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ABSTRACT

Work-efficient task-parallel algorithms enforce ordered execution

of tasks using priority schedulers. These algorithms suffer from

limited parallelism due to data movement and synchronization

bottlenecks. State-of-the-art priority schedulers relax the ordering

of tasks to avoid false dependencies generated by strict queuing

constraints, thus unlocking task parallelism. However, relaxing task

dependencies results in shared data races among cores that lead to

redundant task computations in concurrently executing threads.

Although static algorithm optimizations have been shown to reduce

redundant work, they do not exploit the tradeoff between paral-

lelism and work efficiency that is only exposed during runtime.

This paper proposes a task dependency checking mechanism that

dynamically tracks the monotonic property of parent-child rela-

tionships across multiple levels from any given task. Since shared

memory writes are known to be slower than concurrent reads, the

multi-level checks effectively detect task dependency races to prune

redundant tasks. Evaluation of relax-ordered algorithms on a 40-

core Intel Xeon multicore shows an average of 44% performance

improvement over the Galois obim scheduler.
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1 INTRODUCTION

Task-parallel algorithms represent a growing area of activity in

high performance computing (HPC) [30], especially in single-node

embedded settings [10]. For example, graph processing has emerged

as an important application domain for supercomputing. Graph

algorithms achieve work-efficiency by executing tasks in the or-

der executed by their sequential counterparts. As graph vertices

(parents) create tasks for their connected edges (children), ordering

between tasks is implemented by tracking the read-write dependen-

cies on preceding or future tasks with parent-child relationships.

The execution order between tasks is then enforced using queuing

primitives that impose fine grain communication and synchroniza-

tion between cores [16, 24]. This limits performance scaling on

shared memory parallel machines with large core counts. Prior

literature has proposed relax-ordered and unordered parallel graph

algorithms that break consistency guarantees between tasks [23].

While this allows for more parallelism, it results in work inefficiency

since the algorithm requires multiple iterations of redundant task

processing to converge on a solution.

The Galois priority scheduler [23] enables methods to process

unordered and relax-ordered algorithms on shared memory parallel

machines. For unordered implementations, Galois does not impose

any priority scheduling of tasks within and across cores. However, it

enforces local ordering of tasks on a per-core granularity for a relax-

ordered implementation. Inter task dependencies are tracked using

monotonic updates to their shared data values during the execution

of an algorithm. An example can be taken from the shortest path

problem, where shared data values of vertices start off as a large

number, and then lower down once optimal paths are found from a

source vertex to each other vertex. The monotonically decreasing

property to reach convergence for a vertex enables a relax-ordered

implementation to redundantly execute that task in different cores,

while the end result is guaranteed to contain the lowest distance

from the source vertex. In general, a task-parallel algorithm with a

monotonically decreasing or increasing shared data values for tasks

enables priority schedulers to implement a relax-ordered variant of

an ordered algorithm. This introduces a tradeoff between between

the amount redundant computations and the exploitable parallelism

exposed by a relax-ordered algorithm.

An efficient relax-ordered algorithm strives to minimize its re-

dundant task computations, while maximizing the exploitable par-

allelism. Prior works, such as KLA [14] prune redundant work

using static algorithmic mechanisms. The Δ-stepping algorithm
for shortest path computations is one such example algorithm.
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However, static measures require costly off-line pre-processing to

optimize pruning parameters, or have sub-optimal on-line perfor-

mance due to dynamically changing input diversity. Pre-processing

is not entirely applicable on graphs that are being streamed in

as chunks or as sub-graphs, as certain HPC settings require real-

time constraints [25]. As static measures do not fully exploit the

work-efficiency and parallelism tradeoff, a dynamic work pruning

mechanism is desirable.

This paper proposes a multi-level task dependency checking

mechanism for relax-ordered algorithms that efficiently prunes out

redundant work at runtime. It is well known that shared memory

writes are slower than concurrent reads. Therefore, updates of

shared data values propagate across cores with a significant delay,

while the concurrent reads of per-core task data structures proceed

and result in redundant processing of tasks. This challenge can

be solved by either making races in shared memory faster, or by

doing multi-level parent–child dependency checking to prune tasks

whose parents have been overwritten by new data values. These

checks exploit the monotonic property of shared data values, where

an algorithm’s converging shared data values either only increase

or decrease.

As the monotonic property implies that an algorithm’s order

may be relaxed, the proposed multi-level checking scheme is ap-

plicable on all relax-ordered implementations. When a monotonic

shared data value is updated by a task, it may violate global order as

its latest counterpart task may have been executed in another core.

A check across multiple parent–child levels detects and prunes this

task from being processed redundantly. This detection is done using

shared memory reads of the latest parent values, and comparing

them to the old values that were stored alongside the task at in-

sertion into the per-core ordering data structure. The multi-level

task dependency check is then performed based on the monotonic

property of a given algorithm. The proposed check is implemented

on top of the Galois priority scheduler, and evaluated on a 40-core

Intel Xeon multicore, as well as 72-core Tilera multicore machine.

Results for a range of relax-ordered algorithms show an average

of 44% performance improvement for the 40-core Xeon over the

Galois relax-ordered implementations.

2 BACKGROUND AND MOTIVATION

In task-parallel programming paradigm, a task is the basic unit of

computation that executes in parallel with other tasks. Tasks may

have dependencies on each other via parent–child relationships,

or they may operate on shared data leading to intra task depen-

dencies. Many task-parallel algorithms impose an order on pro-

cessing tasks for work efficient execution [24]. This can be strictly

the order in which sequential versions execute tasks (ordered), or

tasks execute in each core with certain relaxed ordering constraints

(relax-ordered). These ordering variants introduce tradeoffs inwork-

efficiency and parallelism. Strictly ordered algorithms are highly

work-efficient, but suffer from a lack of parallelism due to commu-

nication and synchronization bottlenecks. However, when ordering

is relaxed, tasks may take multiple iterations to converge. This leads

to redundant task computations that degrade work efficiency but

expose more parallelism.

Algorithm 1 Generic Task-Parallel Algorithm Pseudocode

Global List (L), L.push (source_task ). � Global List for ordered only

Local Queue (Q ), Q .push (source_task ).

Core ID (t id ).

