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Abstract

We present a new stellar dynamical mass measurement (MBH)of the supermassive black hole (SMBH) in
NGC1453, a fast-rotating massive elliptical galaxy in the MASSIVE survey. We measure stellar kinematics in 135
spatial bins in the central 1.5 kpc × 2 kpc region of the galaxy using high signal-to-noise ratio (S/N∼ 130) spectra
from the Gemini-North GMOS integral field spectrograph (IFS). Combining with wide-field IFS kinematics out to
∼3 effective radii and stellar light distributions from Hubble Space Telescope Wide Field Camera 3 images, we
perform Schwarzschild orbit-based mass modeling in the axisymmetric limit to constrain the mass components in
NGC1453. The best-fit black hole mass is ( ) =  ´M M2.9 0.4 10BH

9 ; the mass models without a central black
hole are excluded at the 8.7σ level. The NGC1453 black hole lies within the intrinsic scatter of the SMBH and
galaxy scaling relations, unlike three other galaxies hosting  M1010 SMBHs in the MASSIVE sample. The high-
S/N GMOS spectra enable us to determine eight moments of the Gauss–Hermite expansion of the line-of-sight
velocity distributions (LOSVDs), which are used as constraints in the orbit modeling. The stellar orbits in the mass
models are further constrained to produce negligible h9 through h12 to minimize spurious behavior in the LOSVDs.
We show that truncating the series at h4, as was often done in prior work, leads to a much weaker constraint on the
inferred MBH for NGC1453. Furthermore, we discuss precautions and modifications that are needed to achieve
axisymmetry in triaxial orbit codes that use the Schwarzschild method to sample the start space of stellar orbits in
triaxial gravitational potentials.

Unified Astronomy Thesaurus concepts: Elliptical galaxies (456); Galaxies (573); Galaxy dynamics (591); Galaxy
evolution (594); Galaxy kinematics (602); Galaxy structure (622); Dark matter (353)

1. Introduction

Making a direct dynamical measurement of the mass of a
supermassive black hole (SMBH) using stellar or gas kinematics
requires both exquisite observational data sets and extensive
theoretical modeling. Over three decades of efforts by multiple
research groups have accumulated about 100 dynamically
determined masses for SMBHs at the centers of local galaxies
out to a distance of about 120Mpc, with varying degrees of
accuracy (see compilations in, e.g., Kormendy & Ho 2013;
McConnell & Ma 2013; Saglia et al. 2016).

The high-mass regime ( M M10BH
9.5 ) faces the addi-

tional challenge that the host galaxies are massive elliptical
galaxies whose central stellar light profiles typically have
flattened cores that differ significantly from the high-density
and cuspy centers of less massive elliptical galaxies and bulges
of disk galaxies. These stellar cores are a defining feature of the
most massive ellipticals (e.g., Faber et al. 1997; Graham et al.
2003; Ferrarese et al. 2006; Côté et al. 2007; Lauer et al. 2007),
indicating a significant deficit of stars, possibly due to three-
body gravitational slingshots that scatter stars passing close to
an SMBH binary to larger radii (e.g., Begelman et al. 1980).
These diffuse cores make it extremely difficult to obtain stellar
absorption-line spectra of high signal-to-noise ratio (S/N)
quality that is needed for reliable MBH measurements. Long-
integration observations on large ground-based telescopes in

excellent seeing conditions or with the assistance of adaptive
optics are required.
In pursuit of a comprehensive study of the highest-mass

regime of local SMBHs and galaxies, we have been conducting
a volume-limited survey, MASSIVE, of the most massive
galaxies in the local universe (Ma et al. 2014). The MASSIVE
survey targets ∼100 early-type galaxies (ETGs) in the northern
sky (δ>−6°) within a distance of 108Mpc. Within this
volume, it is designed to be complete to an absolute K-band
magnitude of MK=−25.3 mag, covering all ETGs with stellar
mass M M1011.5* and with no selection cuts on galaxy
size, velocity dispersion, or environment. This parameter range
is unexplored by ATLAS3D, the previous volume-limited
survey of 260 local ETGs out to a distance of 42Mpc
(Cappellari et al. 2011).
We have obtained comprehensive spectroscopic data using

IFS on both subarcsecond and arcminute scales and performed
uniform measurements of the spatially resolved kinematics.
Many results on the stellar kinematics and stellar populations of
MASSIVE galaxies out to a few effective radii from our wide-
field integral field spectrograph (IFS) observations can be
found in Veale et al. (2017a, 2017b, 2018), Ene et al. (2018),
and Greene et al. (2015, 2019). Results from finely resolved
stellar kinematics in the central ∼2 kpc regions of 20
MASSIVE galaxies are presented in Ene et al. (2019, 2020).
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In addition to the IFS data, we have also assembled an
extensive array of multiwavelength data of MASSIVE galaxies
to study stellar light profiles (Goullaud et al. 2018), cold
molecular gas (Davis et al. 2016, 2019), warm ionized gas
(Pandya et al. 2017), and hot X-ray gas (Goulding et al. 2016;
Voit et al. 2018).

In addition to studying the luminous baryonic components in
massive ETGs, one major science goal of the MASSIVE survey
is to perform simultaneous dynamical mass modeling of the
SMBH, stars, and dark matter for a sample of cleanly selected
massive ETGs using a uniform set of subarcsecond and wide-
field IFS data and photometric data. To date, only 7 of the 100
galaxies in the MASSIVE survey have published SMBH masses
that are determined from orbit mass modeling of stellar
kinematic data. Three of the seven galaxies are in the Virgo
Cluster: NGC4486 (M87; Gebhardt et al. 2011; see also Walsh
et al. 2013; Event Horizon Telescope Collaboration et al. 2019),
NGC4472 (M49; Rusli et al. 2013), and NGC4649 (M60; Shen
& Gebhardt 2010). Two others are the brightest cluster galaxies
of rich clusters: NGC4889 in the Coma Cluster and NGC3842
in the Leo Cluster (McConnell et al. 2011, 2012). The remaining
two are the brightest galaxies in galaxy groups: NGC1600 in a
fossil-like group (Thomas et al. 2016) and NGC7619 in the
Pegasus group (Rusli et al. 2013). Except for NGC4649, the
spectroscopic observations were all conducted with IFS on 8–10
m telescopes. The measured MBH spans an order of magnitude
from ∼2×109 to ∼2×1010 Me. More MBH measurements in
this mass range are clearly needed to quantify more robustly the
upper end of the MBH–galaxy scaling relations for a better
understanding of black hole feedback processes and massive
galaxy evolution. We have acquired the spectroscopic and
photometric data that are needed to perform dynamical modeling
for the 20 galaxies reported in Ene et al. (2019) and several other
galaxies in the MASSIVE survey.

We turn to this goal in this paper and report the stellar
dynamical measurement of the mass of a new SMBH at the center
of the massive elliptical galaxy NGC1453, a fast rotator in the
MASSIVE survey. NGC1453 is the brightest galaxy in its galaxy
group, a typical environment for MASSIVE galaxies (Veale et al.
2017a). As listed in Table 3 of Ma et al. (2014), the Two Micron
All Sky Survey (2MASS) “high-density contrast” group catalog
(Crook et al. 2007) identified 12 galaxies as members in the
NGC1453 group and estimated the virial mass of the group to be
1013.9Me, presumably with large errors due to the small number
of member galaxies. Our Hubble Space Telescope (HST) images
of NGC1453 show very regular elliptical isophotes (Figure 13 of
Goullaud et al. 2018). The photometric and kinematic axes are
also closely aligned (Ene et al. 2018, 2019, 2020), suggesting that
the galaxy can be approximated as an axisymmetric system.

