 8
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a product over the positive roots®, generalizes the Vandermonde determinant to all g,
see [24].
Returning to the self-adjoint cases, in the symplectic (§ = 2) case, there is a gener-
alization of the previous formulae which reads [3]
el 225 %iaP;

Ho(a,ix) = const. P%;ﬂ A3(i1‘)A3(ap)fn(x’aP)’

where f, is a polynomial in the variables 7;; := (z; — z;)(ap; — ap;), deg( f2) =1,
deg( f3) = 3, etc. A recursive formula is known to construct f, for higher n.

In the orthogonal (6 = %) case, most unfortunately, there is no similar compact
expression. The best that may be achieved is a series expansion in terms of zonal
polynomials (see [5] and references therein), which is not very handy for detailed
calculations.

3.2. The Horn PDF in terms of orbital integrals

We may now state the following integral representation of the Horn PDF. Here we
assume again that A and B are traceless, and we also assume they each have n distinct
eigenvalues®. We identify the space of n-by-n traceless diagonal matrices with R"~L.
Then we have:

For self-adjoint matrices A and B, independently and uniformly distributed on their
Gg-orbits O, and Og, the PDF of vy is given by

p(v]a, B) = const(, n) ]A(fy)\e/ d™z |A(z) [ Ho(a, iz Ho(B,i2)Ho(y,i2)",

Rn—1
where A(x) = [1,;(xi — ;) is the Vandermonde determinant. ©)

For coadjoint orbits, a similar formula applies, where the integral runs over the
Cartan subalgebra t and |A(z)|* is replaced by AZ(x).

The proof is elementary: H(a,iz), the Fourier transform of the orbital measure,
may also be regarded as the characteristic function (in the sense of probability theory)
of the random variable A € O,. The characteristic function of C'= A + B is the prod-
uct H(a,iz)H(B,ix), from which the PDF of C is recovered by inverse Fourier trans-
form. As the latter depends only on the eigenvalues v, paying due care to the Jacobians
that occur in the changes from matrices to eigenvalues, one finds (6).

This formula must have been known to a number of people, see in particular [9] and
other related references in [28].

3.3. Explicit computation of the PDF p(v) in the SU(n) case

It is then a matter of simple calculation to write an explicit form of the PDF for low
values of n. One finds that the PDF is the product of a normalizing constant, a ratio
of Vandermonde determinants and a function that we call J, which will soon gain a
geometrical interpretation:

® The reader should not confuse the roots a of the algebra g with the eigenvalues o of Horn’s problem.
6 These assumptions are easily removed, but without them the ‘PDF’ may additionally include a delta distribution
enforcing the constraint tr(C) = tr(A) + tr(B), as well as other linear constraints due to degenerate eigenvalues.

https://doi.org/10.1088,/1742-5468 /ab3bc2 9
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- el Aly)

p(yle, B) = =) A(Q>A(5)j(a,ﬁ;7) o
—n(n 1)/2 dru n—1 ‘ /

j(Oé, ﬁ’ ’7) o EpEp / — eluJ'Aj(PaP J)’ )
(@m) PPZG:S Aw) H ®)

where A;(P, P/, P") = Y] (apu + By = verw) and Aw) =TTy qpe, (s + - +
Uj-1)-
Note that J is a linear combination of integrals over u € R"™! of the form

J &= (:)" el%4i generalizing the classical Dirichlet integral
du .
P/—ueluA:i’/Te(A)’ lfA#O,
R U

where ¢ is the sign function and P is Cauchy’s principal value. Carrying out a partial
fraction decomposition of 1/A(u) into simple elements and using repeatedly

du . 1A r—1
P Yeiud _jp (i4) €(A)
R UT (7" — ].)'
leads to very explicit expressions for J. This has been carried out for n =2,--- ,6 in

[4, 28].

— J is clearly a homogeneous function of («a, 3, 7) of degree (n — 1)(n — 2)/2.

— It is discontinuous for n = 2, where it is, in the variable v; — s, just the indicator
function of the interval [|(a; — an) — (61 — B2)|, (a1 — ) + (61 — B2)]-

— By looking at the convergence properties of the integral (8) and of its deriva-
tives, one concludes that for n > 3, J is a piecewise polynomial function of v of
dlfferentlablhty class C"3.

— In particular, for n = 3, a simple, piece-wise linear expression may be written for
J(a, B;7) that shows explicitly where the lines of non-differentiability lie, see
[28] and figure 4 for an example. The resulting formulae reproduce very well the
histograms obtained by numerical simulations.