1: while (Q � ∅) in each tid do
2: parent = Q .top () � top() with priority in ordered and relax

3: test = saf e_src_test (parent ) � safe_src_test for ordered

4: if (test == pass) then

5: parent = Q .pop () � pop() with priority in ordered and relax

6: L.atomic_remove () � L.remove () in ordered

7: for (each child of parent ) do

8: Critical Section Task Work ()

9: Q .push (child ) � Priority Order for ordered and relax

10: L.atomic_add (child) � L.add () in ordered

2.1 Ordered vs. Relax-Ordered Execution

Ordered algorithms require a strict execution order of tasks among

cores, where inter task relationships are tracked using shared data

structures. Kinetic Dependence Graph (KDG) [16] is a state-of-

the-art task-parallel framework that allows parallel execution of

tasks with strict ordering using per-core priority scheduling, and

a global task ordering list. When a task is dequeued in a core, a

safe-source test is applied to check if that task has a dependency on

another task in the system. If a dependency is detected, the task

execution is stalled until other tasks with higher priority execute.

Otherwise, the task executes and potentially creates new children

tasks that are scheduled for subsequent processing. Algorithm 1

shows a generic per-core pseudocode for a task-parallel algorithm.

Aparent task is first looked-up with priority from the per-core local
queue, Q (line 2). It is then checked for ordered execution using
safe-source test on the global list, L (lines 3-4). When the test passes,
parent is dequeued from Q and L (lines 5-6), and performs its task
executor functions (lines 7-8). The child tasks with parent–child
relationships are then pushed to Q and L (lines 8-9). Parallelizing
KDG ordered implementation is challenging because the global list

L requires frequent atomic synchronizations.
In a relax-ordered implementation, global task ordering is re-

laxed to allow parallel execution of created child tasks. However,
tasks still rely on shared data updates to track their progress to-

wards a termination condition. Since data consistency on global

task ordering is weakened, the same task may execute multiple

times in different cores to achieve convergence. For relax-ordered,

the Algorithm 1 is modified to remove the safe-source test and the

global list, L (remove lines 2-4, 6, and 10). However, the per-core
queue (Q) still operates with priority scheduling. Galois obim [23] is
a state-of-the-art priority scheduler that implements relax-ordered

algorithms to minimize communication, and expose parallelism

among tasks.

It is possible to further relax the local per-core task execution to

expose more parallelism. In such unordered algorithms, the local

queue, Q is replaced with a simple array, and tasks are processed
without priority. Here, tasks iteratively execute until the algorithmic

convergence is achieved, which greatly degrades work efficiency.

Unordered algorithms are useful when the exploitable parallelism

delivers more benefits than the redundant computations needed

for convergence.
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Figure 1: Data structures and their interactions in the Galois

obim task scheduler.

2.2 The Galois obim Scheduler

Galois ordered by integer metric (obim) [23] is a state-of-the-art

relax-ordered priority scheduler. It is a distributed design that aims

to mitigate communication and synchronization costs between

cores, and improve the work-efficiency of task-parallel algorithms.

Figure 1 shows the core level view of various data structures and

their interactions for obim. It implements processing of tasks by

associating a task priority level to a data structure, called bag. Each

bag contains multiple tasks with the same priorities, and is thus

allowed to execute without any order within a core. Another local

data structure, FIFO queue of bags maintains the list of bags a core

is allocated to process. In collaboration with the Local Map of bags,

the core dequeues the highest priority bag, and starts executing

all tasks one by one from that bag. During the execution of a task,

new children tasks belonging to different priority levels are created.

These children tasks are enqueued in a per-core local data structure,

called Private local stack of chunks. In obim, each core contains a

data structure, called a chunk that is a ring-buffer with 8 to 64 tasks

(fixed at compile time). When a chunk gets full, it is enqueued into

the FIFO queue of bags. This step requires that the chunk becomes

visible to all other cores in the system. As mentioned earlier, a core

dequeues a bag from the FIFO queue of bags. If the queue is empty,

the core steals a bag from another core’s FIFO queue of bags. A

global data structure, Global Map of bags maintains the list of all

bags in the system. The Local Map of bags is just a cache of this

global map. Thus, when a local map is updated when a chunk is

inserted into the FIFO queue of bags, it must synchronize with the

global map. Moreover, when a core dequeues from an empty FIFO

queue of bags, it refreshes the local map with information in the

global map, and tries again.

The obim scheduler performs certain tasks multiple times in

different cores due to lack of strict synchronization between cores.

Cores only periodically synchronize with each other when bags are

moved between cores. Moreover, tasks within a bag are processed

by a core without any ordering constraint. Each core tracks inter-

task dependencies using a unique timestamp per task, which is used

as a metric of convergence. The timestamp values are checked when

a child task is created by a high priority task in a core. However,

Figure 2: Single source shortest path (SSSP) algorithm exam-

ple using the Galois obim scheduler.

an update to a shared data timestamp value may not propagate

before a concurrent read by a a different core. This results in the

relax-ordered algorithms to miss detecting these race conditions

on timestamp values. As a consequence, children tasks are created

that lead to future redundant work for the system to process.

Figure 2 depicts a representative flow for the single source short-

est path (SSSP) algorithm using the obim scheduler. All initial times-

tamps in shared memory have very large or infinite values, after

which tasks update their values starting from core 0, executing

task 0. The color shading represents the core processing a task,

while the number represents the task ID being processed. Each

edge represents its distance value from a source to a destination

task. At some point in time, task ID 2 is dequeued in both cores 0

and 2. However, the timestamp value being updated for task ID 2 in

core 0 is 12, while in core 2 is 1. Due to read/write race conditions,

the lower timestamp in core 2 does not propagate to core 0, which

ends up creating children tasks 4 and 5. These unnecessary tasks

create their own paths, leading to redundant work being created

and processed by core 0. The red circles are shown to represent

tasks that are processed redundantly in this example. The objective

of this paper is to track and detect redundant tasks as early as pos-

sible, and mitigate unnecessary work performed by relax-ordered

algorithms.