A distance measurement is needed to convert the observed
angular scales to physical length and mass scales, and the
inferred MBH scales linearly with the assumed distance. For
NGC1453, we use our new determination of 51.0Mpc from
the MASSIVE-WFC3 project (Goullaud et al. 2018) using the
surface brightness fluctuation technique (J. B. Jensen et al.
2020, in preparation). This new distance is about 10% smaller
than 56.4 Mpc from group-corrected flow velocity in the
2MASS redshift survey. For a flat ΛCDM with a matter density
of Ωm=0.315 and a Hubble parameter of = -H 70 km s0

1

Mpc−1, 1″ is 245 pc at 51.0Mpc.
We perform Schwarzschild orbit modeling (Schwarzschild 1979)

using the triaxial implementation described by van den Bosch

et al. (2008). We perform this modeling in the axisymmetric limit,
and in Section 4.1 we provide a prescription for how to achieve
this limit properly in the triaxial code. The line-of-sight stellar
velocity distributions (LOSVDs) are the main observational inputs
in any stellar dynamical mass modeling of galaxies using orbit-
based methods. It is a common practice, and the practice within
this code, to expand the LOSVDs in a Gauss–Hermite series (van
der Marel & Franx 1993; Rix et al. 1997). The Gauss–Hermite
expansion provides a natural way to express deviations from a
Gaussian distribution since the terms in the series are orthogonal
and linear. However, there has been little discussion in the
literature about the appropriate order at which to truncate the series.
To date, most published work on MBH measurements that relied on
the Gauss–Hermite expansion of the LOSVDs had measured only
the lowest four moments from the stellar spectra (i.e., velocity V,
dispersion σ, skewness h3, and kurtosis h4), using only these
moments as observational constraints in subsequent orbit modeling
and ignoring all higher moments. In this paper, we investigate the
importance of including the higher moments for constraining MBH
in NGC1453. When higher moments are left unconstrained, the
LOSVDs predicted by the orbit models can contain large spurious
contributions from these high moments.
In Section 2, we describe the spectroscopic observations and

the resulting stellar kinematics from the Gemini Multi-Object
Spectrograph (GMOS; Hook et al. 2004) IFS of the central
∼1.5 kpc × 2 kpc region of NGC1453 and the wide-field
coverage with the McDonald Mitchell IFS (Hill et al. 2008). In
Section 3, we describe our IR imaging observations of
NGC1453 from the HST Wide Field Camera 3 (WFC3) and
the determination of the 2D light profile and the 3D deprojected
stellar mass profile. The orbit modeling method is discussed in
Section 4. The mass modeling results are given in Section 5,
and the best-fit mass model is discussed further in Section 6. In
Section 7, we discuss a number of relevant issues: the impact of
Gauss–Hermite series truncation on the inferred MBH, the
subtleties in achieving axisymmetry within the triaxial code,
comparisons to results from Jeans modeling, implications for
the black hole scaling relations, and connections to our
previous observations of warm ionized gas in NGC1453
(Pandya et al. 2017).

2. Spectroscopic Data and Stellar Kinematics

As part of the MASSIVE survey, we obtained spatially
resolved stellar spectra for NGC1453 with the GMOS (Hook
et al. 2004) in the IFS mode on the 8.1 m Gemini-North
Telescope and the Mitchell/VIRUS-P IFS (Hill et al. 2008) on
the 2.7 m Harlan J. Smith Telescope at McDonald Observatory.
Here we summarize the observations, data reduction processes,
and procedures used to extract the stellar kinematics.

2.1. Central Kiloparsec Kinematics

We observed the central ∼1.5 kpc× 2 kpc region of
NGC1453 using GMOS in the 2015B semester. The two-slit
mode of GMOS provided a field of view of 5″×7″ consisting
of 1000 hexagonal lenslets, each with a projected diameter of
0 2. An additional 500 lenslets observed simultaneously a
5″×3 5 region of the sky, which was offset by about 1′ from
the science field. The R400-G5305 grating and calcium triplet
(CaT) filter combination was used to avoid spectral overlap on
the detector and to provide a clean wavelength coverage of
7800–9330Å. The spectral resolution of GMOS is determined
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from arc lamp lines for each lenslet with a mean value of 2.5Å
FWHM. Six science exposures, each of 850 s, were taken. The
median seeing was 0 7 FWHM. Other details and our data
reduction procedure are described in Ene et al. (2019).

We use the Ca II triplet absorption features over the rest
wavelength range of 8420–8770Å to measure the stellar
kinematics. We apply the Voronoi binning algorithm (Cappellari
& Copin 2003) with a target S/N of 125 to determine how to
spatially group the individual GMOS lenslets to achieve
uniformly high-quality spectra. The procedure returns S/N
values (per spectral pixel of 0.67Å) that scatter about the target
with an rms of ∼10%. Spectra from individual lenslets within a
Voronoi bin are co-added as described in Ene et al. (2019). After
fitting the spectra with penalized pixel fitting (pPXF), we
reestimate the S/N as the ratio of the median flux and the rms
residual from the fit. The resulting S/N map for the 135 Voronoi
bins is shown in Figure 1. The resulting Ca II regions of the
spectra for three representative bins are shown (black curves) in
Figure 2.

We measure the stellar LOSVD within each spatial bin using
the pPXF method of Cappellari (2016). The LOSVD is
parameterized as a Gauss–Hermite series7 up to order n,

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥å

ps
= +

-

=

f v
e

h H y
2

1 , 1
m

n

m m
2
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y2

2

where y=(v− V )/σ, V is the mean velocity, σ is the velocity
dispersion, and Hm is the mth Hermite polynomial as defined in
Appendix A of van der Marel & Franx (1993).
For each spectrum, the stellar continuum is modeled with an

additive polynomial of degree zero (i.e., an additive constant)
and a multiplicative polynomial of degree three. A set of
stellar template spectra are convolved with the instrumental
line-spread function and the LOSVD before adding and
multiplying by these polynomials. The polynomial coefficients,
template weights, and Gauss–Hermite moments are fitted
simultaneously.
To test for potential issues with template mismatches, we

compare two sets of stellar templates chosen from the CaT
library of 706 stars (Cenarro et al. 2001) and find negligible
differences in the resulting kinematics. The first set contained 15
stellar templates of the same 15 stars used in the extensive tests
in Barth et al. (2002). For the second set, we use all 360 G and K
stars in the CaT library for each bin. The resulting V and σ differ
by an average of∼5 -km s 1 and the higher moments by∼0.01,
all well within the measurement errors. Our kinematic moments
determined from the Ca II triplet region are therefore robust to
template choices, similar to the findings in Barth et al. (2002).
The stellar spectra of the CaT library cover the wavelength range
of 8348–9020Å with a spectral resolution of 1.5Å FWHM.
The resulting stellar template broadened by the best-fit

LOSVD is shown for each of the three example bins in Figure 2
(red curves). We use a bootstrap approach to determine the
error bars on the kinematic moments of each LOSVD. For

Figure 1. S/N map of the Gemini GMOS IFS data for the 135 Voronoi bins in
the central 5″×7″ of NGC1453. A target S/N of 125 is used in the binning
procedure. The S/N value for each bin scatters around the target with a typical
rms scatter of ∼10%, while the innermost bins achieve S/N up to ∼150. Stellar
kinematics from high-quality spectra are critical for measuring the gravitational
effects of the central black hole. Our observations are able to achieve this high
S/N over finely resolved spatially bins; both are needed for kinematic
extraction and black hole measurements.

Figure 2. Ca II triplet region of the Gemini GMOS IFS spectra (black) for three
representative bins at three locations of NGC1453: center with S/N=143
(top), 1 81 from center with S/N=130 (middle), and 3 68 from center with
S/N=112 (bottom). The stellar template broadened by the best-fit LOSVD
(red) is overlaid on each observed spectrum. The fit is performed over the rest
wavelength range of 8420–8770 Å centered around the Ca II triplet absorption
lines, excluding the gray shaded regions of improperly subtracted sky lines.
The fit residuals (green circles) are shifted by an arbitrary amount for clarity.

7 Note that the pPXF method described in Cappellari & Emsellem (2004)
only allows n=2, 4, or 6. The version described in Cappellari (2016) allows
arbitrary n.
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comparison, we have also estimated the errors using the
standard Monte Carlo method with 100 trial spectra per bin.
The bootstrapped errors on the kinematic moments are
typically 50%–100% larger than the Monte Carlo errors. See
Section 4 of Ene et al. (2019) for a detailed discussion.

The maps of the eight kinematic moments, V, σ, h3, K, h8,
are shown in Figure 3. The velocity map shows a regular
rotation pattern with ∣ ∣V reaching ∼100 -km s 1, and the σ map
shows a central peak of ∼325 -km s 1. The mean errors are
7.1 km s−1 for V and 8.4 km s−1 for σ. The mean errors for h3
through h8 are quite similar, varying from 0.018 to 0.023. The
radial profiles of these moments are shown below in Figure 4.

