
In-Hardware Moving
Compute to Data Model
to Accelerate Thread
Synchronization on Large
Multicores

Masab Ahmad
University of Connecticut

Halit Dogan
University of Connecticut

Jos�e A. Joao
Arm Research

Omer Khan
University of Connecticut

Abstract—In this article, the moving computation to data model (MC2D) is proposed to

accelerate thread synchronization by pinning shared data to dedicated cores, and utilize

in-hardware core-to-core messaging to communicate critical code execution. TheMC2D

model optimizes shared data locality by eliminating unnecessary data movement, and

alleviates contended synchronization using nonblocking communication between

threads. This article evaluates task-parallel algorithms under their synchronization-

centric classification to demonstrate that the effectiveness of the MC2Dmodel to exploit

performance correlates with the number and frequency of synchronizations. The

evaluation on Tilera TILE-Gx72multicore shows that the MC2Dmodel delivers highest

performance scaling gains for ordered and unordered algorithms that expose significant

synchronizations due to task and data level dependencies. TheMC2Dmodel is also shown

to deliver at par performancewith the traditional atomic operations basedmodel for

highly data parallel algorithms from the unordered category.

Digital Object Identifier 10.1109/MM.2019.2955079

Date of publication 22 November 2019; date of current

version 14 January 2020.

General InterestGeneral Interest

January/February 2020 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 83
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

& IN THIS ARTICLE, the moving compute to data

(MC2D) model is proposed to accelerate thread

synchronizations in large cache coherent multi-

cores.1–3 The MC2D model pins shared data to

dedicated core(s), and utilizes in-hardware core-

to-core messaging to invoke critical code sections

at those cores. Consequently, data locality is opti-

mized by preventing unnecessary shared data

movement between cores. The objective of this

article is to study fundamental questions regard-

ing practical adoption of the MC2D synchroniza-

tion model. What characteristics of a parallelized

algorithm are best suited for the MC2D model?

Does the MC2D model port effi-

ciently to highly data parallel algo-

rithms? These aspects are evaluated

for the MC2D model on a real multi-

core machine Tilera’s Tile-Gx72 that

enables both hardware cache coher-

ence and in-hardware core-to-core

messaging. Moreover, the MC2D

model is compared against spin-lock

and atomic instructions based syn-

chronization models for a represen-

tative set of task-parallel algorithms.

Task parallelism is a popular strategy for mul-

ticore processors to exploit fine-grain parallelism.

This article creates a synchronization-centric

characterization of task-parallel algorithms to

guide the hypothesis that the MC2Dmodel works

best when an algorithm exhibits high synchroni-

zations. Work efficiency is a fundamental metric

used to evaluate the efficacy of an algorithm.

However, exploiting task-parallelism while maxi-

mizing work efficiency is a hard problem, since it

requires ordered task execution. Frameworks,

such as kinetic dependence graphs (KDG)4

enforce ordered task-parallel execution by intro-

ducing significant synchronizations to globally

order tasks among threads. The Galois5 frame-

work creates relax-ordered task-parallel operators

that introduce locally ordered task processing

per core. Although this approach reduces the

need for global task synchronizations, it introdu-

ces races in task-level data dependencies that

add redundant computations in the algorithms

for convergence. Both ordered and relax-ordered

algorithms expose significant synchronizations

that open opportunities for the MC2D model to

improve performance scalability.

Many task parallel algorithms also exist that

do not enforce task ordering and work-inefficien-

cies in their task-parallel implementations. This

unordered task execution category, however,

may still implement synchronizations due to data

dependencies between tasks. Depending on the

number and frequency of these synchroniza-

tions, the MC2D model seamlessly adapts and

delivers competitive performance. In highly par-

allel form, the only synchronizations present in

some algorithms are enforced when all threads

observe barrier synchronization to transition

from one phase to the next. Even

for completely data-parallel algo-

rithms, the MC2D model is shown

to be competitive with traditional

spin-lock and atomic operations

based synchronization model.

Various task parallel algorithms

from the domains of graph proc-

essing, machine learning, data-

base, and data analysis are

characterized as ordered, relax-

ordered, unordered with task-level

data dependencies, and unordered with thread-

level ordering. The evaluation on Tilera’s Tile-

Gx72 multicore shows that the MC2D model per-

forms best under high synchronizations while it

matches the performance of state-of-the-art

atomicmodel for highly data-parallel algorithms.

