General Interest

In-Hardware Moving
Compute to Data Model
to Accelerate Thread
Synchronization on Large
Multicores

Masab Ahmad José A. Joao

University of Connecticut Arm Research

Halit Dogan Omer Khan

University of Connecticut University of Connecticut

Abstract—In this article, the moving computation to data model (MC2D) is proposed to
accelerate thread synchronization by pinning shared data to dedicated cores, and utilize
in-hardware core-to-core messaging to communicate critical code execution. The MC2D
model optimizes shared data locality by eliminating unnecessary data movement, and
alleviates contended synchronization using nonblocking communication between
threads. This article evaluates task-parallel algorithms under their synchronization-
centric classification to demonstrate that the effectiveness of the MC2D model to exploit
performance correlates with the number and frequency of synchronizations. The
evaluation on Tilera TILE-Gx72 multicore shows that the MC2D model delivers highest
performance scaling gains for ordered and unordered algorithms that expose significant
synchronizations due to task and data level dependencies. The MC2D model is also shown
to deliver at par performance with the traditional atomic operations based model for
highly data parallel algorithms from the unordered category.
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M IN THIS ARTICLE, the moving compute to data
(MC2D) model is proposed to accelerate thread
synchronizations in large cache coherent multi-
cores.' The MC2D model pins shared data to
dedicated core(s), and utilizes in-hardware core-
to-core messaging to invoke critical code sections
at those cores. Consequently, data locality is opti-
mized by preventing unnecessary shared data
movement between cores. The objective of this
article is to study fundamental questions regard-
ing practical adoption of the MC2D synchroniza-
tion model. What characteristics of a parallelized
algorithm are best suited for the MC2D model?
Does the MC2D model port effi-
ciently to highly data parallel algo-
rithms? These aspects are evaluated
for the MC2D model on a real multi-
core machine Tilera’s Tile-Gx72 that
enables both hardware cache coher-
ence and in-hardware core-to-core
messaging. Moreover, the MC2D
model is compared against spin-lock
and atomic instructions based syn-
chronization models for a represen-
tative set of task-parallel algorithms.

Task parallelism is a popular strategy for mul-
ticore processors to exploit fine-grain parallelism.
This article creates a synchronization-centric
characterization of task-parallel algorithms to
guide the hypothesis that the MC2D model works
best when an algorithm exhibits high synchroni-
zations. Work efficiency is a fundamental metric
used to evaluate the efficacy of an algorithm.
However, exploiting task-parallelism while maxi-
mizing work efficiency is a hard problem, since it
requires ordered task execution. Frameworks,
such as kinetic dependence graphs (KDG)?
enforce ordered task-parallel execution by intro-
ducing significant synchronizations to globally
order tasks among threads. The Galois® frame-
work creates relax-ordered task-parallel operators
that introduce locally ordered task processing
per core. Although this approach reduces the
need for global task synchronizations, it introdu-
ces races in task-level data dependencies that
add redundant computations in the algorithms
for convergence. Both ordered and relax-ordered
algorithms expose significant synchronizations
that open opportunities for the MC2D model to
improve performance scalability.

This article creates a
synchronization-centric
characterization of
task-parallel algorithms
to guide the hypothesis
that the MC2D model
works best when an
algorithm exhibits high
synchronizations.

Many task parallel algorithms also exist that
do not enforce task ordering and work-inefficien-
cies in their task-parallel implementations. This
unordered task execution category, however,
may still implement synchronizations due to data
dependencies between tasks. Depending on the
number and frequency of these synchroniza-
tions, the MC2D model seamlessly adapts and
delivers competitive performance. In highly par-
allel form, the only synchronizations present in
some algorithms are enforced when all threads
observe barrier synchronization to transition
from one phase to the next. Even
for completely data-parallel algo-
rithms, the MC2D model is shown
to be competitive with traditional
spin-lock and atomic operations
based synchronization model.
Various task parallel algorithms
from the domains of graph proc-
essing, machine learning, data-
base, and data analysis are
characterized as ordered, relax-
ordered, unordered with task-level
data dependencies, and unordered with thread-
level ordering. The evaluation on Tilera’s Tile-
Gx72 multicore shows that the MC2D model per-
forms best under high synchronizations while it
matches the performance of state-of-the-art
atomic model for highly data-parallel algorithms.