2.2. Wide-field Kinematics

We observed NGC1453 as one of the 100 MASSIVE
galaxies in 2013 trimester 3, using the Mitchell/VIRUS-P IFS.
The Mitchell IFS consists of 246 evenly spaced fibers with a
one-third filling factor. Each fiber has a 4 1 diameter, and the
IFS covers a large 107″×107″ field of view. Three dither
positions of equal exposure time were used to obtain
contiguous coverage of NGC1453. We interleaved a 10-
minute exposure on sky and two 20-minute exposures on target
for a 2 hr total on-source exposure time. The spectral range
spans 3650–5850Å, covering the Ca HK region, the G-band
region, Hβ, Mgb, and several Fe absorption features.

Individual central fibers have S/N above 50, while the outer
fibers are binned spatially to achieve an S/N threshold of 20 for
the fainter outskirt of the galaxy. A similar procedure to that in
Section 2.1 is used to determine the stellar LOSVD for each of
the 38 spatial bins. We used the MILES library of 985 stellar
spectra (Sánchez-Blázquez et al. 2006; Falcón-Barroso et al.
2011) as stellar templates and ran pPXF over the full library for
each spectrum. Further details are described in Ma et al. (2014)
and Veale et al. (2017a).
As can be seen in Figure 4 here and Figure 21 of Ene et al.

(2019), the kinematic moments in the innermost Mitchell bins
match well with the GMOS moments.

3. Photometric Data

To model the spatial distribution of the stellar component of
NGC1453, we use the IR imaging portion of the MASSIVE
survey with the F110W filter of the HST WFC3/IR (Goullaud
et al. 2018). The observations of NGC1453 had a total
exposure time of 2496 s, which was divided into five dithered
exposures using a five-point subpixel dither pattern to improve
the point-spread function (PSF) sampling. The pixel scale at
F110W is 0 128 pixel−1 and is slightly undersampled for this
wavelength. Details of the data reduction procedures, back-
ground sky measurement, mask construction, and isophotal
fitting process were given in Goullaud et al. (2018).

Figure 3. Maps of the stellar kinematics measured from the Gemini GMOS IFS over 135 spatial bins in the central 5″×7″ of NGC1453. Each panel shows one of
the eight velocity moments in the Gauss–Hermite expansion of the LOSVD: velocity V, velocity dispersion σ, and the h3 to h8 higher moments. The velocity map
shows a regular rotation pattern with ∣ ∣V reaching ∼100 -km s 1, and the σ map shows a central peak. North is up and east is to the left.
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Figure 4. (Unfolded) radial profile of the stellar kinematics determined from GMOS (left) and Mitchell (right) observations (black), and kinematics predicted by the
best-fit mass model (red) with black hole mass MBH=2.9×109 Me, stellar mass-to-light ratio M LF110W* =2.09 (in solar units), and enclosed dark matter halo
mass (within 15 kpc) = ´M M7 1015

11 . The kinematic bins have been unfolded so that bins whose centers lie between −90° and +90° of the photometry position
angle (PA) are plotted with positive R and others are shown with negative R. The rotation in V and central values of σ are well fit by this model, and the high moments
h5−h8 are close to 0 with some scatter.
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The isophotes of NGC1453 are very regular (top panel of
Figure 5) with a mean ellipticity of 0.17±0.001. The PA
changes with radius mildly from 27°.9±1°.0 (east of north) at
1″ to 36°.1±0°.4 at 79 5, with a luminosity-weighted average
of 30°.1±0°.2. We fit the surface brightness using the Multi-
Gaussian Expansion (MGE) method (Emsellem et al. 1994;
Cappellari 2002) with a sum of 2D Gaussian components that
share a common center and PA:

( ) ( )
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where x′ and y′ are projected coordinates measured from the
galaxy center, with x′ and y′ being along the photometric major
and minor axes, respectively. The subscript k labels the individual
Gaussian components; Lk, s¢k, and ¢qk are the luminosity, projected
width, and projected axis ratio of each Gaussian, respectively. To
compare to WFC3 images, we convolve the model with a PSF
composed of five nearly circular Gaussian components (with axis
ratios >0.98), obtained by fitting the PSF from Goullaud et al.
(2018). The MGE fitting routine by default determines the PA

using the central region of the galaxy. As a result, it chooses a PA
of 28°.5, slightly different from the mean value 30°.1 quoted in
Goullaud et al. (2018). We repeated the MGE fit with the PA
fixed to 30°.1 and found a virtually identical fit. We choose to use
28°.5, the value from the MGE fitting routine.
Our best-fit MGE to the surface brightness of NGC1453

consists of 10 Gaussian components, which are summarized in
Appendix A and plotted in Figure 5 (bottom left panel). The small
fitting residuals (lower half of the panel) demonstrate that the MGE
model agrees very well with the data. This MGE fit has an effective
radius Re=19 6≈4.8 kpc, very similar to Re=21 9 from Ene
et al. (2018) using our deep K-band photometry from CFHT.
The intrinsic and projected coordinate systems are related by

a set of three viewing angles (θ, f, ψ) (Binney 1985). The
angles θ and f specify how the line of sight is oriented relative
to the principal axes of the galaxy, and ψ specifies the rotation
of the galaxy around the line of sight, where an oblate
axisymmetric potential is defined to have ψ=90°. Given these
viewing angles, an MGE fit to the light profile Σ(x′, y′) can be
deprojected into a 3D luminosity density ν(x, y, z), with x, y, z
in the intrinsic coordinate system; see the bottom right panel of
Figure 5.

Figure 5. Top left: F110W-band HST image of NGC1453 used for our photometry (Goullaud et al. 2018). The image is oriented so that the +x-axis lies at 30°. 1 east
of north. Top right: isophotes of the HST WFC3 IR image of NGC1453 (black) and the best-fit MGE model (magenta). The isophotes have no measurable deviation
from purely elliptical contours (Goullaud et al. 2018). Bottom left: surface brightness profiles along the major (black) and minor (red) axes are well fit by the sum of 10
Gaussians with small fitting errors. The difference between the data (solid) and model (dotted) is not discernible in the plot, where the fractional error (lower half of the
panel) is ∼1% except at large radii beyond 50″. Bottom right: deprojected 3D luminosity density for an oblate axisymmetric model viewed edge-on for the best-fit
MGE model.
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Dust was not observed in the central region of NGC1453 in
our WFC3 data. The mean optical and UV colors of NGC 1453
are typical of those of evolved, red giant ellipticals of similar
masses (e.g., Faber et al. 1989; Loubser & Sánchez-
Blázquez 2011). Annibali et al. (2007) derived a mean age of
9.4 ± 2.1 Gyr and metallicity [Z/H]=+0.22 dex within the
central 3″. Thus, the dominant stellar population is old and
metal-rich. We find no significant gradient in the g–z color
from PanSTARRS data (J. B. Jensen et al. 2020, in
preparation).

4. Schwarzschild Orbit Models

We use the orbit superposition method of Schwarzschild
(1979) through the implementation described by van den Bosch
et al. (2008). In this method, a library of orbits with a wide
range of initial conditions is constructed for a stationary
potential due to a central black hole, a stellar component
described by the MGE, and a dark matter halo. As each orbit
passes through the region of the sky corresponding to a
kinematic bin, its velocity is recorded to construct an LOSVD,
which is then decomposed in terms of Gauss–Hermite
moments. A superposition of orbits is constructed with the
QPB quadratic programming solver from the GALAHAD
library (Gould et al. 2003), which minimizes the χ2 associated
with the kinematics under the constraint that both the projected
mass within each aperture and the 3D mass distribution are fit
within 1% of the MGE.

We have found several problems in the code during our tests
and have fixed them as described in M. E. Quenneville et al.
(2020, in preparation). We have also determined that additional
modifications are required to achieve axisymmetry within the
code. These changes are discussed briefly in the following
subsections and more fully in M. E. Quenneville et al. (2020, in
preparation).

4.1. The Axisymmetric Limit

NGC1453 is a fast rotator with regular elliptical isophotes
(Figure 5) and no significant misalignment between the
projected rotation axis and photometric minor axis (Ene et al.
2018). These properties suggest that NGC 1453 can be
approximated as an oblate axisymmetric model. However, we
find the original version of the triaxial code by van den Bosch
et al. (2008) not to be able to achieve exact axisymmetry. Here
we describe two precautions and one change that we
implemented in order to achieve axisymmetry.

