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Abstract
We present a method by which multi-harmonic signals acquired during a normal tapping mode
(amplitude modulated) AFM scan of a sample in air or vacuum with standard microcantilevers
can be used to map quantitatively the local mechanical properties of the sample such as elastic
modulus, adhesion, and indentation. The approach is based on the observation that during the
tapping mode operation in air or vacuum, the 0th and 2nd harmonic signals of microcantilever
vibration are encountered under most operating conditions and can be mapped with sufficient
signal to noise ratio. By measuring the amplitude and phase of the driven harmonic as well as
the 0th and 2nd harmonic observables, we find analytical/semi-analytical formulas that relate
these multi-harmonic observables to local mechanical properties for several classical tip-sample
interaction models. Least squares estimation of the local mechanical properties is performed
pixel by pixel. The method is validated through computations as well as experimental data
acquired on a polymer blend made of Polystyrene and Polyolefin elastomer.

Supplementary material for this article is available online

Keywords: multi-harmonic, atomic force microscopy, compositional mapping, polymer
characterization, surface properties, nonlinear dynamics

(Some figures may appear in color only in the online journal)

1. Introduction

Recent advances in dynamic AFM have enabled the excita-
tion and measurement of the AFM microcantilever vibration
at multiple frequencies. These multi-frequency AFMmethods
[1–11] help to better understand the interaction forces between
the tip and the sample and lead to estimations of the local phys-
ical properties of the sample quantitatively with high resolu-
tion and high speed.

Multi-frequency AFM methods for nanomechanics began
in the context of tapping mode or amplitude modulation AFM
(AM-AFM) but have faced some key challenges. In AM-
AFM a single eigenmode of the microcantilever is excited
at resonance and higher harmonics of the driving frequency

arise in the microcantilever spectrum due to the non-linearity
of tip-sample interaction forces [12–24]. The bifurcations
and stability of microcantilever motions in AM-AFM are
very well understood [25, 26]. In principle, the acquisi-
tion of a large number of higher harmonics (> 20) in AM-
AFM can be used to reconstruct the non-linear interac-
tion forces [27]. In practice, however, the signal to noise
ratio of these higher harmonics is generally poor [28, 29]
as the harmonic number increases making it difficult to
recover the high frequency components of the interaction
forces. To overcome these issues, new designs such as tor-
sional harmonic cantilevers [30–32], cantilevers with interdi-
gitated high bandwidth fingers [33–37] and embedded low fre-
quency paddles [38] have been proposed. However the use of
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specialized microcantilevers impedes widespread adoption in
the community.

In response to these challenges multi-frequency excita-
tion methods have emerged recently where the microcanti-
lever is excited with multiple frequencies in the resonance
bandwidth of one or more eigenmodes. In these methods the
microcantilever vibration observables at various frequencies
can be acquired with higher signal to noise ratio. These meth-
ods include multi-modal excitation [3–8], such as bimodal
[3–7] and trimodal [8] excitation, band excitation [9] and
intermodulation AFM [10, 11]. Methods to convert multi-
frequency observables into quantitative nanomechanical map-
ping have also been developed [30, 32, 36, 37, 39, 40].
However, the bifurcations and stability of microcantilever
motions while using multi-frequency excitation remain poorly
understood [41, 42].

In this article we re-examine the use of multi-harmonic
AFM for nanomechanical mapping within the context of tap-
ping mode/AM-AFM. There are many reasons to re-consider
this problem, since AM-AFM remains the most widely used
dynamic AFM mode and it is relatively easy for an average
AFM user to understand its operation. Also, the bifurcations
and stability of periodic motions in AM-AFM are well under-
stood [12–24]. Finally, while many higher harmonics in AM-
AFM have small signal to noise ratio, some harmonics such
as the 0th, 2nd and 3rd harmonics appear quite frequently
in AM-AFM on a variety of samples with sufficient signal
to noise ratio. Still a method is needed to use a small subset
of AM-AFM higher harmonics with sufficient signal to noise
ratio in order to quantitatively estimate local nanomechanical
properties.

Recently, there has been an effort towards the ‘frugal’ use of
multi-harmonics where only a few, 0th, 1st, 2nd and perhaps
3rd harmonic in tapping mode/AM AFM are used to quant-
itatively map the local mechanical properties on the sample
[43, 44]. The idea is to choose the values of nanomechan-
ical parameters such as elastic modulus, viscoelasticity, adhe-
sion, and indention of some analytical/semi-analytical contact
mechanics model in a way to best match the experimental
observables. Because only a small set of nanomechanical
parameters need to be determined, it is sufficient to meas-
ure and map only a small subset of multi-harmonic amp-
litudes and phases. However, this approach has been only
demonstrated on samples in liquids [43, 44] where the multi-
harmonic observables are much stronger due to the low Q-
factors. Moreover, only simple tip-sample interaction models
have been considered. If in fact the multi-harmonic approach
could be extended to tapping mode/AM-AFM with standard
microcantilevers in air/vacuum, and to a wide variety of tip-
sample interaction models then multi-harmonic AFM based
on tapping mode/AM-AFM could become widely used for
nanomechanical mapping.