THREAD SYNCHRONIZATION
MODELS

Thread synchronization under traditional
shared memory is done using an atomic memory
operation in hardware by locking a cache line in
the private cache of the requesting core (near
atomic), or as remote read-modify-write opera-
tion at the home last-level cache location for the
cache line (far atomic). As the core count
increases, the atomic instructions suffer from the
cost of expensive data sharing as cache lines ping
pong between the communicating threads. When
applicable, the atomic instructions can be directly
utilized to implement synchronization. However,
they are limited to specific operations and data
sizes, thus limiting their applicability to a wide
range of critical section implementations. In this
case, the atomic operation is utilized to build the
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widely applicable spin-lock-based synchroniza-
tion model that protects an arbitrary critical code
section. In addition to cache line ping-pong, spin-
lock implementation also suffers from instruction
retries under contended thread synchronizations.
The MC2D model removes atomic opera-
tions from each critical code section. Conse-
quently, the critical code sections are serialized
on a dedicated service core. The shared data
structures associated with the critical sections
are pinned and updated by the dedicated ser-
vice core. The actual application threads (exe-
cuting on worker cores) send in-hardware
critical section execution requests to the ser-
vice core. The service core receives the request
messages one at a time, and execute the critical
section sequentially to maintain atomicity of
operations. Depending on the algorithmic
requirements, the worker thread may wait for a
reply message from the service thread (block-
ing communication), or just continue to per-
form other work as soon as it sends the
message (nonblocking communication). The
serialization of critical code sections at a single
service core suppresses the exploitable paral-
lelism in such computations. Therefore, multi-
ple cores are assigned as service cores by
dividing nonoverlapping shared data among
them. In this case, the worker threads send
their critical section requests to the corre-
sponding service thread based on the mapping
logic of shared data. The MC2D model exploits
shared data locality, and eliminates both retries
and ping-pong of shared data by pinning it at a
dedicated service core. However, the computa-
tions in the worker and service cores must be
load balanced for near-optimal performance.
The MC2D model is shown to improve perfor-
mance scalability over the traditional atomic
and spin-lock synchronization models, as core
counts increase.>®> However, several questions
regarding the practical adoption of the MC2D
model remain unanswered. What characteristics
of a parallelized algorithm are best suited for the
MC2D model? Does the MC2D model port effi-
ciently to a broad category of parallel algo-
rithms? Based on the widely popular task-
parallel execution model, this article presents a
detailed algorithm-centric instrumentation and
characterization of the MC2D model.
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Figure 1. Workload ordering and dependence
categorization for synchronization inference.

ALGORITHM-CENTRIC
CLASSIFICATION OF THREAD
SYNCHRONIZATIONS

Task parallelism simplifies parallel progra-
mming' and has gained popularity due to its inte-
gration in modern concurrency frameworks.*?
The programmer specifies tasks to expose paral-
lelism, where each task is a unit of computation
that executes in parallel with other tasks. How-
ever, system aspects, such as load balancing and
thread synchronizations are managed by library
(or framework) constructs. This machine indepen-
dent execution model allows task parallel algo-
rithms to scale at large core counts. All task
parallel algorithms operate under some sort of a
task ordering execution model. A task’s execution
order may depend on another task, or a group of
tasks may require all threads to synchronize for
their interdependencies to propagate. Moreover,
tasks may modify shared data with read
and/or write dependencies. All these inter and
intra task dependencies lead to thread synchroni-
zations. In the most parallel form, all tasks execute
with no inter or intra dependencies. To contextual-
ize the relevance of increasing synchronization
for task-parallel algorithms, Figure 1 presents an
algorithm-centric classification.