2.3 Main Idea of Pruning Redundant Tasks

This paper proposes a method to prune redundant tasks from pro-

cessing. It takes advantage of the monotonic property and shared

memory concurrent reads of task timestamps. For monotonically

decreasing timestamps, only the smallest timestamp value updated

by any core is visible in shared memory. The obim priority sched-

uler only checks the global timestamp value for the task that is

being created. However, the parent of this task may have already

propagated its latest timestamp value in shared memory. If a check

can be performed on this parent task that reveals that it has a lower

timestamp in shared memory compared to its timestamp at the time

of its creation, the parent task need not proceed to execute. In other

words, the check on the parent task reveals that some other core

has processed the same task ID with a lower timestamp, and thus

the current task is being performed redundantly in the system. This

check can be expanded to include the parent’s parent task, or even

higher levels of parent–child relationships, thus creating the notion
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of multi-level checking to prune redundant paths. On one hand,

a deeper level check enables early detection of redundant paths,

thus improving work efficiency. On the other hand, the multi-level

checks add additional data access and logical comparison overheads

that may not always be useful. The idea of the proposed multi-level

checking can be visualized using the SSSP example from Figure 2. It

is evident that both cores 0 and 2 are processing task ID 2. However,

the update to core 2 has a smaller timestamp of 1 that does not

propagate to core 0 when it processes tasks 2 with a timestamp

of 12. Since the race between cores 0 and 2 for update on task 2’s

timestamps are never detected, core 0 is able to create redundant

children tasks 4 and 5, which subsequently create more redundant

tasks 6 and 7. The proposed 1-level check will make sure that tasks 4

and 5 in core 0 check their parent (task 2) for its timestamp values.

As core 2 would have updated task 2’s timestamp in shared memory

at the time of these 1-level checks, the tasks 4 and 5 are pruned out

from further processing in core 0.

3 TASK-PARALLEL EXECUTION &
MULTI-LEVEL DEPENDENCY CHECKING

The Galois obim scheduler relaxes task order by ensuring local

per core ordering of bags. This improves parallelism as global syn-

chronization of bags between cores is minimized. A shared data

structure on a per task granularity is maintained in global memory,

which temporally tracks timestamps. A task updates this shared

timestamp array to track its progress towards algorithmic conver-

gence. For example, in the SSSP case it is a shared distance array

that is atomically updated when a task is executed. As the dis-

tance from the source vertex ID always decreases for convergence,

this distance array is updated to monotonically decrease. Other

target task-parallel algorithms may implement the shared times-

tamp structure to monotonically increase or decrease. In Galois

obim scheduler, a check is performed at the creation of each task

to ensure that only children tasks that have the potential to im-

prove the algorithm’s convergence are processed. The proposed

multi-level checking increases the scope of this scheduler to prune

redundant tasks. For example, in a 1-level check, the parent task

of the task(s) being created is checked for the timestamp value at

the time of its creation against its latest shared timestamp array

value. If the monotonic property being tracked clears this task for

further processing, then the children task(s) are allowed to proceed.

Otherwise, the path is terminated at this parent task. A 2-level or

even deeper n-level checks are also possible by incorporating the

relevant timestamp accesses, as well as comparisons for each parent

task being tracked.

Algorithm 2 shows the pseudocode for a relax-ordered algo-

rithm with the proposed multi-level checks incorporated on top

of the Galois obim scheduler. Each core executes a function called

an Executor() that operates on the per-core queue, Q[tid]. In the
baseline Galois version, lines 4–5 and 11–17 are not executed. The

baseline Galois version first dequeues a task (Tp ) from Q[tid], which

is then executed to create children tasks using the for loop pseu-

docode on lines 6–10. The algorithm specific critical section check

on the timestamp values of a child task determines whether to

proceed with the creation of this task. Here, the child task’s cur-

rent timestamp value is compared against the latest corresponding

Algorithm 2 Relax-Ordered Algorithm Pseudocode with Proposed

Multi-Level Checking

Input: source task s , input data.

Output: Timestamps in D[] from s .

D[]← ∞, Ds ← 0 � Monotonically Decreasing Example

p ← parent, c ← child, barr ← GlobalBarrier Cw ←Worker Core
t id ← CoreID, T ← Tasks, Tn ← Tasks from n level work.

Q[t id]← Queue for each tid
1: procedure Executor(Q[t id], Tn )

2: while (Q[t id] � ∅) do
3: Tp = Q[t id].popTask � Pop Tp Parent Task

4: test = SpecCheckTask(Tp )

5: if (test == pass) then

6: for (each child c of parent p) do

7: Critical Section Checks, and Work on D[]

8: CommitTask(D[c])

9: Tc = CreateTask(c)

10: Q[t id].pushTask(Tc )

11: procedure SpecCheckTask((Tp )) return p

12: p = pass

13: for L = 1, L < n levels do � Start from current Task

14: p = Task(p .L) � Get Task id from Level

15: if (D[p] < p .oldtimestmp) then

16: KillTask(Tp ) � Kill Tp
17: p = fail

18: procedure CreateTask((c )) return Tc
19: Tc =Task(c, c .p, c .oldtimestmp, c .p .oldtimestmp)

timestamp value in shared memory array (D[]). Only a child task
that passes this check is processed by the CommitTask(D[c]) func-
tion, and pushed into Q[tid]. In the baseline Galois version, the

CreateTask(c) function only needs to track the task ID (c) and
current timestamp (c .oldtimestamp) value of the child task Tc that
is being created.

The proposed multi-level checking includes lines 4–5 in Algo-

rithm 2. As with the baseline Galois version, the Executor() oper-
ates on the per-core queue, Q[tid]. However, each dequeued task

(Tp ) calls the SpecCheckTask() function to invoke the proposed
multi-level checks. The depth of a multi-level checking is controlled

by the L parameter. For example, L = 1 only checks for the cur-
rent task Tp , while L = 2 invokes a second check for the parent
task ID of Tp as well. The loop on lines 13–17 goes through all
configured levels, and checks the corresponding task’s timestamp

value when it was inserted in its bag against the latest timestamp

value in shared memory array (D[]). This check is done only for
task Tp , when L = 1. However, for L = 2, the parent task of Tp is
also checked in addition to the task Tp . The specific check depends
on the monotonic property. For monotonically decreasing case, a

task is deemed redundant (and killed using KillTask() function) if
the multi-level check determines that a timestamp value in shared

memory is lower than that task’s timestamp value at its time of

creation. SpecCheckTask() returns a value p to Executor() to
specify whether to proceed withTp , or not. For the algorithms eval-
uated in this paper, KillTask() disallows execution of the current
task, Tp , and the core moves on to the next task in Q[tid]. If the
check passes (line 5), task Tp executes and creates children task(s)
following the same procedures discussed for the baseline Galois
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Figure 3: 1-level dependency checking scenario to detect re-

dundant path in the relax-ordered SSSP benchmark.

version. However, the metadata for each child task Tc is modified
on line 19 to include its parent’s task ID (c .p) and the timestamp
(c .p.oldtimestamp). The parent’s timestamp is the timestamp of Tp
when it was first pushed into Q[tid]. This metadata is used for the
multi-level checks on lines 14–15.