3.4. Extension to other coadjoint representations or to quaternionic self-dual matrices

Making use of the expressions given in section 3.1 for the orbital integrals, and using
the same method as in the previous subsection of reduction to generalized Dirichlet
integrals, the PDF may also be computed analytically for coadjoint orbits of other low-
rank Lie algebras, or for the (self-adjoint case of) quaternionic self-dual matrices. One
finds a PDF that is a function of differentiability class C?"~3 for the coadjoint orbits
of the B, algebra, and C*"~? for quaternionic self-dual n-by-n matrices. A sample of
comparisons with numerical data is displayed on figure 5.

https://doi.org/10.1088/1742-5468 /ab3bc2 10
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of Yo=V2ma

Y1=Y Y3=¥3min

L=+,

Y1=V|min vi=di+B2

3 SRR LR
SREIILTR
¥s= A 0.001 SRR IR
001 | RIS
RRRLEH

\,

Y2=Y2min

Figure 4. SU(3): (left) Horn’s polygon with the lines of non-differentiability, drawn
here for a = (11, —1,—10), 3 = (7,4, —11); (middle) histogram of 10° samples of ~;
(right) the PDF of (7) for the same « and §.

Figure 5. Comparing results of analytical calculations with ‘experimental’
histograms. Quaternionic self-dual 3 x 3 matrices with a = 5 = (1,0, —1); Skew-
symmetric 5 x 5 matrices with o = (1.01,1), 5 = (3,.5).

3.5. SO(2) and SO(3) orbits of real symmetric matrices

The case of SO(n) acting on real symmetric matrices is both more challenging, since no
manageable expression exists for the orbital integrals, and more intriguing, in view of
the strong singularities apparent from numerical data, see figure 1(left).

In the case of 2 x 2 real symmetric matrices and the action of SO(2), it is a class-
room exercise to work out the PDF as a function of the differences ays := a; — o,

Bi2 = P1 — B2, 712 := 71 — V2. One finds

https://doi.org/10.1088/1742-5468 /ab3bc2 11
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(a, Bl7) %\/(72 M*v:;:;(ﬁrvfz ) for 12 € Pz Mane] = llorz = Bl ez + Frol, 9
’7 = 12 m
0 otherwise, ©)

which exhibits an inverse-square-root singularity at the end points of its support (only
the upper one if ajo = £12).

In [5], the case of orbits of real symmetric matrices under the action of SO(3) has
been treated in detail. With no loss of generality, one may assume that the matrices
A and B are traceless. Then, to circumvent the lack of an expression for the orbital
integral, it was found useful to trade the three eigenvalues 7; (of vanishing sum) for
their symmetric functions p = y172 + 7273 + V371, ¢ = —71727Y3. Write the characteristic
polynomial of C' = diag(a) + R diag(3) RT, with R € SO(3), as

det(zI3 — C) = 2> + P(R)z + Q(R).
For given o and 3, and R regarded as a random variable uniformly distributed in

SO(3) (in the sense of Haar measure), P(R) and Q(R) are also random variables, whose
‘PDF’ may be written formally as

p(p,q) =E(0(P —p)d(Q —q)) = /DR5(P(R) —p)0(Q(R) — q).

Parametrize R in terms of Euler angles, R = R.(¢)R,(0)R.(v) with 0 < ¢ < 2,
0<0 <7 0<v < 2m, and the normalized Haar measure equal to DR = 5 sinfdf d¢ dy.
Then P, := P(R) — p and @), := Q(R) — ¢ are degree 2 polynomials in ¢ = cos 8, so that

) = o5 [0 [[av [ acotria)

while the PDF for the independent variables 7y, v, is
P(71,72) = [AM)| p(p, ). (10)

A curious (and apparently original) identity on delta functions of polynomials then
comes to the rescue:

/ dcS(By(0)) 6(Qule) = 715(R) an

where R is the resultant of Py(c) and ()4(c), and J some Jacobian. For the conditions of
applicability and proof of (11), see [1].

In the present case, the resultant R of P,(c) and Q/c) is a fairly big degree 4 poly-
nomial of u = cos? ¢ and z = cos?¢) and J is a degree 1 polynomial in z and u, thus

0 22/dz/du|Juz|6()

(s 2) (12)
EDS R (s, )]

92
27r0

i
roots wu,;(z)€[0,1]
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Figure 6. Comparing the computation of p(vyy,72) for a = g = (1,0, —1) with the
histogram of figure 1.