Ordered Tasks category strictly enforces an
execution order of tasks among the cores. This
strategy operates with the work efficiency of
the sequential algorithm counterpart. However,
extracting parallelism among tasks while enforc-
ing a global task execution order is a hard prob-
lem. KDG* is a task-parallel execution framework
that supports strictly ordered tasks. It imple-
ments a parallel queue (e.g., a priority queue) per
core, and enforces globally ordered push and

! https://software.intel.com/tbb.
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extract of tasks using an order list that is visible
to all cores. Before dequeuing a task, a safe source
test checks whether that task has another depen-
dent task in another core. If so, the dequeue oper-
ation waits until the inter task dependencies
resolve. Otherwise, independent tasks are
allowed to concurrently execute in their respec-
tive cores. Note that during a task’s execution, its
shared data updates may also require thread syn-
chronizations. The KDG framework utilizes the
above strategy to enable task-parallelism while
ensuring work-efficient algorithmic execution. An
alternative strategy adopted for ordered algo-
rithms is to tradeoff work-efficiency for parallel-
ism. For example, the Galois framework®
implements per-core priority queues while ignor-
ing the global intertask execution order. This
relax-ordered category mitigates global thread
synchronizations by not performing the safe
source test. However, the shared data values are
monotonically (and synchronously) updated to
ensure task data dependencies are enforced.
This leads to multiple iterations for the algo-
rithms to converge, which increases the redun-
dant work performed by the cores. Adopting the
ordered and relax-ordered algorithms maximizes
the need for synchronizations among threads.

Unordered Tasks category encompasses task-
parallel algorithms that enforce no local or global
ordering among tasks. Consequently, their work
efficient implementations result in good perfor-
mance scalability on parallel machines. However,
these algorithms may still implement synchroni-
zations due to shared data dependencies among
tasks. On the other hand, when no such shared
data dependencies exist, most (if not all) algo-
rithms require multiple phases of task-parallel
computations. These phases execute indepen-
dent tasks in parallel, but their data outputs must
synchronously propagate from one layer to
another. This thread-level ordering is enforced
using primitives, such as barrier synchronization.
Thread synchronizations in unordered algorithms
increase as the data dependencies between tasks,
or the frequency of barrier synchronization
increases.

Figure 1 shows the classification of ordered
through unordered task-parallel algorithms, and
the impact of thread synchronizations on their
performance scalability. The MC2D model is

hypothesized to work best as algorithms experi-
ence increasing thread synchronizations. The
following section describes how various catego-
ries of task-parallel algorithms can be ported to
the MC2D model.

TASK PARALLELISM UNDER THE
MC2D MODEL

The programming model of a task-parallel
shared-memory application is not changed for the
MC2D model. The only difference is that critical
section requests are moved to a separate routine
that is processed by the service threads. The criti-
cal section code in each (worker) thread is
replaced with a request message to invoke execu-
tion by the corresponding service thread. The bar-
rier synchronization is handled in a similar
manner, but instead of a dedicated service thread,
one of the worker threads handles the barrier.
This process is automated by identifying all syn-
chronization points in the code. Similar to RCL,S
refactoring tools can be easily utilized to automat-
ically transform existing applications. However,
this work performs manual transformations.

Figure 2 presents an abstract framework con-
struct (similar to KDG) outlining data structures
and codes that exhibit thread synchronizations
for ordered task-parallel algorithms. The pseudo-
code on the left represents a generic code that a
thread executes under the atomic synchronization
model. Task orderings are maintained using a per-
core taskQueue and a global orderList. A thread
first peeks into the taskQueue, and invokes the
safe-source test to check (using shared data reads)
if any other core has the same task with a different
priority. The task is allowed to proceed to execu-
tion only when it is either globally independent, or
has the highest global priority order. The task is
first removed from the local taskQueue, and syn-
chronously removed from the global orderList.
During execution, and depending on the algo-
rithm, all data dependencies among the tasks
being executed in all cores are resolved using
atomic critical code sections. Moreover, new task
(s) are produced and pushed into the task queues
and order lists. Again, the global orderlist is
updated synchronously. Under a relax-ordered
algorithm, the safe-source test is not performed,
and thus the orderList is also not implemented.
However, the taskQueue is maintained per core to
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For each task in taskQueue do: For cach task in taskQueue do:
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task = taskQueue.peek()

task taskQueue.peek()