THREAD SYNCHRONIZATION
MODELS

Thread synchronization under traditional

shared memory is done using an atomic memory

operation in hardware by locking a cache line in

the private cache of the requesting core (near

atomic), or as remote read–modify–write opera-

tion at the home last-level cache location for the

cache line (far atomic). As the core count

increases, the atomic instructions suffer from the

cost of expensive data sharing as cache lines ping

pong between the communicating threads. When

applicable, the atomic instructions can be directly

utilized to implement synchronization. However,

they are limited to specific operations and data

sizes, thus limiting their applicability to a wide

range of critical section implementations. In this

case, the atomic operation is utilized to build the

This article creates a

synchronization-centric

characterization of

task-parallel algorithms

to guide the hypothesis

that the MC2D model

works best when an

algorithm exhibits high

synchronizations.

General Interest

84 IEEE Micro

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

widely applicable spin-lock-based synchroniza-

tion model that protects an arbitrary critical code

section. In addition to cache line ping-pong, spin-

lock implementation also suffers from instruction

retries under contended thread synchronizations.

The MC2D model removes atomic opera-

tions from each critical code section. Conse-

quently, the critical code sections are serialized

on a dedicated service core. The shared data

structures associated with the critical sections

are pinned and updated by the dedicated ser-

vice core. The actual application threads (exe-

cuting on worker cores) send in-hardware

critical section execution requests to the ser-

vice core. The service core receives the request

messages one at a time, and execute the critical

section sequentially to maintain atomicity of

operations. Depending on the algorithmic

requirements, the worker thread may wait for a

reply message from the service thread (block-

ing communication), or just continue to per-

form other work as soon as it sends the

message (nonblocking communication). The

serialization of critical code sections at a single

service core suppresses the exploitable paral-

lelism in such computations. Therefore, multi-

ple cores are assigned as service cores by

dividing nonoverlapping shared data among

them. In this case, the worker threads send

their critical section requests to the corre-

sponding service thread based on the mapping

logic of shared data. The MC2D model exploits

shared data locality, and eliminates both retries

and ping-pong of shared data by pinning it at a

dedicated service core. However, the computa-

tions in the worker and service cores must be

load balanced for near-optimal performance.

The MC2D model is shown to improve perfor-

mance scalability over the traditional atomic

and spin-lock synchronization models, as core

counts increase.2,3 However, several questions

regarding the practical adoption of the MC2D

model remain unanswered. What characteristics

of a parallelized algorithm are best suited for the

MC2D model? Does the MC2D model port effi-

ciently to a broad category of parallel algo-

rithms? Based on the widely popular task-

parallel execution model, this article presents a

detailed algorithm-centric instrumentation and

characterization of the MC2D model.

ALGORITHM-CENTRIC
CLASSIFICATION OF THREAD
SYNCHRONIZATIONS

Task parallelism simplifies parallel progra-

mmingI and has gained popularity due to its inte-

gration in modern concurrency frameworks.4,5

The programmer specifies tasks to expose paral-

lelism, where each task is a unit of computation

that executes in parallel with other tasks. How-

ever, system aspects, such as load balancing and

thread synchronizations are managed by library

(or framework) constructs. This machine indepen-

dent execution model allows task parallel algo-

rithms to scale at large core counts. All task

parallel algorithms operate under some sort of a

task ordering execution model. A task’s execution

order may depend on another task, or a group of

tasks may require all threads to synchronize for

their interdependencies to propagate. Moreover,

tasks may modify shared data with read

and/or write dependencies. All these inter and

intra task dependencies lead to thread synchroni-

zations. In the most parallel form, all tasks execute

with no inter or intra dependencies. To contextual-

ize the relevance of increasing synchronization

for task-parallel algorithms, Figure 1 presents an

algorithm-centric classification.

Ordered Tasks category strictly enforces an

execution order of tasks among the cores. This

strategy operates with the work efficiency of

the sequential algorithm counterpart. However,

extracting parallelism among tasks while enforc-

ing a global task execution order is a hard prob-

lem. KDG4 is a task-parallel execution framework

that supports strictly ordered tasks. It imple-

ments a parallel queue (e.g., a priority queue) per

core, and enforces globally ordered push and

Figure 1.Workload ordering and dependence

categorization for synchronization inference.