3.1 Checking and Pruning Redundant Tasks

This section describes the proposed multi-level checking in Algo-

rithm 2 using a representative execution on two cores for the single

source shortest path (SSSP) graph algorithm.

1-Level Dependency Checking: Figure 3 shows a 1-level check

in SSSP, where the shared timestamp array (D[]) track’s the mono-
tonically decreasing timestamp values at the per task granularity.

TasksAa andAb execute in Cores a and b at the same time. Assume
that both tasks read the old value of A in D[A] to execute and push

their children tasks, Ya and Yb to their respective core’s queue.
At the end of this commit, the final value in the D[A] is that of
Aa , since D[Aa] < D[Ab ]. In this case, if Ab updates first, then Aa

replaces it as it has a smaller timestamp, ultimately storing D[Aa]

in D[A]. However, since both Aa and Ab are committed, their chil-
dren tasks, Ya and Yb are both pushed into their respective core’s

queue. Task Yb sees the old value of Y in D[Y ], and commits Yb

to create Zb . Task Ya in Core a sees the value of Yb in D[Y ], but
updates D[Y ] with the timestamp of Ya as D[Ya] < D[Yb ], while
also creating child task Za . Now, Core b slows down due to certain
microarchitectural variations, and the two cores interleave such

that Core a extracts the task Za first, and commits its value to D[Z ].
At a later global time, Core b extracts task Zb and the check (line

15) on it fails as D[Zb ] > D[Za], where D[Za] is already stored in

memory, thereby eliminating the redundant path started by Ab . In

this case, a chain of redundant tasks initiated by Ab are not killed

until task Zb ’s termination. With a multi-level check on the parent
of a task, it is possible to detect that timestamp values have updated

to kill redundant paths earlier in their execution. This strategy is

discussed next.

n-Level Dependency Checking: It is possible that the parent or

even the parent of the parent of the current task is redundant. This

implies that at the time of checking a task ID, the deeper level tasks

in the parent–child relationship may already have been updated

with a timestamp, such that the path can be classified as redundant.

To accomplish this deeper n-level check, a task’s parent’s ID and

Figure 4: 2-level dependency checking scenario to detect re-

dundant path in the relax-ordered SSSP benchmark.

timestamp is also pushed in the queue, as shown on line 19 of

Algorithm 2. Moreover, lines 11–17 show how such checks are

performed across L levels. While deeper checks may improve work-
efficiency by classifying redundant paths earlier in their execution,

they also add the overhead and checking of stored parent metadata.

Thus, an n-level check trades off work-efficiency with the acquired
performance.

Figure 4 shows a 2-level checking for the SSSP algorithm. Uti-

lizing the same scenario from Figure 3, Cores a and b go down the
same path, while reading stale timestamp values in shared memory

array (D[]). Task Ab enqueues task Yb , while parent Aa enqueues
child task Ya , to their respective core’s queue. By the time Core b

extracts task Yb , the timestamp value of Aa has made it to shared
memory, and is visible to all cores. In the 2-level check, Core b

checks the timestamp of Yb , and finds that it is the lowest times-
tamp (D[Ya] has not propagated to memory yet). Coreb also checks
if the parent’s timestamp has changed since it was enqueued. Task

Yb was enqueued with a parent timestamp of D[Ab ], but it has

been updated with a lower timestamp in D[A]. Thus, task Yb is
killed as its parent is redundant due to another core updating D[A]

with a lower timestamp than D[Ab ]. In the 1-level check, Core b
went down a redundant path as seen in Figure 3, only to have the

path killed after executing several redundant tasks. With the 2-level

check, Core b detects the redundant path earlier in the execution,
thus improving overall performance.

3.2 Heuristic for Multi-Level Checking

By default, this paper performs a 2-level check for all evaluated

benchmarks, unless otherwise stated. This means that from any

source, checks occur on the task itself, and its parent. Deeper checks

may also be made, such as checking the parent of the parent of

the current task. In doing so, the parent ID and it’s level must be

encoded in every task, along with the timestamp with which it

pushed its children into the queue. For each additional level, this

increases memory requirements by two integer values per task for

singular timestamps. To study this tradeoff, this paper performs a

sensitivity study in the evaluation section on how many levels may

suffice for best performance.

It is empirically observed that 2-level checks induce performance

overheads for dense graphs. This happens because dense graphs

are observed to not induce long redundant paths. As tasks are killed

earlier using 1-level check due to shallow redundant paths, a check

on the parent task (2-level) adds unnecessary computations in the
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scenario when a path is not redundant. Thus, as an optimization, the

master core tracks the input density [5, 11], and applies the default

2-level check for sparse inputs, and 1-level check for dense inputs.

This is similar to the distinction done in [10], where applying sparse

or dense edge mapping classification allows reduced edge checking.

In this heuristic, an input is labeled as sufficiently dense if at least

P (P=total cores) tasks are distributed among worker cores in the

first two levels.

3.3 Overheads of Multi-Level Checking

Multi-level checking adds storage overheads of two integer values

per task per level, where these values include the parent ID, and

the parent timestamp with which the task is created. However,

these values are encoded in the task’s struct to preserve locality.
Once a task is loaded in a core, the check results in a branch and

a comparison, after which the core either executes the task, or

does not execute it (kills it). As out-of-order cores efficiently hide

latency, the checking latency at a given level is not expected to

incur significant overhead. However, for deeper level checks, the

data access and checking overheads start to offset performance

gains achieved via work-efficiency. In terms of programmability,

not much overhead is required since the integer values required

for checking are incorporated in the input (graph) structure, and

checking functions are made as library calls.