In the current work, we present a generalized theoret-
ical framework linking multi-harmonic observables in AM-
AFM such as force harmonics to the physical properties
of the sample. Since the origin of the higher harmonics is
the non-linearity inherent in the tip-sample interaction, we
develop such relationships for several commonly used contact

mechanics models such as DMT (Derjaguin-Muller-Toporov),
Hertz and linear stiffness with adhesion. We then develop a
least squares approach to extract the physical parameter val-
ues of the chosen contact mechanics model from a small sub-
set of multi-harmonic observables such as the amplitudes and
phases of the 0th, 1st and 2nd harmonic, or the 1st, 2nd and
3rd harmonic etc. The analytical/semi-analytical relationships
and the parameter extraction approach are validated using dir-
ect numerical simulation of the AFM microcantilever inter-
acting with samples with different moduli. An experimental
approach for calibrating and correcting the 2nd harmonic amp-
litude and phase lag information in experiments is developed
and presented. We then present experimental results on a poly-
styrene - low density polyethelene blend (PS-LDPE) [45] and
map the elastic modulus, adhesion, indentation during a single
AM-AFM scan using a standardmicrocantilever with less than
10% relative residual norm error over the scan. The approach
opens up the possibility of using a small set of multi-harmonic
observables during standard tapping mode/AM-AFM scans in
air/vacuum for quantitative nanomechanical mapping of het-
erogeneous samples.

2. Multi-harmonic AFM theory

We derive here the general theory that rigorously connects
multi-harmonic amplitudes and phases in tapping mode/AM-
AFM to the interaction force harmonics. We then provide
analytical/semi-analytical relations that link those force har-
monics to physical properties of the sample.

We start by assuming a single-degree-of-freedom model
for the microcantilever operating in AM-AFM mode. This
assumption is valid as long as the first few harmonics are used
as demonstrated with some simulation data in the supplement-
ary material (stacks.iop.org/NANO/31/455502/mmedia). The
single-degree-of-freedom equation of motion governing the
tip motion q(t) of the resonant eigenmode of the microcanti-
lever in AM-AFM when it interacts with the sample is given
by

q̈
ωfar2

+ q+
1

ωfarQfar
q̇ =

Fdr cos(ωdrt)+Fts(Z+ q, q̇)
kfar

, (1a)

Fts(Z+ q, q̇) = Fts,CONS(Z+ q)+Fts,DISS(Z+ q, q̇). (1b)

Here q(t), the generalized coordinate of the driven eigen-
mode is also the tip motion due to microcantilever deflection
since the eigenmode is normalized such that its magnitude is
unity at the free end [46] and Fts is the tip sample-interaction
force. This force is assumed to decompose additively into a
conservative (tip sample gap dependent) Fts,CONS and a dis-
sipative component Fts,DISS [47] or as referred to as even and
odd components of interaction force [48]. Fdr is the mag-
nitude of the modal excitation force. Z is the height of the
unperturbed tip position with respect to the sample, and equals
the Z-piezo displacement modulo, a constant (see figure 1).
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Figure 1. (a) A schematic of an oscillating microcantilever showing the key motion or displacement variables. The schematic emphasizes
the average deflection of the tip A0, which is generally significant compared to the set-point amplitude of the drive harmonic A1. (b) A
schematic of the time history of the tip motion (in terms of θ) to the leading order, along with the conservative and dissipative tip-sample
interaction forces encountered by the tip during this motion.

Furthermore ωfar,Qfar, and kfar are respectively the natural fre-
quency, the quality factor and the calibrated stiffness of the
fundamental mode of the microcantilever, which are typic-
ally measured while the microcantilever is withdrawn from the
sample. In what follows, we derive and express the tip sample
force harmonics in terms of multi-harmonic microcantilever
vibration observables based on the assumption that the tip
motion q(t) is periodic while the tip is interacting with
the sample.

2.1. Relationship between multi-harmonic observables and
tip-sample force harmonics

Let the steady state motion of the tip interacting with
the sample be comprised of multiple harmonics of the
drive frequency so that the tip displacement, velocity, and
acceleration are (with θ = ωdrt−ϕ1):

q(t) = A0 +
N∑
n=1

An cos(nωdrt−ϕn)

= A0 +
N∑
n=1

An cos(nθ+ nϕ1 −ϕn), (2a)

dq
dt

= q̇=−ωdr

N∑
n=1

nAn sin(nθ+ nϕ1 −ϕn), (2b)

d2q
dt2

= q̈=−ωdr
2

N∑
n=1

n2An cos(nθ+ nϕ1 −ϕn), (2c)

Since the tip motion is assumed to be periodic, so too must
the tip-sample interaction force (from equation (1b)). This
leads to the following Fourier expansion of the tip-sample
interaction force in terms of its conservative and dissipative
components:

Fts(Z+ q(θ), q̇(θ)) = F0
ts,CONS+F1

ts,CONS cos(θ)

+F1
ts,DISS sin(θ)+F2

ts,CONS cos(2θ)

+F2
ts,DISS sin(2θ)+F3

ts,CONS cos(3θ)

+F3
ts,DISS sin(3θ)+ ... (3)

where,

F0
ts,CONS =

1
2π

ˆ 2π

0
Fts dθ, (4a)

3
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Fnts,CONS =
1
π

ˆ 2π

0
Fts cosnθ dθ, (4b)

Fnts,DISS =
1
π

ˆ 2π

0
Fts sinnθ dθ. (4c)

In the intermittent contact regime as well as while oscil-
lating in permanent contact, it can be shown that Fts,CONS(θ)
is symmetric about θ=π while Fts,DISS(θ) is antisymmetric
about θ=π [48]. As a result while Fnts,CONS is the nth Fourier
cosine coefficient, Fnts,DISS is the nth Fourier sine coefficient
since cos(nθ) and sin(nθ) are symmetric and antisymmetric
respectively about θ=π.