Optional =
P coreid = get_service_thread (task) sender, type, task, data = recumsg (
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If type == listremove:

.coreld get_service_thread (child) !
.sendmsg (coreid, mycoreid, type=listremove, task)'*

i Atomic: remove_entry (orderList [task]) :

_entry (task)

Synch. Point

If type == crit:
task = taskQueue.pop()
For each child of task do:

task = taskQueue.push()

/ Exeute_shared_data (childtaskdata)

| / If type == listadd:
/ add_entry (task)

For each child of task do:
|COI'EId get_service_thread (child)
| Atomic/SpinLock: ! Synch. Point | sendmsg (coreid, mycoreid, type=crit, chlldtaskdata).

1
1 coreid = get_service_thread (child) /

I critical_section_work (childtaskdata)
L |
i sendmsg (coreid, mycoreid, type=listadd, child) !

1 Atomic: add_entry (orderList [child]) |

Synch. Point

Figure 2. Generic framework construct outlining data structures and pseudocode requiring synchronizations for ordered

task-parallel algorithms.

enforce locally ordered execution of tasks. These
algorithms resolve the inter task dependencies in
a monotonic manner to converge to their final
solution. This is done by re-executing certain tasks
when their data dependencies have not con-
verged, thus increasing redundant work.

Although the pseudocode is shown for
ordered algorithms, it is easily portable to unor-
dered algorithms. Both taskQueue and orderList
can be replaced with a simple per-core data struc-
ture, such as an array to schedule tasks for execu-
tion. The synchronizations in unordered
algorithms only arise due to certain data depen-
dencies among tasks, which are implemented
using atomic critical code sections. Finally, an
unordered algorithm may not even implement
synchronization among tasks, and only synchro-
nize threads from one phase of concurrent tasks
to another phase. This results in barrier synchro-
nization after all tasks within a given layer com-
plete and propagate outputs to the next layer.

Each synchronization point discussed in
the context of abstract constructs for ordered,
relax-ordered, and unordered algorithms is instru-
mented for conversion to the MC2D model.
Figure 2 shows an ordered algorithm’s synchroni-
zation points as arrows from atomic to the MC2D
implementation. The safe-source test is an optional
conversion point since it only reads shared data
values that can be done using traditional load
instructions or the MC2D model. In MC2D case,
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datalocality is optimal since shared data is pinned
on service core(s), and in-hardware send and
receive messages (using blocking communica-
tion) are utilized. The nonoverlapping regions of
the orderList are pinned among the service core(s)
based on a heuristic? that utilizes the profiled per-
centage of shared work to determine the right
ratio of worker and service cores in the processor.
The objective of the heuristic is to optimize load
balancing of work done among all cores to maxi-
mize parallelism. All orderList update requests
from each worker core are offloaded to the corre-
sponding service core using (nonblocking) in-
hardware messages. The MC2D model avoids
expensive data movements for shared data, and
thus exploits data locality at the service cores.
Similar strategy is used for all shared data struc-
tures for each child task being processed by a par-
ent task. This is shown as offloading the critical
code section(s) from worker to service cores
using in-hardware send and receive messages.

For relax-ordered and unordered algorithms,
the safe-source test and the global task ordering
(i.e., the orderlList) are removed. However, the
synchronization points are expected to be lim-
ited to one for the critical code section(s) within
the task computations, and another at the com-
pletion of all tasks within a layer of computa-
tions (not shown in the figure). In summary, the
MC2D model pins shared data at the service
core(s), and exploits data locality to accelerate
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thread synchronizations. Even for highly data-
parallel algorithms that only require thread
ordering on barrier synchronizations, the MC2D
model is expected to perform on par with the
traditional atomic synchronization model.