4 TARGET TASK-PARALLEL BENCHMARKS

Relax-ordered task parallel algorithms from Galois [23] utilize the

obim priority scheduler described in Section 2.2. If a benchmark or

machine does not have a Galois implementation with the obim

scheduler (e.g. Color), then the Galois Lonestar [18] version is

ported. If any Galois version is not present (e.g. A*), then a state-of-

the-art relax-ordered algorithm is ported from literature. For a GPU

comparison, all benchmarks are acquired from the Gunrock [34]

benchmark suite. The only exception is the A* benchmark, which

is not ported for GPU comparisons. All benchmark inputs use the

compressed sparse row (CSR) format, while all shared memory

structures use atomic operations for updates.

Single Source Shortest Path (SSSP) algorithmfinds shortest paths

from a source to all vertices in a graph. A distance array in shared

memory, D[] maintains the distances for each vertex from the
source vertex. These distance values are initialized at a large num-

ber, and as tasks execute they are lowered monotonically. Therefore,

timestamps in SSSP monotonically decrease in the distance array.

The sequential implementation is acquired from Dijkstra’s algo-

rithm with C++ priority queue primitives from the Boost library [2],

while the parallel ordered version is acquired from KDG [16]. The

unordered Δ-stepping algorithm is acquired from state-of-the-art
Julienne-Ligra suite [29].

A* Shortest Paths (A*) utilizes a heuristic to prune the work done

in traditional SSSP by not visiting all vertices of the input graph.

The heuristic distances from the source vertex are also tracked

using a monotonically decreasing distance array, D[]. Due to a
significant reduction in the number of tasks processed, A* is known

to be notoriously difficult to parallelize.

The parallel ordered implementation uses a single A* search to

a destination vertex, where various random destination vertices

are selected and the average completion time is reported across

all considered destination vertices [25]. This implementation also

uses a priority queue primitive to process tasks, similar to the SSSP

counterpart. The unordered implementation spawns multiple A*

paths across threads, and the one with the shortest distance to a

destination vertex is selected [35].

Breadth-First Search (BFS) starts from a source vertex, and searches

vertices in a graph using the edge first method [7]. As edges are

searched, the distance of the search increases from the source ver-

tex. This distance increases monotonically, and tracked using a

shared distance array, D[].
The sequential version uses a queue and an array to specify

whether a vertex is searched or not, and is acquired from C++

Boost library [2]. The parallel ordered implementation is acquired

from KDG [16]. The unordered version of BFS opens and paral-

lelizes pareto fronts, and it is acquired from the CRONO benchmark

suite [4].

Minimum Spanning Tree (MST) implements the Prim’s algo-

rithm, which uses a priority queue and key checks based on the

input graph to update critical sections [7]. The checks on keys de-

crease monotonically, which are tracked using the shared array,

Key[]. However, the parents of any given vertex are stored in a
parent[] array.
The sequential version is acquired from the C++ Boost library [2],

and uses Krustal’s algorithm (same complexity as Prim’s), while

the parallel ordered version is acquired from KDG [16]. The un-

ordered version also uses Krustal’s algorithm, where the outer loop

is parallelized among vertices, and is acquired from the problem

based benchmark suite (PBBS) [28].

Connected Components (CC) labels edges to a component in an

input graph. Components of each vertex increase monotonically,

and are tracked using the shared array, CC[].
The sequential ordered version uses a depth-first search using a

queue to label components, while the parallel ordered implementa-

tion parallelizes queue updates [7]. The unordered version uses the

Shiloach-Vishkin algorithm from the CRONO benchmark suite [4].

Graph Coloring (Color) implements vertex coloring based on

their saturation degree. Vertex colors increase monotonically, and

are tracked using the shared array, Color [].
The sequential version is acquired from the C++ Boost library [2],

while the parallel ordered version is acquired from [1]. The un-

ordered version is acquired from Pannotia [6], which is converted

to execute on a multicore CPU.

5 METHODOLOGY

5.1 Experimental Setup

CPU machines with large core counts are used to evaluate the pro-

posed multi-level checking scheme integrated with state-of-the-art

Galois obim priority scheduler. The primary goal of the evaluation

is to show how representative task-parallel algorithms improve par-

allelism and performance scalability for different machines. Thus,

performance comparisons to a GPU are also evaluated.
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Table 1: Input Graph Datasets.

Graph |V | |E | Size(GB)

USA-Cal(CAL) [9] 1,890,815 4,657,742 0.1

com-Orkut(OR) [26] 3,072,627 234,370,166 4

Twitter(Twtr) [19] 41,652,231 1,468,365,182 27

Friendster(Frnd) [22] 124,836,180 3,612,134,270 52

M.Br.Ret.3(CO) [21] 562 577,350 0.05

Cage14(Cage) [26] 1,505,785 27,130,349 0.1

The Intel Xeon E5-2650 v3 multicore CPU with Turbo Boost

capability is the primary machine used for evaluation. It has 10

hyper-threaded cores executing at 3.00GHz in each of its 4 sock-
ets. Moreover, the machine has 1TB DDR4 RAM, and a 25MB L3
last-level cache. All benchmarks use the pthread library, and are
compiled using the g++ compiler (v 6.4.1) with the -O3 optimization

flag on the 40-core Intel CPU.

The Tilera Tile-Gx72
TM [8] multicore processor is utilized to

further validate the performance gains achieved by the proposed

multi-level checking in priority task schedulers. This machine im-

plements 72 cores on a single die, with hardware directory based

cache coherence to support efficient shared memory paradigm.

Each core integrates three execution pipelines, a two-level private–

shared cache hierarchy, and five mesh interconnection networks.

The machine executes at 1.2GHz with a total of 23.5MB on-chip
cache capacity, and 110Tbps on-chip communication bandwidth.
Four 72-bit DDR3 controllers with ECC support 16GB memory
capacity. The benchmarks use the pthread library, and compiled
using g++ (v 5.4.1). Furthermore, the Galois obim scheduler is ported

using Tilera specific libraries and APIs.

The performance gain from the 40-core Intel CPU are compared

against state-of-the-art GPU implementations of the target benc-

marks. The NVidia GTX 1080 GPU is utilized, which has 2560

CUDA cores executing at 1.73GHz, and a 8GB GDDR5X main mem-
ory. All programs executing on the GPU use the OpenCL library.