I
https://software.intel.com/tbb.

January/February 2020 85
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/tbb

extract of tasks using an order list that is visible

to all cores. Before dequeuing a task, a safe source

test checks whether that task has another depen-

dent task in another core. If so, the dequeue oper-

ation waits until the inter task dependencies

resolve. Otherwise, independent tasks are

allowed to concurrently execute in their respec-

tive cores. Note that during a task’s execution, its

shared data updatesmay also require thread syn-

chronizations. The KDG framework utilizes the

above strategy to enable task-parallelism while

ensuring work-efficient algorithmic execution. An

alternative strategy adopted for ordered algo-

rithms is to tradeoff work-efficiency for parallel-

ism. For example, the Galois framework5

implements per-core priority queues while ignor-

ing the global intertask execution order. This

relax-ordered category mitigates global thread

synchronizations by not performing the safe

source test. However, the shared data values are

monotonically (and synchronously) updated to

ensure task data dependencies are enforced.

This leads to multiple iterations for the algo-

rithms to converge, which increases the redun-

dant work performed by the cores. Adopting the

ordered and relax-ordered algorithms maximizes

the need for synchronizations among threads.

Unordered Tasks category encompasses task-

parallel algorithms that enforce no local or global

ordering among tasks. Consequently, their work

efficient implementations result in good perfor-

mance scalability on parallel machines. However,

these algorithms may still implement synchroni-

zations due to shared data dependencies among

tasks. On the other hand, when no such shared

data dependencies exist, most (if not all) algo-

rithms require multiple phases of task-parallel

computations. These phases execute indepen-

dent tasks in parallel, but their data outputs must

synchronously propagate from one layer to

another. This thread-level ordering is enforced

using primitives, such as barrier synchronization.

Thread synchronizations in unordered algorithms

increase as the data dependencies between tasks,

or the frequency of barrier synchronization

increases.

Figure 1 shows the classification of ordered

through unordered task-parallel algorithms, and

the impact of thread synchronizations on their

performance scalability. The MC2D model is

hypothesized to work best as algorithms experi-

ence increasing thread synchronizations. The

following section describes how various catego-

ries of task-parallel algorithms can be ported to

the MC2D model.

TASK PARALLELISM UNDER THE
MC2D MODEL

The programming model of a task-parallel

shared-memory application is not changed for the

MC2D model. The only difference is that critical

section requests are moved to a separate routine

that is processed by the service threads. The criti-

cal section code in each (worker) thread is

replaced with a request message to invoke execu-

tion by the corresponding service thread. The bar-

rier synchronization is handled in a similar

manner, but instead of a dedicated service thread,

one of the worker threads handles the barrier.

This process is automated by identifying all syn-

chronization points in the code. Similar to RCL,6

refactoring tools can be easily utilized to automat-

ically transform existing applications. However,

this work performsmanual transformations.

Figure 2 presents an abstract framework con-

struct (similar to KDG) outlining data structures

and codes that exhibit thread synchronizations

for ordered task-parallel algorithms. The pseudo-

code on the left represents a generic code that a

thread executes under the atomic synchronization

model. Task orderings are maintained using a per-

core taskQueue and a global orderList. A thread

first peeks into the taskQueue, and invokes the

safe-source test to check (using shared data reads)

if any other core has the same task with a different

priority. The task is allowed to proceed to execu-

tion only when it is either globally independent, or

has the highest global priority order. The task is

first removed from the local taskQueue, and syn-

chronously removed from the global orderList.

During execution, and depending on the algo-

rithm, all data dependencies among the tasks

being executed in all cores are resolved using

atomic critical code sections. Moreover, new task

(s) are produced and pushed into the task queues

and order lists. Again, the global orderList is

updated synchronously. Under a relax-ordered

algorithm, the safe-source test is not performed,

and thus the orderList is also not implemented.

However, the taskQueue is maintained per core to

General Interest

86 IEEE Micro

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

enforce locally ordered execution of tasks. These

algorithms resolve the inter task dependencies in

a monotonic manner to converge to their final

solution. This is done by re-executing certain tasks

when their data dependencies have not con-

verged, thus increasing redundant work.