METHODOLOGY

Tilera’s Tile-Gx72 processor is used to evalu-
ate various thread synchronization models
against the MC2D model. The processor consists
of 72 cores executing at 1 GHz, and includes a
double data rate (DDR) main memory with 16 GB
capacity. Each core implements a two-level cache
hierarchy, where level-two shared cache is physi-
cally distributed among cores and interconnected
using two-dimensional mesh networks. Directory-
based hardware cache coherence enables data
accesses between cores. The machine also ena-
bles core-to-core explicit messaging using its
user-defined network (UDN). Four in-hardware
UDN queues are integrated into each core to send
and receive messages using a high level API
library, Tilera Multicore Components (TMC).? All
benchmarks are compiled by employing a modi-
fied version of GCC 4.4.7. The evaluation is per-
formed using up to 64 cores.

Thread Synchronizations in Tile-Gx72

The MC2D model is implemented using the in-
hardware messaging support. Each synchroniza-
tion point in a shared-memory application is
ported as outlined in the section “Task Parallel-
ism Under the MC2D Model.” All communication
that does not use explicit messages is carried
out under traditional hardware cache coherence
load/store accesses. The following traditional
synchronization models are also utilized for
comparisons to the MC2D model.

Spin-Lock and Atomic Models: Tilera offers
various atomic operations for efficient thread
synchronization on shared data. Some of the
operations are as follows: cmpexch, fetchadd,
fetchaddgez, exch, to name a few. Compare-and-
exchange (cmpexch) is utilized to build the widely
applicable spin-lock synchronization model that
can protect any arbitrary critical code section.
When applicable, an atomic operation is directly
used to implement the atomic model.

MC2D_shmem Model: MC2D_shmem is a
shared-memory-only version of the MC2D model,
which uses a shared software buffer per thread
to enable messaging between worker and service
cores. Although MC2D_shmem benefits from
improved locality for shared data, it suffers from
bouncing of the shared buffer between worker
and service threads, which limits performance
scaling.’

Benchmarks

Various task-parallel algorithms from diverse
application domains of graph processing, machine
learning, database, and data analysis are analyzed
to show the applicability and portability of the
MC2D model. Several graph algorithms, namely
KCorg, SSSP, A*, BFS, MST, and CoLor are consid-
ered as representative ordered and relax-ordered
algorithms. These algorithms are ported from
state-of-the-art ordered and relax-ordered parallel-
ism works.*>7 Their task-parallel implementations
are implemented as outlined in Figure 2.

Several unordered algorithms are also consid-
ered. The triangle counting (TC)® graph algorithm,
YCSB database workload,? and the SGD machine
learning'® are representative unordered algo-
rithms that process tasks with thread synchroni-
zations for task-level data dependencies. For
example, YCSB processes transaction requests in
parallel, but uses synchronized timestamp order-
ing to keep track of write accesses by using per-
row write history tables. At commit for a request
within a transaction, YCSB synchronously checks
if reads of the current transaction overlap with
other concurrent writes. If there are overlapping
writes, the transaction is aborted. If there are no
overlapping writes, the changes in the transaction
are applied to the database.

Several highly parallel unordered algorithms
are also considered that implement thread-level
ordering across layers of task-parallel computa-
tions. These include PaceRank, CommuniTy, and
Conn. Comp.® graph algorithms, and deep neural
networks, SoueezeNer'! and GTRSB.!? For exam-
ple, SqueezeNET implements multiple neural com-
putations per layer, where each layer processes
its tasks in parallel across cores. Barrier syn-
chronizations are implemented to propagate
output neural values from layer to layer.
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For graph algorithms, three real-world graphs
are used to explore input diversity. These are
CAL from DIMACS," LiveJournal from the Network
Journal Repository,IlI and CAGE14 from SuiteS-
parse Matrix Collection." From CAL to CAGE14,
the graph size and density increases while the
diameter decreases. For GTRSB and SQuEezeNET, an
image is processed for inference from the Image-
Net Repository.” In SGD, the real-sim"" input is
used, which evaluates 20958 features. YCSB
implements access to database entries using Zip-
fian distribution. It includes a parameter called
theta to control the contention level. Setting theta
to 0.6 means that 10% of the database is accessed
by 40% of all transactions. The theta value is varied
from 0.6 to 0.9 with the increment of 0.05, then the
average completion time is calculated using these
theta values for performance comparison.