Substituting equations (2) and (3) into equation (1a) and
balancing separately the constant, and the cosine and sine har-
monic terms in the equation, readily leads to the following res-
ults that link the Fourier components of the interaction force
to the multi-harmonic microcantilever vibration observables
such as harmonic amplitudes and phases. Denoting r= ωdr

ωfar
,

the nth Fourier coefficients of the conservative and dissipative
components of the interaction force can be evaluated to be:

F0
ts,CONS = kfarA0, (5a)

F1
ts,CONS =−Fdr cos(ϕ1)+ kfarA1

(
1− r2

)
, (5b)

F1
ts,DISS = Fdr sin(ϕ1)− kfarA1

r
Qfar

, (5c)

F2
ts,CONS = kfarA2

[
cos(2ϕ1 −ϕ2)

(
1− 4r2

)
− 2r
Qfar

sin(2ϕ1 −ϕ2)

]
, (5d)

F2
ts,DISS = kfarA2

[
− sin(2ϕ1 −ϕ2)

(
1− 4r2

)
− 2r
Qfar

cos(2ϕ1 −ϕ2)

]
, (5e)

F3
ts,CONS = kfarA3

[
cos(3ϕ1 −ϕ3)

(
1− 9r2

)
− 3r
Qfar

sin(3ϕ1 −ϕ3)

]
, (5f )

F3
ts,DISS = kfarA3

[
− sin(3ϕ1 −ϕ3)

(
1− 9r2

)
− 3r
Qfar

cos(3ϕ1 −ϕ3)

]
. (5g)

When ωdr is tuned to exact resonance (i.e. ωdr = ωfar or
r = 1) with a steady state amplitudeA1,far, the tipmotion qfar(t)
in the driven eigenmode, the phase lag of tip oscillation relat-
ive to the excitation ϕ1,far, and the magnitude of the driving
force Fdr are given by:

qfar(t) = A1,far cos(ωdrt−ϕ1,far), ϕ1,far =
π

2
, Fdr =

kfarA1,far
Qfar

and equation (5) reduces to

F0
ts,CONS = kfarA0, (6a)

F1
ts,CONS =−

kfarA1,far

Qfar
cos(ϕ1), (6b)

F1
ts,DISS =

kfarA1,far

Qfar

(
sin(ϕ1)−

A1

A1,far

)
, (6c)

F2
ts,CONS = kfarA2

[
− 3cos(2ϕ1 −ϕ2)

− 2
Qfar

sin(2ϕ1 −ϕ2)

]
, (6d)

F2
ts,DISS = kfarA2

[
3sin(2ϕ1 −ϕ2)

− 2
Qfar

cos(2ϕ1 −ϕ2)

]
, (6e)

F3
ts,CONS = kfarA3

[
− 8cos(3ϕ1 −ϕ3)

− 3
Qfar

sin(3ϕ1 −ϕ3)

]
, (6f )

F3
ts,DISS = kfarA3

[
8sin(3ϕ1 −ϕ3)

− 3
Qfar

cos(3ϕ1 −ϕ3)

]
. (6g)

Equation (6) allows us to extract quantitatively the Fourier
harmonics of the conservative and dissipative components of
the interaction force in terms of experimental multi-harmonic
observables A0, A1, ϕ1, A2, ϕ2, A3, ϕ3. The only assumption
made so far is that of periodic tip motion and that the tip
dynamics is represented by a single-degree-of-freedom model
(given by equation (1)).

4
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Figure 2. A schematic diagram of the tip-sample interaction force models considered in this work. The force harmonic expressions are
derived in terms of material properties for each of these five interaction force models using the multi-harmonic theory developed.

Equation (6) also provides some fundamental insight
into the meaning of higher harmonic phase. Specifically,
from equations (6c–6g) if the interaction forces are purely
conservative, i.e. when Fnts,DISS = 0 we have

sin(ϕ1) =

(
A1

A1,far

)
, (7a)

sin(2ϕ1 −ϕ2) =

(
2

3Qfar

)
cos(2ϕ1 −ϕ2) , (7b)

sin(3ϕ1 −ϕ3) =

(
3

8Qfar

)
cos(3ϕ1 −ϕ3) . (7c)

Equation (7a) is a well-known result in AM-AFM [49].
Equations (7b) and (7c) state that for purely conservative
forces the higher harmonic phases are directly related to the

first harmonic phase. In particular whenQfar >> 1, a condition
usually met in ambient and vacuum situations, we show in the
supplementary material that the following relations hold for

Attractive regime (ϕ1 > π/2) :

2ϕ1 −ϕ2 ≈ 0, (8a)

3ϕ1 −ϕ3 ≈ π, (8b)

Repulsive regime (ϕ1 < π/2) :

2ϕ1 −ϕ2 ≈ π, (9a)

3ϕ1 −ϕ3 ≈ 0. (9b)

5
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The validity of equations (6) is confirmed by comparing
with direct simulations of cantilever dynamics on a sample
performed with the Virtual Environment for Dynamic AFM
(VEDA) [50–52]. These are presented in the following
sections.