Although the pseudocode is shown for

ordered algorithms, it is easily portable to unor-

dered algorithms. Both taskQueue and orderList

can be replaced with a simple per-core data struc-

ture, such as an array to schedule tasks for execu-

tion. The synchronizations in unordered

algorithms only arise due to certain data depen-

dencies among tasks, which are implemented

using atomic critical code sections. Finally, an

unordered algorithm may not even implement

synchronization among tasks, and only synchro-

nize threads from one phase of concurrent tasks

to another phase. This results in barrier synchro-

nization after all tasks within a given layer com-

plete and propagate outputs to the next layer.

Each synchronization point discussed in

the context of abstract constructs for ordered,

relax-ordered, and unordered algorithms is instru-

mented for conversion to the MC2D model.

Figure 2 shows an ordered algorithm’s synchroni-

zation points as arrows from atomic to the MC2D

implementation. The safe-source test is an optional

conversion point since it only reads shared data

values that can be done using traditional load

instructions or the MC2D model. In MC2D case,

data locality is optimal since shareddata is pinned

on service core(s), and in-hardware send and

receive messages (using blocking communica-

tion) are utilized. The nonoverlapping regions of

the orderList are pinned among the service core(s)

based on a heuristic2 that utilizes the profiled per-

centage of shared work to determine the right

ratio of worker and service cores in the processor.

The objective of the heuristic is to optimize load

balancing of work done among all cores to maxi-

mize parallelism. All orderList update requests

from each worker core are offloaded to the corre-

sponding service core using (nonblocking) in-

hardware messages. The MC2D model avoids

expensive data movements for shared data, and

thus exploits data locality at the service cores.

Similar strategy is used for all shared data struc-

tures for each child task being processed by a par-

ent task. This is shown as offloading the critical

code section(s) from worker to service cores

using in-hardware send and receivemessages.

For relax-ordered and unordered algorithms,

the safe-source test and the global task ordering

(i.e., the orderList) are removed. However, the

synchronization points are expected to be lim-

ited to one for the critical code section(s) within

the task computations, and another at the com-

pletion of all tasks within a layer of computa-

tions (not shown in the figure). In summary, the

MC2D model pins shared data at the service

core(s), and exploits data locality to accelerate

Figure 2. Generic framework construct outlining data structures and pseudocode requiring synchronizations for ordered

task-parallel algorithms.

January/February 2020 87
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

thread synchronizations. Even for highly data-

parallel algorithms that only require thread

ordering on barrier synchronizations, the MC2D

model is expected to perform on par with the

traditional atomic synchronization model.

METHODOLOGY
Tilera’s Tile-Gx72 processor is used to evalu-

ate various thread synchronization models

against the MC2D model. The processor consists

of 72 cores executing at 1 GHz, and includes a

double data rate (DDR) main memory with 16 GB

capacity. Each core implements a two-level cache

hierarchy, where level-two shared cache is physi-

cally distributed among cores and interconnected

using two-dimensional mesh networks. Directory-

based hardware cache coherence enables data

accesses between cores. The machine also ena-

bles core-to-core explicit messaging using its

user-defined network (UDN). Four in-hardware

UDN queues are integrated into each core to send

and receive messages using a high level API

library, Tilera Multicore Components (TMC).2 All

benchmarks are compiled by employing a modi-

fied version of GCC 4.4.7. The evaluation is per-

formed using up to 64 cores.

Thread Synchronizations in Tile-Gx72

The MC2D model is implemented using the in-

hardware messaging support. Each synchroniza-

tion point in a shared-memory application is

ported as outlined in the section “Task Parallel-

ism Under the MC2D Model.” All communication

that does not use explicit messages is carried

out under traditional hardware cache coherence

load/store accesses. The following traditional

synchronization models are also utilized for

comparisons to the MC2D model.

Spin-Lock and Atomic Models: Tilera offers

various atomic operations for efficient thread

synchronization on shared data. Some of the

operations are as follows: cmpexch, fetchadd,

fetchaddgez, exch, to name a few. Compare–and–

exchange (cmpexch) is utilized to build thewidely

applicable spin-lock synchronization model that

can protect any arbitrary critical code section.

When applicable, an atomic operation is directly

used to implement the atomicmodel.