The calculation has been carried out in detail in [5] in the particular case of
a=p=(1,0,—1). Then

2 ! (24+u+2)
p(p,q)=p/0 dz Y TR uew (13)

roots u; of R U=
0<u; <1

Even in that particular case, which has special symmetries, e.g. of R under z <> u
and of p under ¢ <> —q (i.e. 11 <> —73, 72 — —72), the calculation is complicated by
the intricate pattern of roots u;(z) € [0,1] of R(u,z) within the integration interval
z € [0,1], and by the task of determining which of the possible zeros of R/ (u;,z) give
rise to a divergent integral. At the end of the day, the result reproduces very well the
numerical histogram in the p,q or in the 7, v, variables, see figure 6.

The main merit of the expression (13) is to allow a detailed discussion of the various
singularities of the integral. Divergences of p can arise in two ways:

— From the vanishing of R'(u;(z),z) at some z, by coalescence of two roots u; = u;
of R, giving rise to a non-integrable singularity of 1/|R,| at z, or
— From the overall vanishing of R} in some limit.

One finds a logarithmic divergence of the PDF p(v1,72) (see equation (10)) as ~
approaches the blue, red and magenta lines in figure 7, and inverse-square-root diver-
gences at the two special points (y1,72) = (1,0) and (2,0). Note that because of the
vanishing of the Vandermonde determinant, p(7i,y2) may have a smaller locus of sin-
gularity than p, see [5].

Discussion. Though it is gratifying to have reproduced the pattern and the nature
of singularities of J (in a particular case, but this will generalize to arbitrary «, 3, at
the price of heavier algebra), this computation sheds limited light on the geometric
origin of these singularities and on what should be expected for higher n. In [7] it has
been argued that the singularities find their origin in the projection from the original
Oq x Op to Cy4, and that they can be understood as arising from the singularity of cer-
tain coordinates on the product of orbits. The argument, unfortunately, says nothing
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0.5-
~ Log|y1-1|

~ Log|yz|

-0.5

1k
Figure 7. The various divergences of p(71,72).

about the nature of the singularity. For higher n, should the singularity become softer
and become just a non-analyticity like in the coadjoint cases, or should a divergence
persist? Numerical experiments indicate a sharp pattern of the PDF for n = 4, but its
precise nature remains elusive. There is clearly room for further progress.

4. Horn’s problem, representation theory, and combinatorics

In this section, we shall discuss the relationship between Horn’s problem and a basic
problem in representation theory: the decomposition of tensor products of representa-
tions of a compact Lie group G. The fact that multiplicities in such a decomposition
admit, for large representations, a semi-classical description has been known for a long
time, see [14]. More specifically, we consider here the so-called ‘Littlewood—Richardson
(LR) multiplicities’ Ny ,, which appear in the decomposition of the tensor product of
two irreps of highest weights A and p,

VoV, =N,V (14)

Here we will assume that G is simply connected, so that we can identify representa-
tions of G and g. The bottom line is that Horn’s problem appears as a semi-classical
approximation of the LR multiplicities, as we will now explain.

4.1. Relation J-LR

The reader may have noticed the similarity between the general form of J in (8), as an
integral of the product of three H’s, and the classical expression of LR multiplicities in
terms of characters of the group

Ny, = / 49 x:(9)X (9)X0 (9)" = / AT 3 (T) (T (T)", 15)
G T
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where in the second expression, the integration has been reduced to a Cartan torus T.
The parallel is made much tighter if one realizes that the H-C orbital integral Hq(o,ix)
is proportional to the character x,(7'), when evaluated at &« = A+ p, p = % Y as0 @, and
T =e*cT:

XT)  Agliz)

dimVy Ag(eix)%(A+p’lx) (16)

where A4(z) has been introduced above in (5) and Ag(el®) := [To0 <e15< <) — e’15<°‘”3>>

is the famous ‘Weyl denominator’. This remarkable formula reflects a deep correspon-
dence between (‘classical’) coadjoint orbits and (‘quantum’) irreps of G: this is the
object of Kirillov’s orbit theory [18].

Using that relation, one may rewrite J as expressed in (8), evaluated at a triple of
h.w. A, p, v shifted by p, as an integral of characters. We assume that the triple (A, u, v)
is such that A+ p — v € @, where () is the root lattice, since otherwise the LR multi-
plicity N}, vanishes, as is well known.