5.2 Benchmark Inputs

Several diverse directed graphs are chosen to show that the pro-

posed multi-level checking scheme performs well on various graph

characteristics. Table 1 shows the evaluated graphs and their charac-

teristics. These graphs represent varying degree, diameter, sparsity,

and sizes. All evaluated graphs fit in the memory of the 40-core

Intel machine. However, the memory size of the Tilera and GPU

machine require some graphs (such as Twitter) to be processed

using a Stinger-like framework [12, 27]. Stinger processes graphs in

chunks (4GB chunk sizes in our case), allowing streaming of edges
and graph information into the target processor. While reads are

done locally on the current available chunk, writes on vertices not

existing in currently available chunk are saved for later when the

chunk is available.

For the SSSP benchmark using Δ-stepping algorithm, the opti-
mized Δ values are as follows: 50000 for CAL, 16384 for OR, 32768
for Twtr and Frnd, 4 for CO, and 16 for the CAGE graph.

5.3 Evaluation Metric

Completion times are measured only for the time spent in the paral-

lel region of each benchmark. All pre-processing times to calculate

Table 2: Completion times (in seconds) for Ordered, Un-

ordered, and Relax-ordered algorithms with Galois and the

proposed Multi-Level Checking on the 40-core Intel CPU.

Input Ordered Unordered Galois Galois+Check

Relax-Ord Proposed

SSSP

CAL 1.09 0.91 0.31 0.04

OR 1.19 0.24 0.29 0.10

TWTR 7.91 5.52 6.19 2.51

FRND 17.4 6.98 9.10 3.78

CO 0.05 0.02 0.01 0.01

CAGE 0.10 0.04 0.03 0.01

A*

CAL 0.23 0.57 0.38 0.46

OR 0.20 0.33 0.41 0.16

TWTR 4.11 185 9.43 3.99

FRND 15.9 85 29.3 13.5

CO 0.02 0.05 0.03 0.03

CAGE 0.10 0.21 0.18 0.12

BFS

CAL 0.46 0.61 0.28 0.11

OR 0.81 0.79 0.45 0.20

TWTR 12.2 7.43 8.89 7.23

FRND 19.4 16.5 14.3 8.97

CO 0.03 0.02 0.04 0.04

CAGE 0.15 0.12 0.08 0.04

MST

CAL 0.11 0.18 0.08 0.03

OR 0.41 0.55 0.28 0.29

TWTR 13 9.53 8.16 6.31

FRND 39.7 18.4 26 12.5

CO 0.04 0.02 0.04 0.03

CAGE 0.09 0.12 0.16 0.11

CC

CAL 0.06 0.02 0.03 0.02

OR 0.18 0.12 0.14 0.11

TWTR 15.8 7.89 9.13 8.05

FRND 19.6 10.4 12.6 11.3

CO 0.05 0.02 0.03 0.04

CAGE 0.25 0.11 0.10 0.08

Color

CAL 0.27 0.09 0.12 0.05

OR 0.12 0.10 0.11 0.09

TWTR 11.3 8.61 6.33 5.65

FRND 19.2 12.3 16.4 10.6

CO 0.03 0.01 0.01 0.02

CAGE 0.22 0.09 0.08 0.05

required parameters are added to the overall completion time. For

streaming graphs, time spent in disk accesses is not added to the

completion time. The Stinger framework used for streaming graphs

overlaps latency when moving graph chunks between machine

memory and disk. Disk latencies are expected to be oblivious to the

time spent in DRAM accesses from the multicore’s standpoint.

6 EVALUATION

6.1 Performance and Task Parallelism

Table 2 shows the completion times (in seconds) for all algorithm im-

plementations and input graphs for the 40-core Intel CPU machine.

The details of various benchmark implementations are outlined

in Section 4. The relax-ordered implementation uses the Galois

obim priority scheduler ported on the evaluated 40-core machine.

The proposed column in the table presents the evaluation of the
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multi-level checking that is implemented on top of the Galois obim

relax-ordered benchmarks. The heuristic from Section 3.2 is uti-

lized, which selects 1-level checking for input graphs CO and CAGE,

while the remaining inputs use the default 2-level checking.

For SSSP, BFS, MST and Color benchmarks, the relax ordered im-

plementations under the Galois obim scheduler perform better than

both ordered and unordered counterparts. Moreover, unordered

versions expose sufficient task-level parallelism that the 40-core

machine exploits better than overcoming the synchronization over-

heads of ordered task processing in ordered variants. The Galois

scheduler exploits inter task locality by processing tasks together

in bags with clustered timestamp ranges. This specifically helps

graphs with higher density (e.g., CO and CAGE), as many chil-

dren tasks are generated by a parent task with little timestamp

divergence. The Galois scheduler also processes bags with prior-

ity ordering, thus reducing redundant tasks as compared to the

unordered variants. The proposed multi-level checking performs

better or at par with the relax-ordered Galois baseline. These bench-

marks exhibit high dependence on ordering levels, as timestamp

values propagate across tasks. As redundant task updates lead to

race conditions across cores, the multi-level checking enables a

mechanism to prune such paths earlier in their execution. This

helps input graphs that exhibit higher levels of task dependencies,

such as the CAL graph. However, as graphs become dense and

task timestamp divergence drops (CO and CAGE), the overheads

of multi-level checking cannot be overcome by the benefits from

pruning redundant tasks. Thus, such graphs perform at par with

the baseline Galois scheduler.

The A* benchmark is notorious to parallelize due to its singu-

lar shortest path search towards a goal vertex using a heuristic

that visits a limited number of vertices at each level. This makes

redundant task processing difficult to exploit parallelism along

the paths that lead to algorithmic convergence. Consequently, A*

performs better with the KDG ordered implementation as com-

pared to both unordered and relax-ordered Galois implementations.

The proposed multi-level checking coupled with Galois’ locality

and priority aware task scheduling leads to competitive perfor-

mance compared to KDG ordered implementation. The multi-level

checks prune a significant number of redundant tasks. Moreover,

the additional checks are less costly compared to fine grain syn-

chronizations required in the ordered implementation. Overall, the

A* benchmark is observed to outperform with the proposed scheme

for graphs that exhibit higher levels of task dependencies across

parent–child relationships. As discussed earlier, dense graphs show

less path divergence, and hence the proposed multi-level check-

ing overheads are hard to overcome as compared to the ordered

implementation.