2.2. Relationship between tip-sample force harmonics and
local material properties

The multi-harmonic AFM user needs to choose an appropri-
ate model (figure 2) for the tip-sample interaction in order
to convert the measured force harmonics into quantitative
nanomechanical properties. In connecting the extracted force
harmonics to quantitative nanomechanical properties we use
the following approximation

q(θ) ≈ A0 +A1 cosθ, (10a)

q̇(θ) ≈ −A1ωdr sinθ, (10b)

where A1 is the set-point amplitude during the AM-AFM scan.
At first glance this approximation may seem to contradict
equation (2). However, equation (10) implies that the 0th and
1st harmonics of the tip motion are sufficient to approximate
the interaction force harmonics since these harmonics dom-
inate the tip motion spectrum. The 2nd and 3rd harmonics of
tip motion are much smaller in magnitude, so this can be con-
sidered a first order approximation relating tip motion to the
force harmonics.

A direct consequence of the approximation (equation (10)),
is that the maximum penetration of the tip into the sample in
an oscillation cycle occurs at θ=π when q= A0 −A1. Thus,
themaximum indentation into the sample δmax =−(Z+ q(θ =
π)) during a cycle of oscillation is given by

δmax = A1 − Z−A0, (11)

which can be non-dimensionalized by defining

∆=
δmax

2A1
. (12)

Thus, when 0<∆< 1 the tip is intermittently tapping on
the sample and ∆= 1 implies continuous contact with the
sample during the tip oscillation cycle. In terms of equations
(10), (11) and (12), the instantaneous tip-sample separation is
given by

d= Z+ q,

= Z+A0 +A1 cosθ =−δmax +A1(1+ cosθ),

= A1 (−2∆+ 1+ cosθ) . (13)

Equation (13) also helps identify that the range of θ over
which d< 0 and the tip is in contact with the sample during the
oscillation cycle is when −2∆+ 1+ cosθ < 0. This require-
ment can be transformed into the following range of θ for tip-
sample contact between 0 and 2π:

π− cos−1(1− 2∆)< θ < π+ cos−1(1− 2∆). (14)

In what follows, we show that the approximations (equa-
tions (10–11)) lead to analytical/semi-analytical formulas
linking material properties to multiple force harmonics for dif-
ferent contact mechanics models shown in figure 2. These for-
mulas are derived by evaluating the integrals given by equa-
tions (4) using MAPLE and will be referred to as the tip-
indentation formulas from here onwards. Note that the tip-
indentation formulas corresponding to DMTmodel with linear
non-contact attractive force (figure 2(e)) are presented in the
main article while those for the other models are detailed in
the Supplementary Material.

DMT model. The tip sample interaction force modeled with
DMT contact mechanics including van der Waals attractive
forces and without any dissipation is given by

Fts =

{
− HR

6a02
+ 4

3
E∗

√
R(−Z− q)3/2, when Z+ q< 0,

− HR
6(Z+q+a0)2

, otherwise,
(15)

where H is the Hamaker constant, R is the tip radius, a0 is the
intermolecular distance and E* is the effective Young’s modu-
lus for the tip-sample system given in terms of the moduli and
Poisson’s ratios of the tip and the sample by equation (16).

1
E∗ =

1− ν2tip
Etip

+
1− ν2sample
Esample

. (16)

Evaluation of the integrals (equations (4)) with the attract-
ive van der Waals force term when Z+ q> 0 (equation (15))
did not lead to closed form expressions for the tip-indentation
formulas using MAPLE. Therefore, we approximate this with
a linear attractive force which is discussed in detail below.
An alternative approximation where the non-contact attractive
term is neglected is presented in the Supplementary Material.

DMT model with linear non-contact attractive force. A
schematic of the DMT model with linear non-contact attract-
ive force is as shown in figure 2(e) and is given by

Fts =


−Fad + 4

3E
∗√R(−Z− q)3/2, when Z+ q< 0,

−Fad +m(Z+ q), when 0< Z+ q< Fad
m ,

0, otherwise,
(17)

where Fad is the force of adhesion and m represents the slope
of the linear attractive part of the interaction force. Introducing
Λ = 4

3E
∗√R, γ = Fad

Λ(A1)
3/2 andβ = m

Λ(A1)
1/2 , the range of θ over

which Z+ q or d< Fad
m during the oscillation cycle, i.e. when

−2∆+ 1+ cosθ < γ
β can be identified as

π− cos−1

(
1− 2∆− γ

β

)
< θ < π+ cos−1

(
1− 2∆− γ

β

)
.