MC2D_shmem Model: MC2D_shmem is a

shared-memory-only version of the MC2D model,

which uses a shared software buffer per thread

to enable messaging between worker and service

cores. Although MC2D_shmem benefits from

improved locality for shared data, it suffers from

bouncing of the shared buffer between worker

and service threads, which limits performance

scaling.3

Benchmarks

Various task-parallel algorithms from diverse

application domains of graph processing,machine

learning, database, and data analysis are analyzed

to show the applicability and portability of the

MC2D model. Several graph algorithms, namely

KCORE, SSSP, A*, BFS, MST, and COLOR are consid-

ered as representative ordered and relax-ordered

algorithms. These algorithms are ported from

state-of-the-art ordered and relax-ordered parallel-

ismworks.4,5,7 Their task-parallel implementations

are implemented as outlined in Figure 2.

Several unordered algorithms are also consid-

ered. The triangle counting (TC)8 graph algorithm,

YCSB database workload,9 and the SGD machine

learning10 are representative unordered algo-

rithms that process tasks with thread synchroni-

zations for task-level data dependencies. For

example, YCSB processes transaction requests in

parallel, but uses synchronized timestamp order-

ing to keep track of write accesses by using per-

row write history tables. At commit for a request

within a transaction, YCSB synchronously checks

if reads of the current transaction overlap with

other concurrent writes. If there are overlapping

writes, the transaction is aborted. If there are no

overlappingwrites, the changes in the transaction

are applied to the database.

Several highly parallel unordered algorithms

are also considered that implement thread-level

ordering across layers of task-parallel computa-

tions. These include PAGERANK, COMMUNITY, and

CONN. COMP.8 graph algorithms, and deep neural

networks, SQUEEZENET
11 and GTRSB.12 For exam-

ple, SQUEEZENET implements multiple neural com-

putations per layer, where each layer processes

its tasks in parallel across cores. Barrier syn-

chronizations are implemented to propagate

output neural values from layer to layer.

General Interest

88 IEEE Micro

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

For graph algorithms, three real-world graphs

are used to explore input diversity. These are

CAL from DIMACS,II LiveJournal from the Network

Journal Repository,III and CAGE14 from SuiteS-

parse Matrix Collection.IV From CAL to CAGE14,

the graph size and density increases while the

diameter decreases. For GTRSB and SQUEEZENET, an

image is processed for inference from the Image-

Net Repository.V In SGD, the real-simVI input is

used, which evaluates 20958 features. YCSB

implements access to database entries using Zip-

fian distribution. It includes a parameter called

theta to control the contention level. Setting theta

to 0.6 means that 10% of the database is accessed

by 40%of all transactions. The theta value is varied

from 0.6 to 0.9 with the increment of 0.05, then the

average completion time is calculated using these

theta values for performance comparison.

Evaluation Metrics

All evaluated algorithms are implemented

using spin-lock, atomic, and both software-only

and in-hardware MC2D models using the capabili-

ties of the Tile-Gx72 processor. All models utilize

Pthreads library to spawn threads. Completion

time is used as the evaluation metric, where all

algorithms are run to completion, and only the

parallel region is measured for performance anal-

ysis. The completion time of the worst case

thread is broken down as nonsynchronization

and synchronization components. For the spin-

lock and atomic models, synchronization is mea-

sured as the time spent in the atomic operation,

as well as time spent in the critical code section.

The remaining thread local computation acco-

unts for the nonsynchronization time. However,

for the MC2D model, the synchronization time

accounts for the time spent in completing each

send and receivemessage. The tmc_udn_send_n
() routine is used to send requestmessages to the

service threads, where the message is placed into

a core specific hardware queue, and then the

send instruction completes. This nonblocking

nature of send messages allows the MC2D model

to offload critical section work, and the worker

thread can overlap computation with synchroni-

zation. However, the tmc_udn0_receive() rou-

tine implements receive messages in a blocking

manner. Hence, the time taken by critical code

section, and message traversal is accounted

when the receive completes. From a worker

thread perspective, the time taken to complete all

critical section work is implicitly accounted via

receivemessages.