Connected components (CC) is a highly parallel benchmark that

benefits significantly from unordered processing of tasks. As tasks

perform significant work in between shared timestamp updates,

the dependencies propagate seamlessly in the unordered implemen-

tation. Consequently, the unordered algorithm does not increase

the number of redundant tasks over the KDG ordered counterpart,

and thus delivers high performance. Both Galois and the proposed

multi-level checks add some overheads while only pruning a small

number of redundant tasks. Therefore, the completion times for CC

are observed to be at par with the unordered counterpart. Overall,

Figure 5: Total tasks executed per benchmark normalized to

the Galois baseline on the 40-core setup.

Figure 6: Completion time per benchmark normalized to the

Galois baseline on the 40-core setup.

the Galois obim scheduler outperforms both ordered and unordered

implementations. Moreover, the proposed multi-level checking im-

proves performance of Galois obim implementations by 44%.

6.1.1 Work-Efficiency vs. Performance Tradeoff: Figure 5 shows

the total tasks processed per benchmark averaged across all input

graphs. The ordered, unordered, and relax-ordered Galois and pro-

posed multi-level implementations are normalized to the Galois

baseline. Total tasks processed are acquired by counting the num-

ber of tasks dequeued and executed to produce children task(s).

The unordered implementation processes significantly more tasks

compared to all other variants. The only exception is the CC bench-

mark, which does not process many redundant tasks as it efficiently

resolves inter-task dependencies between cores. The KDG ordered

implementation performs the least amount of redundant tasks since

it synchronizes task ordering between cores to execute tasks with

the same complexity as the sequential algorithm counterpart. The

proposed multi-level checks prune a significant number of tasks

compared to both unordered and relax-ordered implementations.

On average, a 2× reduction in tasks processed is observed compared
to the Galois baseline. This translates to performance benefits, as

observed in Figure 6, which shows normalized completion times

averaged over input graphs relative to the Galois baseline.

6.2 Sensitivity to Number of Levels Checked

The performance gains from the proposed multi-level checking

depend on the number of parent–child task relationships that are
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Figure 7: Total tasks executed for variousmulti-level checks

normalized to the Galois baseline on the 40-core setup.

Figure 8: Completion times for various multi-level checks

normalized to the Galois baseline on the 40-core setup.

checked to determine whether a task needs to be pruned or not.

The higher the number of levels that are checked, the more compu-

tations and data accesses are performed on the timestamp values.

However, the cross-core race conditions that arise from shared

timestamp updates are detected faster. Thus, a higher number of

redundant tasks are detected with the higher number of levels that

are checked.

Figure 7 shows the total tasks processed for all benchmarks

averaged across all inputs, normalized to the Galois baseline. The

number of levels checked with the proposed multi-level scheme are

varied from 1 to 4 levels. The 1-level check prunes redundant tasks

in all benchmarks, except CC. As discussed earlier, CC executes core-

private computations in between shared timestamp checks, thus

inter-core task dependencies resolve faster in this benchmark and

1-level check is not as useful. However, it is observed that a 2-level

check prunes ∼20% of the processed tasks in CC. Among the other
benchmarks, the most number of redundant tasks are pruned in the

SSSP benchmark, followed by A*, BFS, MST and Color, respectively.

The 1-level check prunes a geometric mean of 25% tasks, while the

2-level check prunes >40% tasks compared to the Galois baseline.

As the number of levels increase, all benchmarks show a drop in the

number of tasks processed compared to the 1-level check. However,

this drop is more prominent from 1-level to 2-level, while deeper

level checks yield lower detection of redundant tasks. This indicates

that deeper level checks look for inter-core data races that have

Table 3: Study of multi-level checking on the 40-core CPU.

Geometric mean speedups over sequential implementation

reported across benchmarks on a per input granularity.

Checking Levels CAL OR Twtr Frnd CO CAGE

No Level Check 2.7 4.4 8.7 9.3 3.8 7.8

1-level Check 5.8 8.2 14 14 5.1 11

2-level Check 6.6 8.6 20 16 4.8 10

3-level Check 6.7 8.1 16 13 3.1 7

4-level Check 5.6 5.9 9.3 8.8 1.7 2.3

already resolved by the time their shared timestamp data reads are

performed.

Although deeper level checks are clearly beneficial in reduc-

ing the amount of redundant tasks processed, they accompany

increasing number of computations and data accesses. These over-

heads are incurred for all tasks, thus their performance impact on

non-redundant tasks must be overcome by the benefits of prun-

ing redundant tasks. Figure 8 shows the normalized completion

time of 1-level to 4-level checking for all benchmarks normalized

to the Galois baseline. Due to the tradeoff between tasks pruned

and overheads of multi-level checking, the performance benefits

are observed to maximize at 2-level checking on the 40-core In-

tel CPU machine. The trends from the number of tasks processed

in Figure 7 are also observed for the performance gains. The CC

benchmark shows the least performance benefits over the Galois

baseline, while the SSSP benchmark gains most advantage from the

proposed multi-level checking.

6.3 Sensitivity to Benchmark Inputs

Table 3 shows the impact of multi-level dependency checks for the

40-core CPU setup using performance speed-ups over the sequen-

tial implementations. The performance gains are averaged across

all benchmarks, and reported for each input graph. The No Level

Check version only perform inter-task dependency checks for the

child task being created. However, the 1-level check also incorpo-

rates the task being processed, while higher level checks involve

the parent(s) of the task being processed. The inputs that perform

well with higher level checks imply that deeper levels of inter-task

dependency chains are being updated, leading to faster detection

of redundant tasks. The CAL input has a high diameter, which

concurs with this argument and perform best at 3-level checking.

However, graphs with low diameter and high edge density (such

as CO and CAGE) work best with 1-level checking due to lack of

dependency chains between parent–child task relationships. The

proposed heuristic from Section 3.2 selects 1-level checking for CO

and CAGE inputs, while all other inputs are executed with the de-

fault 2-level check. Although CAL input slightly outperforms with

3-level checking, the heuristic’s choice of 2-level check performs

within 2% performance variation.

6.4 Sensitivity to Parallel Machine Type

A multicore processor resolves shared data races depending on the

implementation of the on-chip core pipelines, caches, networks, and

coherency and consistency protocols. To evaluate the efficacy of
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Figure 9: Completion time per benchmark normalized to the

Galois baseline on the Tilera multicore machine.

the proposed multi-level checking on a different multicore machine

type, a 72-core Tilera single-chip processor is evaluated. Figure 9

shows the completion time of the multi-level checking scheme for

all relax-ordered benchmarks normalized to the Galois obim base-

line. The geometric mean performance gains of 18% are observed

for the Tilera multicore, which is lower compared to the 40-core

Intel machine. These performance gains increase to ∼30% (data
not shown) for the CAL graph with deeper inter-task dependency

chains. However, the performance gains drop to ∼12% for the dense
CAGE graph that has shallow inter-task dependencies.