First, the box orbit library, which is generated by default in
the original code, should be excluded when the code is to be
used for axisymmetric gravitational potentials. Orbits in the
box orbit library start from rest with Lz=0. These orbits are
important in triaxial potentials, but not in axisymmetric systems
where Lz is an integral of motion. In an axisymmetric potential,
box orbits cannot precess about the minor axis, as they retain
Lz=0 for all time. As a result, they remain in their starting
plane and do not exhibit axisymmetry. We therefore exclude
these intrinsically nonaxisymmetric orbits from our axisym-
metric models.8

The second precaution is to avoid generating long-axis tube
orbits in the orbit library, a class of orbits not supported by
axisymmetric stellar mass distributions. We find that these
orbits can be eliminated only when the value for the viewing
angle ψ is set to be sufficiently close to 90° in the input
parameter file. As described in Section 3, the code uses three
viewing angles (θ, f, ψ) to relate the intrinsic and projected
coordinate systems and to set the axis ratios of the stellar
potential. An oblate axisymmetric potential is obtained when ψ
is exactly 90° and the axis ratio p between the long and
intermediate axes is exactly 1. Due to floating point impreci-
sion, however, the code does not run when ψ is set to 90°.0
with double precision. Earlier work typically chose ∣y -

∣ = -90 10 3 or 10−2, assuming that these values were close
enough to 90° to generate axisymmetry. For NGC1453,
however, we find even ∣ ∣y -  = -90 10 3 to be sufficiently far
away from 90° to allow for long-axis tubes in the orbit start
space, hence violating axisymmetry. We instead choose
ψ=(90+ 10−9)° in this work, which is far enough from 90°
to avoid numerical issues but close enough that the potential
is essentially axisymmetric for all available choices of the
inclination.
Even after we excluded both the box and long-axis tube

orbits, we still were unable to achieve axisymmetry with the
original triaxial code. In the case of NGC1453, we find that
many orbits precess on timescales much longer than the default
integration time, which is set to be 200 times the orbital periods
in the code. These orbits should be symmetrized so that their
contributions to the kinematics and mass grids are axisym-
metric. To achieve this, we combine 40 copies of each orbit,
each rotated slightly about the intrinsic minor axis of the
galaxy; see M. E. Quenneville et al. (2020, in preparation) for
details of our implementation.
These changes allow the triaxial code to be properly run in

the axisymmetric limit. We will compare results from the
original code and our version in Section 7.2.

4.2. Orbit Library and Phase-space Sampling

As described in Schwarzschild (1993) and van den Bosch
et al. (2008), the orbits used for the models span a grid of
energies (E) and starting positions (R, Θ) on the meridional
plane of the galaxy. We choose 40 energies corresponding to
the potential energies Φ(r, 0, 0) evaluated at a set of 40 radii
that are logarithmically spaced between 0.01 and 102.5 arcsec.
These radii are chosen to span from roughly one order of
magnitude below the pixel scale of our photometry to the radii
where �99.999% of the MGE mass is contained. We verify
that orbits at the highest and lowest energies are given very low
weight in the models. Our tests also verify that adding orbits
starting at higher or lower radii does not impact our models.
For each energy, we construct a grid of 9×9 starting positions
spanning the radii between the inner and outer thin orbit radii
for that energy and angles between 0° and 90°.
To improve the sampling of the phase space, the code allows

orbit dithering where groups of orbits spanning a small volume
in the (E, R, Θ) space are generated, combined, and given a
single weight during orbit superposition. We use bundles of
53=125 orbits for the final results below and bundles of
33=27 for numerous tests since they produce similar results
and are less CPU intensive. Our models also include a time-
reversed copy of each orbit. In total, we use a library of

8 For a triaxial potential, the “loop” orbit library generated by the code can
contain some box orbits that have no overall sense of direction (see orbit start
space in Figure 2 of Schwarzschild 1993). However, as Lz is an integral of
motion for an axisymmetric potential and all orbits in the library are initialized
with ¹L 0z , these orbits are also excluded.
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810,000 orbits (or 174,960 orbits for tests) for each mass model
with 2×40×9×9=6480 independent weights.

As discussed in Section 4.1, we use ψ=(90+ 10−9)° to run
the triaxial code in the axisymmetric limit. In this limit, the f
viewing angle does not affect the MGE deprojection, but it sets
the orientation of the plane of the orbit start space relative to the
plane of the sky. As we axisymmetrize the orbits before
projecting them onto the sky, the orientation between the start
space and the sky becomes unimportant, and we find that our
model fits are independent of the viewing angle f. We choose
f=1°. For reference, when the viewing angles ψ=90° and
θ=90° are used, the choices of f=0° and f=90°
correspond to aligning the intrinsic x-axis and y-axis with the
line of sight, respectively.

The potential due to the central black hole includes a
softening length so that the potential at the origin is not
singular. We set this length to 3×10−4 arcsec, which is
roughly two and a half orders of magnitude smaller than the
size of our central kinematic bin and one and a half orders of
magnitude smaller than the peribothron of the most central
orbits.

We convolve the integrated orbit trajectories in the models
with PSFs while projecting the orbits onto the sky. This
convolution is done separately for each kinematic data set, as
they have different PSFs. For each, we assume a single
circularly symmetric Gaussian with an FWHM of 0 7 for the
GMOS kinematics and 1 2 for the Mitchell kinematics.

4.3. Input Gauss–Hermite Moments

We use the first 12 moments in the Gauss–Hermite expansion
of the LOSVDs as constraints in the orbit models. For the central
region of NGC1453, we use the first eight moments V, σ, h3, K,
h8 measured from the GMOS spectra as described in Section 2.1
and shown in Figure 3. The corresponding radial profile of each of
the moments for all 135 GMOS spatial bins is plotted (black
points) in the left panel of Figure 4. The errors on h3 through h8
are quite similar from moment to moment and bin to bin. The
mean errors on these moments range from 0.018 to 0.023, with a
typical standard deviation of 0.003 over the spatial bins. To
choose an appropriate number of moments to extract using pPXF,
we performed the extraction with increasing numbers of moments
(4, 6, 8). As the number of extracted moments is increased, we
find that the typical value of the highest extracted moment
becomes consistent with 0. For the GMOS spectra, this occurred
when eight moments were extracted.

To prevent spurious behavior in the higher-order moments in
the model, we further constrain the next four orders, h9 to h12,
to be 0.0±δ, where δ represents the typical errors in the higher
moments. Since the size of errors is very similar from h3 to h8,
we do not find the exact assigned values of δ to matter.
Nonetheless, we try to mimic the mild bin-to-bin variations by
assigning the measured errors for h7 for a given bin to δ for the
odd moments h9 and h11 in that bin, and similarly for the even
moments (i.e., using the h8 errors for h10 and h12).

For the wide-field data that have lower S/N, we use the first
six Gauss–Hermite moments measured from the Mitchell
spectra as constraints (Section 2.2). The radial profile of the
moments for the 38 Mitchell spatial bins extending to a radius
of ∼50″ is shown in the right panel of Figure 4. We again
constrain the 7th and 12th moments to be 0, with uncertainties
equal to the measured errors for h5 (for odd orders) or h6 (for
even orders). The errors on moments h3 through h6 from the

Mitchell spectra are also quite uniform between moments. The
mean errors on these moments range from 0.029 to 0.035 with
a typical standard deviation of 0.006 over the spatial bins.
We discuss further the importance of constraining the higher

Gauss–Hermite moments in Section 7.1 below.

5. Results: Mass Model Search

5.1. Mass Model

We investigate four mass model parameters—inclination θ,
central black hole mass MBH, F110W-band stellar mass-to-light
M LF110W* , and the enclosed mass of the dark matter halo at
15 kpc. We use a logarithmic halo with mass density
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We find the circular velocity Vc and the scale radius Rc to be
highly degenerate for our data because the enclosed mass
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scales with V Rc c
2 2 within the scale radius where most of our

data points are located. We therefore choose to parameterize
the halo with the enclosed mass within 15 kpc, M15, where
15 kpc is the middle of the radial extent of the outermost
Mitchell bins (spanning 9.4 to 18.8 kpc).

5.2. Marginalization

Previous orbit modeling papers have often determined the 1σ
(68%) and 3σ (95%) confidence intervals for each model
parameter by finding the values at which the χ2 rises by
Δχ2=1 and 9 relative to the best-fit model. This method is
only exactly correct when there is no covariance between the
marginalized and free parameters and where the free para-
meter’s χ2 landscape is quadratic so that the likelihood is
Gaussian. To avoid reliance on these assumptions, we compute
best-fit values and confidence intervals through an interpolation
and marginalization routine described in Appendix B.