EVALUATION
The MC2D model is anticipated to mitigate

synchronization bottleneck as the number of

cores increases per chip. Therefore, the spin,

atomic, MC2D_shmem, and in-hardware MC2D

models are evaluated at 8, 16, 32, and 64 threads

by pinning a single thread per core. The average

speedup is measured for all benchmarks over a

sequential implementation optimized for single

thread performance. Figure 3 shows the average

speedup for each thread synchronization model

as the core count increases. The in-hardware

MC2D model demonstrates superior perfor-

mance scaling. The atomic model keeps up with

the MC2D model until low core counts (less than

32), but the performance gap rapidly increases

to 33% at 64 cores. The spin and MC2D_shmem

models both show diminishing performance

scaling since they both suffer from increasing

overheads of cache line ping-pongs and instruc-

tion retries. MC2D_shmem is slightly better than

spin due to its locality optimizations for shared

data, but the shared buffer used to communicate

between worker and service cores still ping-

pongs. The in-hardware MC2D model delivers

Figure 3. Average speedup of spin, atomic, MC2D_

shmem, andMC2D as compared to sequential, at

different core count.

II
http://users.diag.uniroma1.it/challenge9/download.shtml.

III
http://networkrepository.com/livejournal.php.

IV
https://sparse.tamu.edu/vanHeukelum/cage14.

V
http://www.image-net.org/.

VI
https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/.

January/February 2020 89
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

http://users.diag.uniroma1.it/challenge9/download.shtml
http://networkrepository.com/livejournal.php
https://sparse.tamu.edu/vanHeukelum/cage14
http://www.image-net.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

near-optimal access to all shared data pinned at

the service cores, and even surpasses the atomic

model when the on-chip network becomes a bot-

tleneck at high core counts. Therefore, the

remaining evaluation focuses on the MC2D and

the atomic model comparisons.

Figure 4 shows a per benchmark and input

evaluation of MC2D against the atomic model,

where the y-axis shows the completion time nor-

malized to the atomic model. Furthermore, the

completion time is broken down into nonsynch-

ronization and synchronization components.

Consequently, performance gain is calculated as

the percentage decrease in completion time for

the MC2D model relative to the atomic model.

The ordered benchmarks are classified into

ordered and relax-ordered implementations

based on their performance under the atomic

model. Ordered benchmarks with the MC2D

model consistently deliver 30%–65% decrease in

completion time compared to the atomic model.

The nonsynchronization time improves due to

the MC2D model offloading the critical code sec-

tions to service cores, thus reducing the code

executed on the worker cores. The synchroniza-

tion time is observed as a significant component

of the completion time (more than 50% on aver-

age) for the ordered benchmarks. For example,

the safe source test needs to wait on synchroniza-

tion to process the next task in each thread,

which increases its significance in terms of accel-

erating synchronization. It improves due to the

MC2D model taking advantage of core-level

shared data locality, and avoid unnecessary

cache line ping-pongs between cores. Moreover,

the nonblocking nature of the MC2D model

allows it to overlap computation with

communication. Therefore, significant improve-

ments are observed in synchronization times for

the MC2D model over the atomic model. The

relax-ordered benchmarks observe smaller bene-

fits from the MC2D model. Relaxed task ordering

reduces synchronizations needed to order tasks

globally across cores. However, more work is

done in each core to converge these algorithms

to their solutions. This results in a higher non-

synchronization component for these bench-

marks. The MC2D model still improves

performance by accelerating synchronizations

that resolve shared data dependencies among

tasks, as well as barrier synchronizations across

algorithmic iterations. SSSP has relatively large

critical code sections compared to BFS and

COLOR benchmarks. Therefore, SSSP observes

higher performance benefits with the MC2D

model.

Figure 4 also shows the evaluation for unor-

dered benchmarks, which are separated into two

synchronization categories. The unordered bench-

marks with task-level data dependencies exhibit

significant synchronizations that must be handled

within a task’s execution. TC consists of tasks that

are dominated by synchronization work. Hence,

as graph density increases from CAL to CAGE,

stress on synchronizations also increases since

each parent task synchronously updates an inc-

reasing number of child/new tasks. Therefore,

most cores are assigned as service cores in TC.

The shared data locality also increases at the ser-

vice cores as graph density increases due to

increasing locality in edges. CAL does not observe

any benefits in both components because the

graph is sparse (on average 1.2 child/new tasks

per parent) and exhibits random edge

Figure 4. Normalized completion time breakdown results of MC2D over the atomic model.