The Tilera machine implements a highly scalable directory-based

hardware cache coherence protocol that supports fast shared mem-

ory updates between cores. Moreover, the 72 cores of the Tilera

machine are all integrated on a single 2-D mesh interconnection

network with low per-hop latency and high bandwidth for core-to-

core communication. The Tilera machine also implements weaker

cores compared to the Intel Xeon server class out-of-order cores.

Since a Tilera core cannot hide long latency stalls as efficiently as a

Xeon core, the computations and data accesses in between shared

timestamp updates incur more latency. Consequently, the Tilera

multicore resolves inter-task dependencies faster, and computations

between timestamp updates allow enough time for the resolved

dependencies to propagate between cores. Thus, the benefits from

the proposed multi-level checks are lower in Tilera compared to

the Intel Xeon multicore.

6.5 GPU Comparison

GPUs expose massive hardware threading capabilities that can be

exploited to hide the latency of redundant computations in relax-

ordered or even unordered task-parallel algorithms. Therefore, a

large NVidia GPU with orders of magnitude large number of cores

and very high main memory bandwidth capability is compared

against the proposed multi-level checking scheme executing on

the 40-core Intel CPU machine. The GPU executes state-of-the-art

benchmark implementations from the Gunrock suite [34]. Table 4

shows the geometric mean completion times for all benchmarks av-

eraged across the evaluated inputs. The CC benchmark is a highly

parallel algorithm with a small portion of its tasks redundantly

processed during execution (c.f. Figure 5). Therefore, the GPU out-

performs the CPU implementation of the CC benchmark by 40%.

However, for all other benchmarks, the CPU consistently outper-

forms the GPU with performance benefits ranging from 6% to 36%.

Table 4: Completion times shown per benchmark. GPUGun-

rock implementations are compared against the proposed

multi-level checking on the 40-core Intel CPU.

SSSP A* BFS MST CC Color Geo

40-core CPU 0.34 0.66 0.61 0.52 0.35 0.34 0.45

GPU–Gunrock 0.53 - 0.65 0.77 0.21 0.53 0.49

It is also noteworthy that Gunrock does not implement a GPU

benchmark for the A* algorithm. This is primarily due to the lack

of exploitable parallelism in such a task-parallel algorithm, making

it unsuitable for GPU adoption.

7 RELATEDWORK

KDG [16], which is a successor of the Galois priority scheduler [23]

exploits parallelism in ordered task-parallel algorithms. It imple-

ments per-core queues that execute ordered task processing within

and across cores. In KDG, after popping a task from a core’s priority

queue, it is first checked for its global priority order before pro-

cessing. The safe-source test at task issue time checks if any other

core is executing the same task ID with a higher priority timestamp

value. This check is enforced using blocking synchronization be-

tween all cores. This stalls cores from doing work, thus creating

inter-thread contention and limiting parallelism. However, opti-

mal work-efficiency is ensured as no redundant tasks are executed

compared to the sequential algorithm counterpart.

Certain ordered algorithms, such as shortest-pathΔ-stepping [29],
are relaxed by statically identifying tasks that can be executed with-

out strict ordering constraints. Other works, such as KLA [14] relax

order by statically determining the number of steps required for

write-based synchronizations. However, such works do so in a static

fashion, relying on statically available information to calculate Δ
parameter values that are used to identify tasks that can execute

with relaxed ordering [33]. The Galois framework [23] utilizes an

ordered by integer metric (obim) runtime scheduler that relaxes

ordering for task execution. In this paper, we focus on a dynamic

approach to identify and prune redundant tasks on top of the Galois

obim scheduler [20]. Here, the relaxed ordering is also dynamically

controlled by allowing tasks to drift from their strict priority or-

der. However, a novel multi-level parent–child task dependency

checking mechanisms is proposed to ensure redundant tasks are

detected early during their execution. The proposed relax-ordered

implementation avoids unnecessary work to balance the tradeoff

between work-efficiency and performance.

Swarm [17] and related works [3, 32] build on KDG and TLS

schemes [31] to maintain priority queues in hardware, and acceler-

ate task-parallel ordered algorithms using speculative task execu-

tion. Due to synchronization and strict consistency requirements in

multiple parent–child levels, KDG only achieves speedups similar

to prior TLS schemes [13, 15], while Swarm achieves many-fold

speedups. Swarm tracks 8 levels of parent-child relationships in

hardware by allowing speculation on tasks within these levels, and

also by doing task commits and kills in a single cycle. This means

that it can keep track of 8 levels of vertex-edge relationships in

hardware, and commit or kill (with rollback) work within a few

cycles. In contrast, KDG checks tasks globally at issue time, which
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eliminates the need for task aborts and kills, but reduces paral-

lelism. On the other hand, Swarm checks tasks at commit time, and

requires hardware support for task level abort, rollback, memory

logging, and kill mechanisms. Swarm also requires changes to the

hardware cache coherence protocol, requires support to rollback

the globally propagated state, and implements an arbiter to globally

order tasks across cores. In comparison, the proposed multi-level

checking based priority scheduler is a general purpose software

scheme that executes on commercially available shared memory

multicore machines with no complex hardware modifications.

8 CONCLUSION

Due to various existing ordered and unordered implementations to

solve task-parallel algorithms, significant performance variations

are observed for general purpose parallel machines. To improve

work-efficiency and parallelism, prior works relax the order in

which tasks execute by exploiting monotonic property of shared

data value updates in such algorithms. However, state-of-the-art

relax-ordered algorithms do not fully exploit work-efficiency due

to the addition of redundant work for correctness, and by only

applying static checks for work pruning. Taking these issues in

context, this work proposes runtime multi-level dependency checks

that exploit the underlying algorithm’s monotonic parent-child

relationships to unlock parallelism and improve work-efficiency.

The evaluation on a 40-core Intel Xeon multicore CPU shows that

the proposed task scheduler improves performance by an average

of 44% over state-of-the-art relax-ordered algorithms executing on

the Galois obim priority scheduler.
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