The main difference between the integrals appearing in (8) and (15) is that the
former runs over the whole Cartan subalgebra t~ R", while the latter is over the
(compact) Cartan torus T. But since T ~ t/(2xP"), where PV is the coweight lattice,
generated by the coweights” w), i = 1,--- ,7, we may write

TN+ p,pu+ p;v+ p) = dim Vy dim V,, dim V,,/ A"z [Ag(@)PHA + p,ix)H(u+ p,iz)(H(v + p,iz))*
t~R"

= [aralAe ) G e )

L Ay (el @) . . :
_ d"z |A (el 2 E g i(xz+0) i(xz+0) y i(z40))\*
/t xl g(e )l Ag(l($+5)) X)\(e )XH(e )(X (e ))

oe2rPY

= / ar ( > ”M) X (T)xu(T) (7)) an

se2r PV

Now, the sum over ¢ € PY is a generalization of the classical identity

S usr_(g;n = 2sin%u 777 and in general yields [10]

Z e (p.0) ;+)§)) ZTHXH(T)7 (18)

ée2r PV keK

where the sum on the right runs over a finite, (A, i, v)-independent set of weights K
described in [4, 7]. The coefficients 7, are non-negative rational numbers satisfying

Zr,{dlmv,{ =1. (19)

" Here the fundamental weights satisfy 2(w;, ;)/{(q;, a;) = &;;, while the coweights are normalized so as to satisfy
(W', a5) = bij.
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For each such term, the integral over T thus yields the multiplicity A ® p ® Kk — v.
There is a similar identity involving J at unshifted weights (A, u,v) [7]. We conclude
that for a triple (A, u,v) such that A+ p —v € @, we have two identities (distinct if
p Q)

TN+ putpv+p)= Y ruN N =D reN,, (20)
reK,T KEK
T (A, s v Z P NOv=p) (=) V7" = ZT"NI:CP) (n—p) " (21)
HEKT rek

For example, for SU(3), the sum in the rhs of (18) includes only the trivial repre-
sentation, so that we have simply J(A + p, u + p;v + p) = NY,. In contrast, for SU(4)
and Spin(5) respectively,

1 Lo
._7()\—1—,0,,u+p;u+p) 24 <9N>\M+N>\M(w1+w3)>’ j<)‘7ll’; ) 6N>\ Ppﬂ pw2’
(22)

1 v v 1 V=
TN+ p,pu+p;v+p) = §<3N>\u + NAMun)’ TN piv) = ZNA—ppu—pwz'

(23)

4.2. The BZ polytope, its stretching, and the J function as a volume

We now change gear and introduce combinatorial methods to determine the LR
coefficients. This follows from the work of Berenstein and Zelevinsky [1], who have
shown that given a triple (A, u, ) such that o := A+ — v € @), one may construct a
polytope HY ,, such that the LR coefficient Ny, is given by the number of integer points
in Hy,. We con31der this polytope as a subset of R¥ where k is the number of positive
roots; 1ts dimension is at most d = k-rank(G). Then

NY, = #(H5, N k).

We call HY, the BZ polytope associated to the triple (A, i, v). In general it is rational
but not integral (i.e. the coordinates of its vertices are rational but not always integers).
Moreover, for v on the interior of the support of J, the dimension d coincides with the
degree of homogeneity of J.

Determining the number of integer points in a rational polytope and its dilations
is a classical problem in combinatorics. If sHY, is the dilated polytope {sx : = € HY,}
for some positive integer s, then the number of integer points in sHY , is given by the
Ehrhart quasi-polynomaal

Py, (s) = #(sHY, N Z") = Zsae

where ‘quasi’ means that the coefficients a,(s) may be periodic functions of s. One
can prove that whenever H}, is an integral polytope, Py #(s) is an honest polynomial.
But there are cases where FY u(s) is a polynomial even though H}, is not integral;
indeed the LR stretching polynomials for SU(n) are always honest polynomials even
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for non-integral BZ polytopes. In contrast, for the Spin(2m + 1) groups (i.e. for the B,
algebra), one encounters many cases of quasi-polynomiality, though we have not yet
been able to discern a criterion determining which Py, are actual polynomials.