5.3. Inclination

In the oblate axisymmetric limit (p= 1), the MGE
deprojection requires a single viewing angle, θ, which specifies
the assumed inclination of the galaxy. An edge-on view of the
system corresponds to θ=90°, while face-on corresponds to
θ=0°. The inclination affects the axis ratios of the deprojected
density distribution with q q= ¢ -q q cos sini i

2 2 , where ¢qi
is the observed axis ratio of the ith component of the MGE fit
described in Appendix A, and qi is the intrinsic axis ratio
between short axis and the long axis in that component’s
deprojection.
Deprojection is only possible when ( ) q¢ < < - qcos min 90i

1 ,
where ¢qmin i is the smallest axis ratio in the MGE fit. For the
MGE used in this analysis, we have ( )¢ = - qcos min 38i

1 . When
inclinations near this threshold are used, flattening of the MGE
component with the smallest q′ changes significantly. For example,
when θ=40°, the component with q′=0.786 has q=0.27, and
for θ=50°, the component is flattened to q=0.59.
To determine the inclination of NGC 1453, we search

coarsely over MBH, M LF110W* , and M15 but finely over the
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inclination. This grid includes 11 values of MBH from 0.0
to 6×109Me in steps of 6×108Me, eight values of
M LF110W* from 1.6 to 2.3 (in solar units) in steps of 0.1,
and three values of M15: (2.8, 6.3, 11.2)×1011Me, corresp-
onding to Vc=400, 600, and 800 -km s 1 with Rc=15 kpc.
We use 12 values of θ from 40° to 89° in steps of 10° below
70° and 2°.5 above. The code does not allow perfectly edge-on
viewing angles, so the highest θ sampled was 89° rather than
90°. This grid contains 11×8×3=264 models for each
choice of θ and 264×12=3168 models in total.

Figure 6 shows that nearly edge-on viewing angles are
strongly preferred. When = ´M M6.3 1015

11 , θ=89°
gave the lowest overall χ2, with θ=80° and 70° lying
Δχ2=20.9 and 22.3 higher. For each θ and M15, we compute
the best-fit MBH and M LF110W* with their 68% confidence

intervals. When θ>70°, the best-fit values depend only
weakly on θ, and their confidence intervals coincide. This
suggests that our recovered black hole mass and stellar mass-
to-light ratio are relatively insensitive to the inclination within
the edge-on limit. We therefore fix the inclination to be nearly
edge-on with θ=89° as we sample over halos below.

5.4. Black Hole, Stars, and Dark Matter Halo

With the inclination fixed to be nearly edge-on with θ=89°,
we search the three mass parameters, MBH, M LF110W* , and
M15, using two sets of grids. The primary grid covers the
parameter ranges broadly and is then supplemented by a finer
grid that zooms into the best-fit model of the primary grid with
half the grid spacing in both MBH and M LF110W* .
The primary grid has 16×15×13=3120 models for MBH,

M LF110W* , and M15. This grid samples MBH linearly from 0 to
6×109 M in steps of 4×108Me, M LF110W* from 1.60 to
2.30 (in solar units) in equal steps of 0.05, and the enclosed halo
mass from = ´M M2.79 1015

11 to 11.16×1011 Me by
varying the circular velocity roughly linearly from =V 400c to
800 -km s 1 (for Rc= 15 kpc).
For the finer grid, we first determine the MBH and M LF110W*

model that minimizes the χ2 for each value of M15. We then
construct the fine grid around that model sampling another
16×15 values of MBH and M LF110W* , where the spacing
between models is half of that of the primary grid, and MBH is
sampled over a range of 3×109 M in steps of 2×108 M ,
and M LF110W* is sampled over a range of 0.35 in steps of
0.025. Many of these models overlap with those of the primary
grid, so only 176×13=2288 additional models are run.
We perform the interpolation and marginalization described

in Appendix B to determine the best-fit values and uncertainties
in MBH, M LF110W* , and M15 from these 5408 models. The
resulting χ2 landscapes are displayed in Figure 7. We find the
best-fit mass parameters to be ( ) =  ´M M2.9 0.4 10BH

9 ,
( )  = M L M L2.09 0.06F110W* , and ( )=  ´M 7.0 0.715

M1011 . For comparison, if the best-fit parameters are chosen
by finding the range of models where the χ2 rises by Δχ2�1
from the minimum value, as was frequently done in prior MBH
papers, we find comparable central values for the mass
parameters for NGC1453, but the error bars are under-
estimated by a factor of 1.5–2: ( )= M 3.0 0.2BH × M109 ,

( )  = M L M L2.06 0.03F110W* , and ( )= M 7.4 0.415

× M1011 . These values are tabulated in Table 1.
Figure 8 presents a clear view of the χ2 landscape over the

wide range of MBH covered by our grid. It shows that models
with small black hole masses are highly disfavored. In
particular, MBH=0 has Δχ2=75.5 above the minimum,
corresponding to the 8.7σ confidence level. This result will be
further discussed in Section 7.2.
In the best-fit mass model for NGC1453, the enclosed stellar

mass is equal to MBH, 2MBH, 3MBH, and 5MBH at radius
0.18 kpc (0 74), 0.26 kpc (1 05), 0.33 kpc (1 32), and 0.45 kpc
(1 83), respectively. The enclosed stellar mass equals that of the
dark matter at 8.4 kpc (34 1). At the effective radius (5 kpc), the
dark matter fraction is 0.27.

6. Results: Best-fit Mass Model

6.1. Stellar Kinematics

Our best-fit mass model (red points in Figure 4) provides an
excellent fit to the observed stellar kinematics (black). Both the

Figure 6. Best-fit MBH (top) and M LF110W* (middle) with 1σ confidence
intervals and the corresponding marginalized 1D χ2 (bottom) as a function of
the inclination angle θ. The gray points in the bottom panel denote the χ2 of
individual models within the grid, and the red horizontal dashed lines denote
the conventional 0, 1σ, 3σ, and 5σ confidence levels corresponding to
Δχ2=0, 1, 9, and 25. The halo is fixed to = ´M M6.3 1015

11 in this plot
for illustrative purposes; similar dependence is found for other halo masses we
examined.
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rotation V and the large central σ are well captured by this
model. The total χ2 for the best-fit model from all the kinematic
moments is 493.0, where the bulk of this (471.5) comes from
the moments extracted from data and only a small fraction
(21.5) comes from the additional high moments that are
constrained to be zero.

To estimate the reduced χ2, we note that there are eight
measured moments for each of the 135 GMOS bins and six
measured moments for each of the 38 Mitchell bins, for a total
of 1308 data points. The kinematic maps of the odd moments
have been point-antisymmetrized and the even moments have
been point-symmetrized according to the prescription in
Appendix A of van den Bosch & de Zeeuw (2010). Our total
reduced χ2 from the moments extracted from data is therefore
471.5/1308=0.36. The reduced χ2 from the GMOS data
alone is 366.2/(135∗8)=0.34, and the reduced χ2 from
Mitchell alone is 105.3/(38∗6)=0.46. The high moments that
were constrained to be zero have an associated reduced χ2 of
21.5/768=0.03.

6.2. Orbital Structure

While computing the orbit libraries, the code constructs a 3D
spherical grid containing the first and second velocity moments
of the orbits. We use this velocity grid to compute the
anisotropy parameter b s s= -1 t r

2 2 and the ratio of radial to
tangential dispersions s sr t. We note that various definitions of
β have been adopted in prior papers, and at times it is unclear
whether σ in such quantities is treated as a dispersion or a
second moment of the velocity, i.e., whether s = á ñ - á ñv v2 2 2

or s = á ñv2 2 . We choose to define

s
s s
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where the brackets denote a mass-weighted mean over θ and f.
These pairs of definitions are only expected to differ when there
is significant contribution from the ordered flow velocity term
á ñfv 2. For reference, differing definitions and symbols were
used in the literature, e.g., β from Thomas et al. (2014), βr from
Peletier et al. (2007), and σr/σt from Walsh et al. (2015) all
excluded the á ñfv 2 term, while βrot from Krajnović et al. (2018)
and Thomas et al. (2014) and σr/σt from Gebhardt et al. (2003)
included this term.
The resulting velocity anisotropy as a function of spherical

radius r for the best-fit model of NGC1453 is shown in
Figure 9. The orbits are tangential near the core but become
increasingly radially anisotropic beyond the effective radius
(∼5 kpc). Even though NGC1453 exhibits rotation and is
considered a fast rotator for an ETG, the maximal velocity
observed in our kinematics is ∼100 km s−1, which is much
below the dispersion σ shown in Figure 4. The term á ñfv 2

Figure 7. Marginalized 1D and 2D likelihood distributions from the grids of
MBH, M15, and M LF110W* described in Section 5.4. The 1σ, 2σ, and 3σ
confidence intervals corresponding to the 68, 97, and 99.5 percentile
confidence levels are shown as red, blue, and green curves in the 2D panels
and as a different shade of gray in the 1D panels. The extracted best-fit values
and 1σ confidence interval are shown above each 1D panel.