(18)
Substituting equations (13) and (17) into equations (4)

and evaluating the integrals based on the limits on θ specified

6
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by equations (14) and (18), the tip-indentation formulas cor-
responding to this tip-sample interaction force in ∆ can be
determined exactly using MAPLE as:

F0
ts,CONS =

1
π
ΛA(3/2)

1 γ
(
θ̄2 −π

)
+

4
√
2

3π
ΛA(3/2)

1

(
∆EK(3∆2 − 5∆+ 2)
+∆EE(4∆− 2)

)
+

β

π
ΛA(3/2)

1

(
(2∆− 1)

(
θ̄2 − θ̄1

)
+2

√
∆
√
1−∆−α

)
, (19a)

F1ts,CONS =
1
π
ΛA(3/2)1 γα

+
8
√
2

5π
ΛA(3/2)1

(
∆EK(∆

2 − 3∆+ 2)
+∆EE(−2∆2 + 2∆− 2)

)
+

β

π
ΛA(3/2)1

(
θ̄1 − θ̄2
+(1− 2∆)

(
2
√
∆
√
1−∆−α

) )
,

(19b)

F2
ts,CONS =

4
3π

ΛA(3/2)
1 γ

(
2∆− 1+

γ

β

)
α

+
8
√
2

35π
ΛA(3/2)

1

(
∆EK(8∆3 − 13∆2 + 3∆+ 2)
+∆EE(−16∆3 + 24∆2 − 4∆− 2)

)
+

8
3π

ΛA(3/2)
1 β∆(1−∆)

(
2
√
∆
√

1−∆−α
)
, (19c)

F3
ts,CONS =

2

3π
ΛA(3/2)1 γ

(
2+ 12∆(∆− 1)+ 3(2∆− 1)

γ

β
+

γ2

β2

)
α

+
8
√
2

315π
ΛA(3/2)1

 ∆EK

(
128∆4 − 272∆3

+159∆2 − 13∆− 2

)
+∆EE

(
−256∆4 + 512∆3

−270∆2 + 14∆+ 2

)


+
8

3π
ΛA(3/2)1 β∆(−2∆2 + 3∆− 1)

(
2
√
∆
√
1−∆−α

)
,

(19d)

where θ̄1 = cos−1 (2∆− 1), θ̄2 = cos−1
(
2∆− 1+ γ

β

)
,

∆EK and ∆EE are the elliptic integrals, EllipticK
(√

∆
)

and EllipticE
(√

∆
)

respectively and α=√
4∆(1−∆)− 2(2∆− 1) γβ − γ2

β2 . Note that the dissipative
force harmonics will be zero here as the model for tip-sample
interactions does not include any dissipation. An equivalence
between this model (equation (17)) and the original DMT
model (equation (15)) is established by equating the areas
under the non-contact attractive parts of the interaction force
models given by equations (15) and (17) which resulted in a
simple relation m= Fad

2a0
under the assumption a0 << A1. This

assumption is reasonable especially for the AFM studies in
ambient conditions or under vacuum as a0 is of the order of
0.1 nm whereas A1 is of the order of tens of nanometers.

3. Simulations

For computational validation, we perform simulations using
Virtual Environment for Dynamic Atomic Force Microscopy
(VEDA) [50–52], a tool available on nanohub.org for AFM
simulations. A probe, typically used for AM-AFM, with prop-
erties of kfar = 26 N/m, ωfar = 303 kHz, Qfar = 456, R =
10 nm was used in the simulations with the excitation fre-
quency equaling its fundamental resonance frequency ωfar =
303 kHz resulting in A1,far = 85 nm. The dynamic approach
curves are simulated in VEDA on a sample with Esample = 1
GPa by assuming DMT contact [53] with Fad = 20 nN.

3.1. Validation of equations (6)

The process to check the validity of the relations (equations
(6)) connecting the multi-harmonic observables and force har-
monics is shown schematically in figure 3. The input simula-
tion parameters such as kfar,A1,far,Qfar and the output paramet-
ers from simulation like A0, A1, ϕ1, A2, ϕ2 are used to calcu-
late the conservative force harmonics using equations (6). The
force harmonics amplitudes obtained up to the 2nd harmonic
calculated using equations (6) match closely with those from
direct numerical simulations (error< 5%) over a wide range of
amplitude set-point ratios (figure 4). This comparison of force
harmonics has been performed with a number of simulations
by varying Esample from 0.01 GPa to 10 GPa, Fad from 0 nN
to 50 nN, A1,far from 50 nm to 100 nm and kfar from 0.5 N/m
to 40 N/m. For all these simulations, the force harmonics cal-
culated using equations (6), match very well with those from
direct VEDA simulations over a wide range of set-point ratios
(0.2–0.9).

3.2. Validation of equations (19)

The relations given by equations (19) connecting the force har-
monics to indentation and local material properties are val-
idated using the data from the same VEDA simulations dis-
cussed in section 3. Note that VEDA incorporates original
DMT model (equation (15)) in the simulation. A schematic
illustration of the validation process is shown in figure 5. The
input simulation parameters Esample, νsample, Etip, ν tip, Fad,
R, a0 and the output parameters A1, δmax are used to calcu-
late the conservative force harmonics using the tip-indentation
formulas (equations (19)). A comparison of their amplitudes
with those computed directly from numerical simulations in
figure 6, shows excellent agreement (within 5%) over set-
point ratios ranging from 0.15–0.9. This comparison is also
performed with numerous simulations performed by varying
Esample, Fad, A1,far and kfar in the same ranges as were chosen
earlier in section 3.1. The following remarks are drawn based
on those comparisons:

a. The force harmonics from tip-indentation formulas are
within 10% to those obtained directly from simulations
over a large range (0.3–0.85) of set-point ratios but start
to deviate outside this range.
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Figure 3. A flow chart illustrating the validation process of derived force harmonics in terms of observables (equations (6)). The input
simulation parameters A1,far, kfar, Qfar and output parameters A0, A1, ϕ1, A2, ϕ2 are fed through equations (6) to obtain the force harmonics
which need to be compared to those obtained directly from VEDA output to check their validity.
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Figure 4. A comparison of the conservative force harmonic amplitudes obtained from microcantilever observables and those obtained from
direct numerical simulations in VEDA shows good match. The simulation is done with a probe of kfar = 26 N/m, ωfar = 303 kHz, Qfar =
456, R = 10 nm by driving it such that ωdr = ωfar with A1,far = 85 nm. The dynamic approach curves are simulated on a sample with Esample
= 1 GPa by assuming DMT contact (equation (15)) with Fad = 20 nN. Note that the green outlier data at a set-point ratio of ≈ 0.9 is due to
the resulting transients while the microcantilever jumps from the attractive to the repulsive regime. This can be avoided in simulations by
choosing a slow approach speed of the microcantilever towards the sample.
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Figure 5. A flow chart illustrating the validation process of derived force harmonics in terms of material properties (equations (19)). The
input simulation parameters R, Etip, ν tip, Fad, Esample, νsample, a0 and output parameters A1, δmax are fed through equations (19) to obtain the
force harmonics which need to be compared to those obtained directly from VEDA output to check their validity.

b. This deviation becomes larger with increasing Fad, espe-
cially for combinations of higher Fad and lower Esample
and kfar values. The reasons for this deviation could be the
approximation given by equation (10) and the simplifica-
tion of the van derWaals non-contact attractive force in the
original DMT model with a linear approximation. Also,
note that the use of any classical contact mechanics model
like DMT to describe contact between a hard and soft
material is at best an approximation, especially whenever
deformations are large. A better approach might require a
model better designed to describe contact between a hard
and soft material [54], or more recent approaches based on
the use of Attard’s model [55, 56].

3.3. Method to estimate material properties

The theory described above allows the estimation of local
nanoscale properties of the sample in a two step process. First
a small subset of multi-harmonic microcantilever observables,
the amplitudes and phases of the 0th, 1st and 2nd, or the 1st,
2nd and 3rd are acquired during a regular tapping mode/AM-
AFM scan. These are converted to an equal number of con-
servative and dissipative force harmonics using equations (6).
Finally the unknown local physical properties in a chosen
tip-sample contact mechanics model are fit so that the force
harmonics using the tip-indentation formulas (equations (19))
match the experimental force harmonics (equations (6)) in a
least square sense. For example, the unknown material proper-
ties in the DMTmodel are the sample modulus (Esample), force
of adhesion (Fad) and maximum indentation (δmax). Therefore
we just need any three force harmonics to extract these three
properties. In the present work, the 0th, 1st and 2nd conser-
vative force harmonics for the DMT contact model given by

equations (19a, b, c) are used to extract these three properties,
although the method can be easily extended to the 1st, 2nd and
3rd harmonic as well.

First, we demonstrate this property estimation approach
using VEDA simulations. We used the same microcantilever
properties and observables A0, A1, ϕ1, A2 and ϕ2 from the sim-
ulation in section 3 to obtain the 0th, 1st and 2nd conservative
force harmonics using equation (6). The obtained force har-
monics are fit to the tip-indentation formulas for the DMT
model with linear attractive force given by equations (19a, b,
c) using non-linear least squares to extract the material prop-
erties. We used a parameter, Nr to check the goodness of these
fits and the estimated properties based on this approach are
shown in figure 7. As can be seen, the estimated properties
match the properties used in the simulation within 10% over a
wide range of set-point ratios withNr value being smaller than
0.1. The definition of Nr as well as the details of the non-linear
least square fitting process are discussed in the supplementary
material.

4. Experiments

The multi-harmonic approach is demonstrated with experi-
ments performed on a Cypher AFM in amplitude modulated
mode under ambient conditions. We used the highly doped sil-
icon PPP-NCLR probes from Nanosensors that have a stiff-
ness in the range of 21–98 N/m and fundamental resonance
frequency of 146–236 kHz. The sample used in this work is
a blend of Polystyrene and Polyolefin elastomer (ethylene-
octene copolymer) or simply referred to as PS-LDPE [45],
from Bruker AFM probes.
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Figure 6. A comparison of the conservative force harmonic amplitudes obtained from the tip-indentation formulas (equations (19)) and
those obtained from direct numerical simulations in VEDA shows good agreement over a wide range of set-point ratio. The simulation is
done with a probe of kfar = 26 N/m, ωfar = 303 kHz, Qfar = 456, R = 10 nm by driving it such that ωdr = ωfar with A1,far = 85 nm. The
dynamic approach curves are simulated on a sample with Esample = 1 GPa by assuming DMT contact (equation (15)) with Fad = 20 nN. The
values of Etip, ν tip, νsample, a0 used in the simulation are 130 GPa, 0.3, 0.3, 0.2 nm respectively. Note that the blue outlier data at around a
set-point ratio of 0.9 is due to the resulting transients while the microcantilever jumps from the attractive to the repulsive regime. This can
be avoided in simulations by choosing a slow approach speed of the microcantilever towards the sample.
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Figure 7. The predicted properties for the simulated data using the proposed multi-harmonic property estimation approach. The estimated
properties from the current method are within 10% of the actual properties used in the simulation over a wide range of set-point ratios. The
simulation is done with a probe of kfar = 26 N/m, ωfar = 303 kHz, Qfar = 456, R = 10 nm by driving it such that ωdr = ωfar with A1,far = 85
nm. The dynamic approach curves are simulated on a sample with Esample = 1 GPa by assuming DMT contact (equation (15)) with Fad =
20 nN. Note that the Nr shown is the metric used to decide the goodness of non-linear least squares fit implemented with the proposed
multi-harmonic method. The solution is decided by consistently maintaining Nr below 0.1 over a wide range of set-point ratios.
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Figure 8. The raw dynamic approach data acquired on the PS region of the PS-LDPE sample plotted against Z. The tip-sample interactions
start when Z is about 95 nm (see ϕ1 plot). Note that the 0th harmonic is not zero prior to the interaction and needs to be adjusted. Similarly
the 2nd harmonic amplitude is also non-zero before the interaction begins. This is attributed to the photodiode non-linearity. Also, A2