Using standard results in combinatorics, it can be shown that the coefficient a; of
Py, is a constant equal to the d-volume of HY,. (In fact it is the relative volume, given
by the Euclidean d-volume times a scalar factor that can be computed, see [7] for
details.) We now want to show that this volume is given by the function J. Writing
equation (20) for a triple of dilated weights (sA, sy, sv), s > 1, we have

T (SA+ p, s+ p;sv + p) = T (s, 5 50) = s T (A, pi; v)
= Z r.IN%Y Z r.dimV, N = N¥

SASUK SAsp T T VsAsp
KREK REK (24)
=1
where in the first line we have made use of the continuity (for n > 2 in SU(n)) and of the
homogeneity of the function J; in the second line, for s large, all the weights of the irrep
of h.w. k contribute additively and with their multiplicity to NX, .~ dimV,NX

SASUK SA s
and we use the relation (19).
We conclude that for s large
sTT (N piv) = NX,, = P, (s) = aqs’ = Vol(HY ,)s?,
whence
J (A, p;v) = Vol(HY ). (25)

This vindicates the claim that the Horn problem is a semi-classical description of the
LR multiplicity problem, and that the function J measures the volume of the BZ poly-
tope. Returning to the relations (20) and (21) we see that they give an exact expression
for this volume as a finite sum of LR multiplicities, which is more precise than the
previously known asymptotic relationship.

4.3. Pictographs

This relationship between the two problems, Horn and LR, has been beautifully illus-
trated by the honeycomb/hive construction of Knutson and Tao [22]. KT-honeycombs
are examples of pictographs, i.e. of graphical combinatorial objects that describe the
two problems.

In the LR problem, the basic idea is that there should be as many (distinct) pic-
tographs with prescribed ‘external labels’ specifying the given three highest weights
A, i, v (or the three irreps) as the multiplicity itself. In other words the number of picto-
graphs should be equal to the dimension of the space of intertwiners Hom(V\ ® V,,, V,).
KT-honeycombs are well suited for studying the Horn problem and the GL(n) or the
U(n) multiplicity problem; their three sides are labelled by Young diagrams, i.e. by the
summands of the associated integer partitions, in other words by the Young variables
specifying three given irreps.

KT-honeycombs can also be used to describe multiplicities for SU(n), but in this
case three other kinds of pictographs are often better suited. The pictographs that we
have in mind have Dynkin labels attached to their three sides. We shall distinguish

https://doi.org/10.1088/1742-5468 /ab3bc2 17


https://dx.doi.org/10.1088/1742-5468/2019/00/000000

Revisiting Horn's problem

21 12

20 11 9

Figure 8. Three equivalent pictographs: a BZ-triangle, an O-blade, and an
isometric SU(4) honeycomb.

Figure 9. An isometric SU(7) honeycomb displaying one possible coupling for
{115,73,73,45,67,34} ® {118,95,84,72,49, 23} — {50, 52,44, 78,78,126}.

three kinds of pictographs, which look different but are essentially equivalent: the
Berenstein—Zelevinsky triangles (or BZ-triangles for short), the Ocneanu blades (or
O-blades) and the SU(n) isometric honeycombs. The first were introduced in [2], the
second in [25], and the last were discussed, in the framework of SU(3), by two of us in
section 4 of [6]. KT-honeycombs (and hives), in relation with the solution of the Horn
problem in the Hermitian case, are discussed in many places, so we shall restrict this
short discussion to the SU(n) case and remind the reader how the last three kinds of
pictographs are related. It will be enough to present a simple example: let us consider,
in SU(4), the tensor product V5; 135 ® V710,12 Where the indices (non-negative integers)
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refer to the Dynkin labels of two highest weights. The decomposition of this tensor
product into a sum of irreducible representations contains 537 186 terms, most of them
with non-trivial multiplicity because only 7092 are inequivalent. The representation
Vao,11,9, for instance, occurs with multiplicity 367. This means that there will be 367
distinct BZ-triangles with the given labels, and the same number of O-blades and
SU(n)-honeycombs. Figure 8 displays one of them, in its three avatars.

In the BZ-triangle, the pattern of black integers is such that an integer carried by
an edge is the sum of the integers labelling its end-points; the integers in blue are given
(Dynkin labels). Moreover, we have one additional constraint: the red integers carried
by opposite sides of hexagons are equal. In the O-blade, there is ‘conservation of the
external integers’ (Dynkin labels); we did not display the red integers: they sit in the
six angles surrounding the three inner vertices, and the constraint, now, is that oppo-
site angles (defined as the sum of their corresponding edges) should be equal. In the
SU(4) honeycomb the constraint is that sums of two edges relative to opposite points
of each of the three hexagons are equal.