Table 1
Best-fit Values of the Black Hole Mass, Stellar Mass-to-light Ratio in the

F110W Band, and Dark Matter Mass Enclosed within 15 kpc

Mass Parameters Marginalized Projected

( )M M10BH
9 2.9±0.4 3.0±0.2

( ) M L M LF110W* 2.09±0.06 2.06±0.03
( )M M1015

11 7.0±0.7 7.4±0.4

Note. The center column presents values determined though interpolation and
marginalization as described in Appendix B. The right column presents values
determined through projection, where the confidence interval bounds all
models within Δχ2�1 of the global minimum.

Figure 8. χ2 as a function of MBH for the full range of MBH explored in this
paper. The χ2 is obtained by marginalizing over the other two mass parameters,
M15 and M LF110W* , as described in Appendix B. Models with =M 0BH are
highly disfavored, with a Δχ2=75.5 relative to the best-fit MBH, corresp-
onding to the 8.7σ confidence level.
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therefore has negligible impact on the value of σrot and βrot at
all radii, and σrot≈σt and β≈βrot at all radii.

Thomas et al. (2014) studied 11 massive elliptical galaxies
with axisymmetric Schwarzschild models. Six of those galaxies
had stellar cores and exhibited strongly tangential anisotropies
(βrot<−0.5) in the core regions and highly radial anisotropies
(βrot∼ 0.5) well outside the cores. Similar trends in the
anisotropy were found in MASSIVE survey galaxy NGC1600
(Thomas et al. 2016). This behavior is consistent with
gravitational core scouring, where a central binary black hole
preferentially ejects radial orbits from the core, leaving an orbital
structure that is tangentially biased (Begelman et al. 1980). We
observe similar behavior in NGC1453, suggesting that its core
may have also been depleted through core scouring.

7. Discussion

7.1. Gauss–Hermite Series Truncation and LOSVDs

As described above, the stellar LOSVD in each spatial bin is
parameterized by a Gauss–Hermite series up to order n. Some
care must be taken to ensure that the unconstrained higher
moments beyond order n in the orbit models do not introduce
spurious behavior in the predicted LOSVDs.

It is useful to begin the discussion by examining how the
LOSVDs are obtained in the triaxial orbit code. During orbit
integration, the code first computes the LOSVD of each orbit
for a spatial bin as it passes through the aperture on the sky.
The Gauss–Hermite moments are then determined from each
LOSVD through the direct integration described by van der

Marel & Franx (1993), using the observed V and σ values for
that bin. During the subsequent orbital weight finding process,
the Gauss–Hermite moments of the superposition of orbits in
each bin are easily computed owing to their linearity.
To find the best-fit orbital weights for a mass model, the

code places no constraints on moments beyond those provided
to it. We are concerned that some of the unconstrained higher
moments can add spurious non-Gaussian features to the
LOSVDs. This is to be contrasted with how the LOSVDs
are determined from the data. There, the pPXF algorithm
determines the best-fit moments from the observed spectrum in
the least-squares sense, choosing moments that minimize the
residual contribution from higher moments.
To test the impact of unconstrained higher moments on MBH,

we perform a series of controlled experiments in which we vary
systematically the number of Gauss–Hermite moments deter-
mined from the GMOS spectra and used as constraints in the
orbit model. We compare the results from grid searches for four
cases here. For the first three cases, four, six, and eight GH
moments are measured from the GMOS data with pPXF, and
those four, six, and eight GH moments are fit with orbit models
to infer MBH. In the fourth case, eight GH moments are
determined from the GMOS data with pPXF, and 12 GH
moments are used as inputs into the dynamical models, with the
9th to 12th moments set to 0 and assigned uncertainties as
described in Section 4.3. The fourth case, where 12 moments
are used to constrain the dynamical models, corresponds to our
production run reported in earlier sections. For each case, we
then perform a grid search for the best-fit MBH and M LF110W* .
Our aim here is to test the effects on the measured MBH, so we
keep the large-scale Mitchell kinematics unchanged and fix the
halo to the best-fit value of = ´M M7 1015

11 from our
production run.
The resulting first 12 moments predicted by the best-fit

model for each of the four cases of increasing truncation orders
are shown in Figure 10. The corresponding LOSVDs for three
representative GMOS bins in each case are shown in Figure 11.
The marginalized χ2 versus MBH for the four cases are shown
in Figure 12 (left panel), and the best-fit MBH are listed in
Table 2 under “Berkeley Version.” We note that while the best-
fit MBH changes by only ∼20% (in the range of (2.6–3.2)×
109 Me) as the truncation order is varied, the confidence level
is improved significantly when more input moments are used,
and the errors on MBH are reduced by a factor of ∼2.3 when we
increase the truncation order from 4 to 12.
The detailed dependence of each of the 12 Gauss–Hermite

moments on the truncation order can be clearly seen in
Figure 10. These moments are determined from the LOSVD of
each bin (e.g., Figure 11) through the direct integration
described by van der Marel & Franx (1993). Although only
moments up to the truncation order are used for constraining
the model LOSVDs, arbitrary higher moments can be
computed. The lowest four moments V, σ, h3, and h4 predicted
by the best-fit models are mostly independent of the truncation
order we tested. This is not surprising since these four moments
are fit during modeling in all cases. The predicted moments
beyond h4, however, start to show varying degrees of
deviations. The case in which the series is truncated at h12
(black points) corresponds to our production run. It uses all 12
moments as constraints by design, so as expected, the best-fit
model is well behaved in all 12 panels. In comparison, when
only four moments are fit by the orbit-based models (green

Figure 9. Velocity anisotropy β (top) and σr/σt (bottom) as a function of radius
for the best-fit model of NGC1453. The orbits within the central ∼1 kpc are
preferentially tangential with σr/σt<1 and β<0. The orbits become
increasingly radial beyond the effective radius (≈5 kpc). Over all radii, β

traces βrot and σt traces σrot because  sá ñf fv 2 2 .
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points), the unconstrained fifth moment and beyond deviate
strongly from the black points. Similarly, when six (blue) or
eight (red) moments are used as constraints during the

modeling, the seventh or ninth moment and beyond also show
deviations from the black points. Importantly, the deviation
from 0 is not random; instead, the unconstrained moments are

Figure 10. Dependence of the first 12 Gauss–Hermite moments predicted by the best-fit orbit model on the assumed truncation order applied to the GMOS data and
used as input constraints. The four colors show the progression of increasing truncation order: up to h4 (green), h6 (blue), h8 (red), and h12 (black; our production run).
In each case, the moments beyond the truncation order are unconstrained in the orbit model and exhibit correlated deviations from 0. This is most clearly seen in the
green curves in the unconstrained h5 and above. An interpolating line has been added to each curve to guide the eye. The corresponding marginalized χ2 vs. MBH for
the four cases are shown in Figure 12 (left panel). See text in Section 7.1 for details.
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correlated spatially, being somewhat symmetric about R=0″
for even moments and antisymmetric about R=0″ for odd
moments. The general trend that we observe in Figure 10 is
that the lower the truncation order is, the more their higher
moments show unobserved and correlated features.

We illustrate the spurious features in the shapes of the
LOSVDs resulting from the unconstrained higher Gauss–
Hermite moments in Figure 11. For all three representative
GMOS bins shown, the model LOSVDs have the most
pronounced irregular features when only four moments are
used (green curve), and these features gradually go away as the
truncation order is increased.