appears to be increasing at around Z = 70 nm as opposed to 95 nm. This could be due to the noise on A2 but ϕ2 appears to provide a better
signature for the onset of higher harmonics. Properties of the microcantilever used for the experiments are kfar = 16.4 N/m, ωfar = 161.8
kHz, Qfar = 287, R = 10 nm, which is driven at ωdr = ωfar with A1,far = 94 nm.

4.1. Adjustment of experimental observables for instrument
nonlinearities and latencies

A set of experimental data was acquired with a microcanti-
lever with calibrated kfar = 16.4 N/m, ωfar = 161.8 kHz and
Qfar = 287. It is driven at its fundamental resonance frequency
ωfar = 161.8 kHz with A1,far = 94 nm and brought closer
to the sample gradually while acquiring the observables A0,
A1, ϕ1, A2 and ϕ2 on the PS region as shown in figure 8 as a
function of Z.

In theory, A0 prior to interaction should vanish but is non-
zero in experimental data. The 0th harmonic can slowly drift
from zero even after the mean deflection from the microcanti-
lever is zeroed at the start of experiment. This artifact can
be removed by subtracting the mean A0 signal far from
sample from the entire A0 vs. Z data set. Likewise, when
far from the sample, A2 should be zero and ϕ2 should be
undefined. In practice, as seen in figure 8, both these 2nd
harmonic observables have a value for large Z far enough
for no tip-sample interactions to exist. This artifact is due
to electronic and photodiode nonlinearities [57]. Therefore,
they are corrected based on a systematic approach presented
in detail in the supplementary material. The microcantilever
observables obtained after all these corrections are shown in
figure 9.

The observables A1, ϕ1 and those corrected (A0, A2 and ϕ2)
were used in conjunction with the tip-indentation formulas for

the DMT model with linear non-contact attractive force given
by equations (19) and non-linear least squares to estimatemax-
imum sample indentation, elastic modulus and force of adhe-
sion. The estimated properties on the PS region of the sample
while assuming Etip = 130 GPa, ν tip = 0.3, νsample = 0.3, a0
= 0.2 nm and R= 10 nm are shown in figure 10. For set-point
ratios under 0.7, the estimated PS elastic modulus is close to
the expected value of 2 GPa [45], and the estimated modulus
and adhesion remain unchanged. The goodness of non-linear
least squares is decided by maintaining Nr below 0.1 for all
the experimental results presented here.

4.2. Estimation of properties of PS-LDPE from experimental
scans

The multi-harmonic method developed is further applied to
maps of PS-LDPE sample acquired at a specific set-point. We
acquired the maps of observables with the same microcanti-
lever used under the same experimental conditions presen-
ted in section 4.1 at a set-point ratio of 0.42 in the repuls-
ive regime. The 0th and 2nd harmonic maps are adjusted by
referring to the corrected approach curves data on PS in the
previous section. This is done by matching the 0th and 2nd
harmonic data on the PS region of the maps to that on the cor-
rected PS approach curves. These adjustments in the 0th and
2nd harmonic maps on the PS region are assumed to correct
those on the LDPE region of the sample. It is reasonable to

11



Nanotechnology 31 (2020) 455502 N Shaik et al

Figure 9. The corrected approach data on the PS region of the sample. The 0th harmonic is shifted such that it is zero before the beginning
of tip-sample interaction. The non-linearity in the 2nd harmonic is corrected and the corrected data is shown along with the raw data.
Properties of the microcantilever used for the experiments are kfar = 16.4 N/m, ωfar = 161.8 kHz, Qfar = 287, R= 10 nm, which is driven at
ωdr = ωfar with A1,far = 94 nm.
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Figure 10. The estimated properties of the PS region of the sample obtained using the proposed multi-harmonic approach. Note that
tip-indentation formulas given by equations (19) were used to estimate these properties. The predicted modulus of PS is very close to the
expected value of 2 GPa [45] over a large set-point range. Note that Nr is mostly below 0.1 for set-point ratios less than 0.7. The properties
of the microcantilever used for the experiments are kfar = 16.4 N/m, ωfar = 161.8 kHz, Qfar = 287, R = 10 nm, which is driven at
ωdr = ωfar with A1,far = 94 nm.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. The harmonic observable maps acquired on the PS-LDPE sample at a set-point amplitude of A1 = 39.1 nm. Note that these are
the corrected maps based on the correction of 0th and 2nd harmonics of the approach curves data on PS. The properties of the
microcantilever used for the experiments are kfar = 16.4 N/m, ωfar = 161.8 kHz, Qfar = 287, R = 10 nm, which is driven at ωdr = ωfar with
A1,far = 94 nm. Note that all the images are of size 8 µm × 8 µm, containing 256 × 256 pixels, obtained with a scan rate of 1 Hz.