Evaluation Metrics

All evaluated algorithms are implemented
using spin-lock, atomic, and both software-only
and in-hardware MC2D models using the capabili-
ties of the Tile-Gx72 processor. All models utilize
Pthreads library to spawn threads. Completion
time is used as the evaluation metric, where all
algorithms are run to completion, and only the
parallel region is measured for performance anal-
ysis. The completion time of the worst case
thread is broken down as nonsynchronization
and synchronization components. For the spin-

1 http://users.diag.uniromal.it/challenge9/download.shtml.

i http://networkrepository.com/livejournal.php.
https://sparse.tamu.edu/vanHeukelum/cage14.
http://www.image-net.org/.

vi https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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lock and atomic models, synchronization is mea-
sured as the time spent in the atomic operation,
as well as time spent in the critical code section.
The remaining thread local computation acco-
unts for the nonsynchronization time. However,
for the MC2D model, the synchronization time
accounts for the time spent in completing each
send and receive message. The tmc_udn_send_n
() routine is used to send request messages to the
service threads, where the message is placed into
a core specific hardware queue, and then the
send instruction completes. This nonblocking
nature of send messages allows the MC2D model
to offload critical section work, and the worker
thread can overlap computation with synchroni-
zation. However, the tmc_udnO_receive() rou-
tine implements receive messages in a blocking
manner. Hence, the time taken by critical code
section, and message traversal is accounted
when the receive completes. From a worker
thread perspective, the time taken to complete all
critical section work is implicitly accounted via
receive messages.

EVALUATION

The MC2D model is anticipated to mitigate
synchronization bottleneck as the number of
cores increases per chip. Therefore, the spin,
atomic, MC2D_shmem, and in-hardware MC2D
models are evaluated at 8, 16, 32, and 64 threads
by pinning a single thread per core. The average
speedup is measured for all benchmarks over a
sequential implementation optimized for single
thread performance. Figure 3 shows the average
speedup for each thread synchronization model
as the core count increases. The in-hardware
MC2D model demonstrates superior perfor-
mance scaling. The atomic model keeps up with
the MC2D model until low core counts (less than
32), but the performance gap rapidly increases
to 33% at 64 cores. The spin and MC2D_shmem
models both show diminishing performance
scaling since they both suffer from increasing
overheads of cache line ping-pongs and instruc-
tion retries. MC2D_shmem is slightly better than
spin due to its locality optimizations for shared
data, but the shared buffer used to communicate
between worker and service cores still ping-
pongs. The in-hardware MC2D model delivers
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Completion Time Breakdown: B Non-Synch & Sync
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Figure 4. Normalized completion time breakdown results of MC2D over the atomic model.

near-optimal access to all shared data pinned at
the service cores, and even surpasses the atomic
model when the on-chip network becomes a bot-
tleneck at high core counts. Therefore, the
remaining evaluation focuses on the MC2D and
the atomic model comparisons.

Figure 4 shows a per benchmark and input
evaluation of MC2D against the atomic model,
where the y-axis shows the completion time nor-
malized to the atomic model. Furthermore, the
completion time is broken down into nonsynch-
ronization and synchronization components.
Consequently, performance gain is calculated as
the percentage decrease in completion time for
the MC2D model relative to the atomic model.
The ordered benchmarks are classified into
ordered and relax-ordered implementations
based on their performance under the atomic
model. Ordered benchmarks with the MC2D
model consistently deliver 30%-65% decrease in
completion time compared to the atomic model.
The nonsynchronization time improves due to
the MC2D model offloading the critical code sec-
tions to service cores, thus reducing the code
executed on the worker cores. The synchroniza-
tion time is observed as a significant component
of the completion time (more than 50% on aver-
age) for the ordered benchmarks. For example,
the safe source test needs to wait on synchroniza-
tion to process the next task in each thread,
which increases its significance in terms of accel-
erating synchronization. It improves due to the
MC2D model taking advantage of core-level
shared data locality, and avoid unnecessary
cache line ping-pongs between cores. Moreover,
the nonblocking nature of the MC2D model
allows it to overlap computation with