To date, a number of published dynamical MBH measure-
ments based on orbit modeling of stellar kinematics have used
the method of Gauss–Hermite expansion to approximate the
LOSVDs. Most have used the first four moments as constraints
in the orbit models (e.g., Verolme et al. 2002; van den Bosch &
de Zeeuw 2010; van den Bosch et al. 2012; Walsh et al.
2012, 2015, 2016, 2017; Seth et al. 2014; Thater et al.
2017, 2019; Ahn et al. 2018; Krajnović et al. 2018), while a

few have used the first six moments (e.g., Cappellari et al.
2002, 2009; Krajnović et al. 2009). Our tests here are applied
only to the triaxial Leiden code in the case of NGC1453, so we
cannot speak directly to the impact of higher Gauss–Hermite
moments on MBH in other work. However, we recommend that
similar tests be performed in future work.

7.2. The MBH=0 Model: Comparison to Ahn et al. (2018)

Recently, Ahn et al. (2018) used the same triaxial orbit code as
in this work to perform axisymmetric mass modeling of the
ultracompact dwarf galaxy M59-UCD3. They reported a puzzling
global χ2 minimum at =M 0BH , which was inconsistent with
their best-fit = ´-

+M M4.2 10BH 1.7
2.1 6 from Jeans modeling and

an orbit code that is intrinsically axisymmetric. Various tests were
performed, but none explained the discrepancy. They speculated
about a “numerical artifact” in the triaxial Leiden code and
favored the nonzero MBH from Jeans and axisymmetric orbit
modeling.
As discussed in Sections 4 and 7.1, we have made a number

of changes to the original triaxial code and typical settings
to arrive at the “Berkeley version” results for NGC1453
presented in Sections 5 and 6. Even though our final outcome
in Figure 8 shows =M 0BH to be disfavored at the 8.7σ
confidence level, we also encountered difficulties in constrain-
ing MBH in the case of NGC1453 when we ran the original
triaxial code using similar settings to those of Ahn et al. (2018),
that is, choosing ∣ ∣y -  -90 10 3, including box orbits from
the default library, not axisymmetrizing the loop orbits, and
using four Gauss–Hermite moments as kinematic constraints.
Our resulting χ2 for this setting using the original code is
represented by the green curve in the right panel of Figure 12.
The overall constraint on the NGC1453 MBH is weak, with the
lowest χ2 occurring at =M 0BH and another local χ2 minimum
at ~ ´M M1.5 10BH

9 . This is in stark contrast to the result
from our version of the settings and code represented by the
black curve in the left panel of Figure 12.
In view of the importance of constraining higher Gauss–

Hermite moments (Section 7.1), we have run further tests using
the original code but increasing the number of input moments
from 4 to 6, 8, and then 12. The results are plotted in the right
panel of Figure 12. The χ2 minimum at =M 0BH in the case of
h4 disappears as the truncation order is increased, but the
location of the χ2 minimum depends sensitively on the number
of moments, and the best-fit MBH increases monotonically and
shows no convergence even at order 12, as listed in Table 2. In
comparison, models from the “Berkeley Version” in the left
panel of Figure 12 and in Table 2 have better-behaved χ2

contours.

7.3. Comparison to Jeans Modeling

In Ene et al. (2018), we applied the method of Jeans
Anisotropic Modeling (JAM; Cappellari 2008) to determine the
mass parameters in NGC1453. JAM is computationally cheap
but is limited by the assumptions of axisymmetric potentials
and cylindrically aligned velocity ellipsoids and by the fact that
its solutions could be unphysical. JAM has been shown to give
consistent results with those of axisymmetric orbit models for
regular fast rotators like NGC1453 (Cappellari et al. 2010).
Previous studies with JAM have typically assumed a

globally constant b = - á ñ á ñv v1z z R
2 2 , which quantifies the

flattening of the velocity ellipsoid along the minor axis. In

Figure 11. LOSVDs for three representative GMOS bins predicted by the best-
fit orbit models. Each panel compares the LOSVDs from the four models
described in Section 7.1 and shown in Figure 10, where the number of Gauss–
Hermite moments fit by the dynamical models varies from 4 (green), 6 (blue), 8
(red), to 12 (black). When only four moments are constrained, the LOSVDs
have the most pronounced irregular features owing to the unconstrained h5 and
beyond seen in Figure 10. These unobserved features are gradually reduced
when higher moments are used to constrain the model.
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order to at least partially replicate orbit-type variation, we
allowed two different values for βz, one for the Gaussian
components with σk<1″, and the other for the Gaussian
components with σk>1″. The choice of 1″ is motivated by the
light profile of NGC1453, which starts to fall off more rapidly
at R1″ (see bottom panel of Figure 5).

The JAM modeling in Ene et al. (2018) used the distance
56.4Mpc from the 2MASS redshift survey. After adjusting to
51.0Mpc, the best-fit parameters from JAM are (= M 2.98BH

) ´ M0.23 109 and = M L 2.28 0.04F110W* (with 1σ
errors). The MBH value is within the 1σ confidence interval of
our best-fit value, while the M LF110W* is higher than our best-fit
value but is consistent with the 3σ interval.

The best-fit circular velocity for the dark matter halo from JAM
is =  -V 364 45 km sc

1 with = R 6.5 2.5 kpcc . Assuming

that the uncertainties in these two parameters are highly correlated,
this corresponds to ( ) =  ´M M3.89 0.96 1015

11 . This is
roughly half our preferred value of ( )=  ´M 6.98 0.7315

M1011 . At small radii, the enclosed dark matter in the JAM
model is much larger than ours. The central density of JAM’s
halo is ( )  ´ -M17.4 4.3 10 kpc7 3, while ours is half at
( )  ´ -M9.9 1.0 10 kpc7 3. At 6.9 kpc, the enclosed masses of
the two halos are identical.
The best-fit velocity anisotropy is ( )b s ¢ <  = - 1 0.58z

G
k

0.62 for the inner part and ( )b s ¢ >  = 1 0.15 0.04z
G

k for the
outer part. The anisotropy in the central region is comparable to
what we find in Section 6.2, but we find the orbits to be much
more radially biased in the outer region. The black hole and
stellar mass distribution of the JAM best-fit model and our best-
fit model are very similar, suggesting that similar velocity
anisotropies are required to fit the kinematics. Conversely, the
enclosed mass due to the halo in our best-fit model is much
larger than that of JAM beyond 6.9 kpc, suggesting that our
model must be more radially biased to similarly fit the
kinematics, as we observe.

7.4. Black Hole Scaling Relations

The SMBH at the center of NGC1453 lies 0.32 dex above
the mean MBH–σ scaling relation from McConnell & Ma
(2013), which is within the 0.38 dex intrinsic scatter in
that relation. For the other seven MASSIVE galaxies with
stellar dynamical MBH, four galaxies (NGC4472, NGC4486,
NGC4649, and NGC7619) are within 0.3 dex of the scaling
relation, whereas the other three (NGC1600, NGC3842, and
NGC4889) have MBH that is overmassive by a factor of ∼3–6

Figure 12. Illustration of the increasing constraints on MBH provided by progressively higher Gauss–Hermite moments used to represent the LOSVDs. Two versions
of the orbit code with different settings are shown: the Berkeley version described in Section 4.1 (left), and the original triaxial Leiden version (right) with typical
choice of ψ, including box orbits, and without orbit axisymmetrization. In each panel, we vary systematically the number of Gauss–Hermite moments used as
constraints in the orbit model from 4 (green), 6 (blue), 8 (red), to 12 (black). Our production run corresponds to the black curve in the left panel. The green curve in the
right panel uses a similar setting to that in Ahn et al. (2018) for M59-UCD3 and prefers MBH=0. The =M 0BH minimum disappears as moments beyond h4 are
applied in the original code (right), but the best-fit MBH is highly dependent on the truncation order. In comparison, the main effect of additional moments in the
Berkeley version (left) is to tighten the error bars on MBH while leaving the central value largely unchanged. Note that we use a linear scale in the confidence level for
the y-axis here for a clearer illustration of the locations of the minima, while Figure 8 uses a linear scale in χ2.

Table 2
Best-fit Black Hole Mass and 1σ (68%) Confidence Intervals for the Eight

Cases Shown in Figure 12

No. of Constrained Berkeley Version Original Leiden Version
Moments MBH (109 Me) MBH ( M109 )

4 3.30±0.81 0
6 2.64±0.59 1.51±0.49
8 2.63±0.48 1.93±0.41
12 2.91±0.35 2.22±0.55

Note. The four-moment Leiden run results in a χ2 minimum at MBH=0. For
all other runs, the quoted confidence intervals here are properly marginalized
through the routine described in Appendix B.
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than predicted by their respective galaxy velocity dispersion.
These eight galaxies exhibit similarly large scatter in the
scaling relation between MBH and the bulge stellar mass, where
M* spans a factor of ∼3 while MBH spans a factor of ∼10.