Which pictograph one prefers is a matter of taste since the geometric correspon-
dence between the three pictures is rather obvious. In particular the honeycomb is
obtained from the O-blade by a star-triangle operation, also called a Y-A transform;
the constraints are automatically satisfied by displaying the hexagons of the result-
ing honeycomb in a metric way as parallelo-hexagons (opposite sides are parallel), or,
equivalently, as equiangular hexagons (each angle has a value equal to 120°), because
the length of each side is then given by the non-negative integer it carries.

In an equiangular hexagon, the sums of two consecutive edges surrounding oppo-
site vertices are equal (for a proof of this elementary fact, extend the six sides of the
chosen hexagon and embed the latter in one of the two resulting equilateral triangles).
Remember also that the black integers are non-negative, but they are allowed to equal
0, in which case the irregular hexagons may degenerate to pentagons or to quadrilater-
als. For SU(n), there are (n — 1)(n — 2)/2 inner vertices in the O-blades (the same as the
number of hexagons), and we can intuitively interpret the existence of some non-trivial
multiplicity relative to a chosen triple of irreps as a kind of ‘breathing’ of the (irregular)
hexagons. More properties of O-blades and isometric SU(n) honeycombs, in particular
their decomposition on ‘fundamental pictographs’, can be found in [6]. Notice that
the external sides of the KT-honeycombs are labelled by partitions, whereas those of
the SU(n) isometric honeycombs are labelled by Dynkin indices. Moreover the num-
bers carried by the leaves (internal edges) are non-negative integers in the latter case,
whereas they can be negative in the former (which cannot be ‘isometric, of course)’. For
purposes of illustration, figure 9 displays an SU(7) isometric honeycomb for a triple of
highest weights with rather large entries.

Although one can construct BZ polytopes for all simple Lie groups, pictographs
have been invented only for SU(n). Finding analogs of the latter for other types of
simple Lie group is a problem that has baffled the community and is still waiting for
an answer.
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Figure 10. Left: surface approximating the rescaled zonal structure constants
for some choice of arguments. Middle: point plot of the volume function J for
the corresponding arguments. Right: superposition of both. Remark: because of
the large vertical coordinate range, those parts of the surface lying far from the
singularities look essentially flat and one only sees the singularities (high values

of J).
4.4. Relation with symmetric polynomials

Since characters of representations combine multiplicatively under the tensor product,
the multiplicities N}, can be interpreted as structure constants in the ring of symmet-
ric functions generated by the characters of the irreps of g. In the case of SU(n) for
example, these multiplicities encode the structure constants for the Schur polynomials.

In the coadjoint case, we have a notion of BZ polytopes (and, in the SU(n) subcase,
we also have pictographs); we know that the volume of a BZ-polytope is measured by
the value of the J function, a value that can be obtained by looking at the highest
degree coefficient of the stretching (or LR) polynomial when multiplicities are scaled.
Moreover, we have an equality between structure constants of the algebra of sym-
metric polynomials in the Schur basis and the number of integer points of appropriate
BZ-polytopes (or hive polytopes), for SU(n). We obtain therefore a relation between
the function J, as defined in the (Hermitian) Horn problem, and the scaling behaviour
of appropriate structure constants of the ring of symmetric polynomials in the Schur
basis. Clearly this kind of relation extends to other situations, where the Lie group
SU(n) is replaced by other simple Lie groups and where Schur polynomials are replaced
by orthogonal Schur polynomials, symplectic Schur polynomials, etc.

In the self-adjoint case, however, there is no obvious notion of multiplicity and there
are no BZ-polytopes. Nevertheless, we still have a J function stemming from the Horn
problem. Could this J function be related to some kind of volume, or to some kind of
asymptotic behaviour for the structure constants of an appropriate class of polynomi-
als? The answer to the second part of the question is positive: as discussed in [5], one
shows that for 6 = 1/2 or 2, J is the limit of the structure constants of appropriate
zonal polynomials (Jack polynomials with parameter ), see also [26]. The approach to
asymptotics is illustrated in figure 10 which displays both the volume function J = p,
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calculated from the integral of equation (12), for some choice of its arguments, and a
vertically scaled version of the surface approximating the corresponding® zonal struc-
ture constants.

The answer to the first part of the question is not known: notice that there is no
clear way to obtain a combinatorial interpretation of a would-be hive or BZ-polytope,
since the structure constants of zonal polynomials are usually not integers but ratio-
nal numbers—they are integers if the Jack parameter § = 1, but this is because one
recovers in that case the Schur polynomials themselves! We leave this problem to the
sagacity of our readers.
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