communication. Therefore, significant improve-
ments are observed in synchronization times for
the MC2D model over the atomic model. The
relax-ordered benchmarks observe smaller bene-
fits from the MC2D model. Relaxed task ordering
reduces synchronizations needed to order tasks
globally across cores. However, more work is
done in each core to converge these algorithms
to their solutions. This results in a higher non-
synchronization component for these bench-
marks. The MC2D model still improves
performance by accelerating synchronizations
that resolve shared data dependencies among
tasks, as well as barrier synchronizations across
algorithmic iterations. SSSP has relatively large
critical code sections compared to BFS and
CoLor benchmarks. Therefore, SSSP observes
higher performance benefits with the MC2D
model.

Figure 4 also shows the evaluation for unor-
dered benchmarks, which are separated into two
synchronization categories. The unordered bench-
marks with task-level data dependencies exhibit
significant synchronizations that must be handled
within a task’s execution. TC consists of tasks that
are dominated by synchronization work. Hence,
as graph density increases from CAL to CAGE,
stress on synchronizations also increases since
each parent task synchronously updates an inc-
reasing number of child/new tasks. Therefore,
most cores are assigned as service cores in TC.
The shared data locality also increases at the ser-
vice cores as graph density increases due to
increasing locality in edges. CAL does not observe
any benefits in both components because the
graph is sparse (on average 1.2 child/new tasks
per parent) and exhibits random edge
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connectivity. Therefore, under MC2D model,
worker cores tend to not have enough computa-
tions to overlap communication. Moreover, the
synchronization updates to random edges do not
offer shared data locality benefits under the MC2D
model. On the other hand, CAGE is a dense graph,
and exposes data locality on edges. The worker
cores now have sufficient computations to over-
lap communication,

and the service . :

This article evaluates
cores  demonstrate the applicability of the
improved  shared MC2D model to accel-
data locality. There- erate synchronizations
fore, the MC2D

in task parallel algo-
rithms. The evaluation
shows that improving

model improves the
synchronization

component  signifi- shared data locality
cantly, but it comes enables the MC2D
at the cost of model to deliver an

average of 33% perfor-
mance gains over the
atomic model.

increased nonsynch-
ronization time due
to reduced parallel-
ism (ie,
worker cores). The nonsynchronization time in
atomic model is better than the MC2D model
because it has more cores available to perform
the thread-local computations.

fewer

In YCSB, the critical code sections for each
task are much larger, hence the importance of
accelerating synchronizations increases as
thread contention increases with theta values.
The reported YCSB result is an average of theta
values from 0.6 to 0.9. SGD also improves with
the MC2D model, where evaluated outputs that
require atomic writes on the minimization func-
tion are pinned to service cores.

The unordered with thread-level ordering
benchmarks generally perform a significant
amount of thread-parallel work. These bench-
marks use barrier synchronization as all
threads propagate their shared values from one
layer to the next layer of computation. There-
fore, synchronization costs for these workloads
is low as depicted by the completion time
breakdown, and hence these benchmarks show
little benefits from accelerating synchroniza-
tion. However, the two machine learning bench-
marks, GTRSB and SqNer show performance
improvement. The GTRSB benchmark performs

January/February 2020

much less work between barrier synchroniza-
tions as compared to SQNET. Therefore, it shows
more gains from accelerating barrier synchroni-
zation using the MC2D model as compared to
the atomic model.

On average, the MC2D model outperforms
the atomic model by 33%. When unordered
benchmarks with thread-level ordering are dis-
counted, this average decrease in completion
time increases to 48%.

CONCLUSION

This article evaluates the applicability of the
MC2D model to accelerate synchronizations in
task parallel algorithms. The evaluation shows
that improving shared data locality enables the
MC2D model to deliver an average of 33% perfor-
mance gains over the atomic model. These bene-
fits directly correlate with the number and
frequency of synchronizations that are observed
in both ordered, as well as unordered algorithms
with task-level data dependencies. This work
also shows that the MC2D model unlocks paral-
lelism for highly parallel algorithms from the
unordered category, and delivers at par perfor-
mance with the atomic model.
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