The stellar core radius of NGC1453 from our photometry is
rb=0 97 (0.24 kpc). This value is obtained by fitting a 2D core-
Sérsic profile, convolved with the PSF from Goullaud et al. (2018).
This fit was performed using Imfit (Erwin 2015). The scaling
relation between MBH and rb for a sample of 21 massive cored
ETGs is found to be ( )= +M rlog 10.27 1.17 log kpcb10 BH 10
with an intrinsic scatter of 0.29 dex (Thomas et al. 2016). Our
inferred MBH for NGC1453 is only 0.077 dex below this relation.

7.5. Gas Kinematics

In Pandya et al. (2017), we observed the kinematics of warm
ionized gas out to ∼8 kpc within NGC1453 by tracing the
[O II] λ3727 emission line using the spectra obtained with the
Mitchell IFS. This warm gas was found to rotate with a

~ PA 312 .5gas , roughly perpendicular to the stellar rotation
along ~ PA 35stars . This extreme misalignment suggests that
the warm gas originated from external accretion rather than
in situ stellar mass loss. The gas was observed to have a
rotation velocity of up to ~ -200 km s 1 and a comparable
velocity dispersion, giving an rms velocity of ~ -300 km s 1,
similar to that of the stars studied in this paper.

8. Summary

We have presented a black hole mass determination of
the MASSIVE survey galaxy NGC1453 using high spatial
resolution stellar kinematic data from the GMOS IFS, wide-
field kinematic data from the Mitchell IFS, and photometry
from HST WFC3. Stellar kinematics are measured from the
spectra to produce a truncated Gauss–Hermite parameterization
of the LOSVDs. We determine the first eight moments of the
LOSVDs from the high-S/N GMOS spectra and the first six
moments from the Mitchell spectra (Figures 3 and 4). The two
sets of kinematic data together span about two orders of
magnitude in radial extent, from 0 3 to 76″ (∼3 effective
radii), with a total of 173 spatial bins of varied size.

In the production run described in this paper, we perform
axisymmetric Schwarzschild orbit modeling for more than
8000 mass models to determine the mass parameters in
NGC1453. For each mass model, we use a library of up to
800,000 stellar orbits to sample the phase space and then use a
quadratic programming solver to find a superposition of orbits
that minimizes the χ2 associated with the observed kinematics
and also fit the observed photometry to within 1%. This
procedure is done for all mass models to produce likelihood
distributions for the mass parameters (Figures 7 and 8). The
best-fit model for NGC1453 has a black hole mass

( ) =  ´M M2.9 0.4 10BH
9 , a stellar mass-to-light ratio (in

F110W band) ( )  = M L M L2.09 0.06F110W* , and an
enclosed dark matter mass ( ) =  ´M M7.0 0.7 1015

11 at
15 kpc. The inclination is found to be nearly edge-on
(Figure 6).

We began the orbit modeling with the original triaxial
Schwarzschild code of van den Bosch et al. (2008) but
determined that numerous changes must be made to properly
model axisymmetric systems with that code. We found the
gravitational potential not to be sufficiently axisymmetric when
we adopted the typical setting of this code used in prior studies.

As a result, the orbit start space includes box and long-axis
orbits that are forbidden in truly axisymmetric potentials.
Additionally, many of the integrated orbits near the black hole
or far into the halo do not exhibit axisymmetry, as their
precession timescale is much longer than the code’s default
integration time. We introduced an additional axisymmetrizing
step to enforce this symmetry. We also addressed several other
issues and improved the computational efficiencies in the code.
The changes leading to the Berkeley version of the code are
discussed in Section 4; further details are described in M. E.
Quenneville et al. (2020, in preparation).
Another key finding of this paper is that care must be taken

to properly handle the truncation of the Gauss–Hermite series
used to describe the stellar LOSVDs. When the higher-order
terms in the series are left unconstrained for NGC1453, the
resulting best-fit LOSVDs produced by the orbit models
contain spurious features (Figure 11), and the contributions
from the unconstrained higher-order moments are not random
but show spatial correlations (Figure 10). When the Berkeley
version of the orbit code is used, we find that the confidence
level on the MBH determination for NGC1453 is significantly
improved when at least eight Gauss–Hermite moments are used
as constraints: the 1σ confidence interval shrinks by a factor of
∼2 relative to models with typical constraints on only V
through h4 (left panel of Figure 12). By contrast, the χ2

landscape is not as well behaved when the original code is used
with typical settings (right panel of Figure 12). Tests on each
individual galaxy would have to be performed to assess
whether earlier MBH determinations are similarly impacted.
A number of the findings and code changes discussed in this

paper are also relevant when the orbit code is applied to a
triaxial gravitational potential. In particular, the problem of
insufficient integration time for the subset of orbits with long
precession timescales occurs in both axisymmetric and triaxial
models. We are currently investigating these issues with the
aim to build equilibrium triaxial models for nonaxisymmetric
galaxies.
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Astronomy and Space Science Institute (Republic of Korea).
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Appendix A
MGE Parameters

We list in Table 3 the best-fit parameters of the 10 MGE
components to our HST WFC3 IR photometry of NGC1453
shown in Figure 5. The 10 Gaussians terms are assumed to
have the same center and position angle of 28°.5.

We also performed an MGE fit to this photometry in Ene
et al. (2018). The two MGEs differ in that the fit presented here
was found by using the “mge_fit_sectors()” function rather than
the “mge_fit_sectors_regularized()” function. We find that
when the regularized fit is performed, the photometry is
similarly well fit. However, for the regularized fit we find a
significant uptick in the model’s surface brightness in the
central ∼0 1, below the pixel scale of the photometry. To
avoid this unphysical feature, we use the unregularized fit here.

Appendix B
Interpolation and Marginalization

We perform an interpolation with cubic radial basis
functions (RBFs) to promote our discrete sample of χ2

evaluations at each model point to a continuous function over
the parameter space. We use a variation on the implementation
described by Knysh & Korkolis (2016). The RBF interpolation
is described by

( ) ( ( ) ) · åc l= - + +
=

x x x b xT a,
i

N

i i
2

1

3

where x describes a point in the parameter space and λi, b, and
a are uniquely defined from the criterion that the interpolation
passes through all N sample points. T is initially the identity
matrix.

A spatial rescaling is performed to improve the fit around the
minimum of the landscape. This is done by evaluating the
interpolating function at 10,000 points drawn from a uniform
distribution over the parameter space. The covariance matrix of
the 500 points with lowest predicted χ2 is computed, and then
the eigenvalues αi and eigenvectors mi of that matrix are
computed. Finally, T is constructed with a=T mi i i . Given
this new T, λi, b, and a are recomputed so that the interpolation
once again passes through all N sample points.

To extract best-fit values and confidence intervals for each
parameter, we perform a straightforward marginalization. With

marginalization we wish to reduce the interpolated ( )q yc ,2 to
( )qc2 , where y are the parameters we wish to eliminate and q

are those that remain. The likelihood is related to the χ2 by
= c-L e 22

, and likelihoods are marginalized in the same sense
as probabilities. Therefore,

( ) ( )òq q yy=L d L , ,N

and thus

( ) ( )òqc y= - q yc-d e2 ln ,N2 , 22

where N is the number of parameters in ψ.
To obtain predictions for the best fit and confidence interval

for a parameter, we first construct the 1D likelihood function
for that parameter:

( ) ( )òq y= yc q-L d e .N , 22

For the best fit, we determine the value where the cumulative
likelihood function is one-half:

( )

( )
ò

ò

q q

q q

¢ ¢

¢ ¢
=

q

-¥

-¥

¥

L d

L d

1

2
.

For the confidence intervals, we find the values where the
cumulative likelihood function reaches the appropriate percen-
tiles:

( )

( )
( )ò

ò

q q

q q

¢ ¢

¢ ¢
=


q

-¥

-¥

¥

 L d

L d

k1 erf 2

2
,

where θ+ and θ− yield the upper and lower bounds to the
cumulative likelihood, respectively, and k sets the confidence
level (k= 1 corresponds to the 68% level, k= 2 for 95%, and
so on). We compute these integrals with the VEGAS Monte
Carlo integrator implemented in the Python package “vegas.”
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