do so as both the approach curves and the maps are acquired
with the samemicrocantilever operated under same conditions
in the same experiment. The corrected maps thus obtained
are shown in figure 11. The topography of the sample shown
in figure 11(a) consists of circular domains of LDPE distrib-
uted over the flat PS matrix. Figures 11(b)–(f) show the maps
of microcantilever harmonic observables A0, A1, A2, ϕ1 and
ϕ2 respectively. Note that the size of these maps is 8 µm ×
8 µm, consisting of 256× 256 pixels, acquired with a scan rate
of 1 Hz.

The proposed multi-harmonic approach implemented with
non-linear least squares is used to estimate the properties of the
PS-LDPE sample from these harmonic observable maps and
the estimated properties are as shown in figure 12. The estim-
atedmaps ofmaximum indentation, samplemodulus and force
of adhesion are shown in figure 12(a)–(c) respectively and the
corresponding histograms are presented in figures 12(e)–(g).
The values of maximum indentation on PS and LDPE are 2.42
± 0.07 nm and 17.54 ± 0.29 nm respectively. The values of
sample modulus on PS and LDPE are 1.93 ± 0.01 GPa and
93.78 ± 0.86 MPa respectively and the values of adhesion
force on PS and LDPE are 1.91 ± 0.10 nN and 16.24 ± 0.81

nN respectively. Note that the Nr representing the goodness of
non-linear least squares is maintained below 0.1 for more than
90% of the data and is shown in figures 12(d) and (h). Accur-
acy of the quantitative results for material property mapping
presented in this work depends on the validity of the chosen
interaction force model for the specific tip-sample interaction
combination. The values of sample modulus and indentation
measured using the method on the PS-LDPE sample are in fact
in close agreement with those reported in [36, 40, 45]. How-
ever on the LDPE part of the sample, the estimated value of
adhesion is higher than that on PS which is contrary to what
was reported in [36, 40]. We attribute this difference to the vis-
coelasticity of this sample which is absent in the DMT model.
Large viscoelasticity can in fact manifest as large values of
minimum force during a tip oscillation cycle, which can be
mistaken as a large adhesion force. In fact, the extension of
the present approach to include viscoelastic dissipation [56] is
ongoing work.

The properties are further estimated from the observable
maps obtained at multiple set-point ratios (0.31, 0.42 and 0.52)
and the corresponding data are presented in figure 13. As
can be seen from the figure, the mean values of maximum
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 12. The estimated properties of the PS-LDPE sample obtained using the proposed multi-harmonic method. Maps of (a) maximum
indentation (b) sample modulus (c) adhesion force (d) goodness of fit parameter Nr and their respective histograms in (e), (f), (g) and (h).
Note that Nr is below 0.1 for more than 90% of the data in the maps and it is below 0.2 for about 99% of the data. The properties of the
microcantilever used for the experiments are kfar = 16.4 N/m, ωfar = 161.8 kHz, Qfar = 287, R = 10 nm, which is driven at ωdr = ωfar with
A1,far = 94 nm. All the images are of size 8 µm × 8 µm, containing 256 × 256 pixels.

indentation, sample modulus and adhesion force on PS and
LDPE are similar to those presented earlier with relatively
small standard deviations. An additional data set has been
acquired using a different cantilever on the same sample and
is presented in the supplementary material.

5. Conclusions

A multi-harmonic AFM method using standard AFM
microcantilevers in a tapping mode scan is presented that

relies on using only a few harmonics of the microcanti-
lever deflection to extract the nanomechanical properties
of materials is proposed. The method is developed for a
variety of tip-sample interactions. The theory associated
with the proposed method not only helps us gain import-
ant insights into the relationships between the interaction
force harmonics, microcantilever deflection harmonics and
material properties, but also reveals the dependence of phases
of higher harmonics of microcantilever deflection on the
first harmonic phase. The analytical/semi-analytical relation-
ships are carefully validated through direct simulations of
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Figure 13. The estimated properties of the PS-LDPE sample obtained at different set-points. The properties of the PS are similar for
different set-points considered while the properties of the soft poylemr, LDPE are changing by about 40% depending on the set-point.
However, the standard deviation of the estimates is relatively small compared to the mean values.

microcantilever dynamics in VEDA. Experimental valida-
tion is performed on a PS-LDPE polymer blend to map the
local elastic modulus, indentation and adhesion from a single
tapping mode/AM-AFM scan. The approach opens up the
possibility of using a small set of multi-harmonic observables
during standard tapping mode AM-AFM scans in air/vacuum
for quantitative nanomechanical mapping of heterogeneous
samples.
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