General Interest

90 IEEE Micro

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

connectivity. Therefore, under MC2D model,

worker cores tend to not have enough computa-

tions to overlap communication. Moreover, the

synchronization updates to random edges do not

offer shared data locality benefits under theMC2D

model. On the other hand, CAGE is a dense graph,

and exposes data locality on edges. The worker

cores now have sufficient computations to over-

lap communication,

and the service

cores demonstrate

improved shared

data locality. There-

fore, the MC2D

model improves the

synchronization

component signifi-

cantly, but it comes

at the cost of

increased nonsynch-

ronization time due

to reduced parallel-

ism (i.e., fewer

worker cores). The nonsynchronization time in

atomic model is better than the MC2D model

because it has more cores available to perform

the thread-local computations.

In YCSB, the critical code sections for each

task are much larger, hence the importance of

accelerating synchronizations increases as

thread contention increases with theta values.

The reported YCSB result is an average of theta

values from 0.6 to 0.9. SGD also improves with

the MC2D model, where evaluated outputs that

require atomic writes on the minimization func-

tion are pinned to service cores.

The unordered with thread-level ordering

benchmarks generally perform a significant

amount of thread-parallel work. These bench-

marks use barrier synchronization as all

threads propagate their shared values from one

layer to the next layer of computation. There-

fore, synchronization costs for these workloads

is low as depicted by the completion time

breakdown, and hence these benchmarks show

little benefits from accelerating synchroniza-

tion. However, the two machine learning bench-

marks, GTRSB and SQNET show performance

improvement. The GTRSB benchmark performs

much less work between barrier synchroniza-

tions as compared to SQNET. Therefore, it shows

more gains from accelerating barrier synchroni-

zation using the MC2D model as compared to

the atomic model.

On average, the MC2D model outperforms

the atomic model by 33%. When unordered

benchmarks with thread-level ordering are dis-

counted, this average decrease in completion

time increases to 48%.

CONCLUSION
This article evaluates the applicability of the

MC2D model to accelerate synchronizations in

task parallel algorithms. The evaluation shows

that improving shared data locality enables the

MC2D model to deliver an average of 33% perfor-

mance gains over the atomic model. These bene-

fits directly correlate with the number and

frequency of synchronizations that are observed

in both ordered, as well as unordered algorithms

with task-level data dependencies. This work

also shows that the MC2D model unlocks paral-

lelism for highly parallel algorithms from the

unordered category, and delivers at par perfor-

mance with the atomic model.

ACKNOWLEDGMENTS
This work was supported in part by the

National Science Foundation under Grant CNS-

1718481. This research was also partially sup-

ported by the Semiconductor Research Corpora-

tion (SRC), and NXP Semiconductors. The authors

wish to thank C. Hughes of Intel and B. Kahne of

NXP for their continued support and feedback.

& REFERENCES

1. H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson,

and O. Khan, “Accelerating graph and machine

learning workloads using a shared memory multicore

architecture with auxiliary support for in-hardware

explicit messaging,” in Proc. IEEE Int. Parallel Distrib.

Process. Symp., 2017, pp. 254–264.

2. H. Dogan, M. Ahmad, J. Joao, and O. Khan,

“Accelerating synchronization in graph analytics using

moving compute to data model on tilera TILE-Gx72,”

in Proc. IEEE 36th Int. Conf. Comput. Design, 2018,

pp. 496–505.

This article evaluates

the applicability of the

MC2D model to accel-

erate synchronizations

in task parallel algo-

rithms. The evaluation

shows that improving

shared data locality

enables the MC2D

model to deliver an

average of 33% perfor-

mance gains over the

atomic model.

January/February 2020 91
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

3. H. Dogan, M. Ahmad, B. Kahne, and O. Khan,

“Accelerating synchronization usingmoving compute to

datamodel at 1,000-coremulticore scale,”ACMTrans.

Archit. CodeOptim., vol. 16, no. 1, Feb. 2019, Art. no. 4.

4. M. A. Hassaan, D. D. Nguyen, and K. K. Pingali, “Kinetic

dependence graphs,” inProc. 20th Int. Conf. Archit.

Support Program. Lang.Oper. Syst., 2015, pp. 457–471.

5. D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight

infrastructure for graph analytics,” in Proc. 24th ACM

Symp. Oper. Syst. Principles, 2013, pp. 456–471.

6. J.-P. Lozi, F. David, G. Thomas, J. Lawall, and

G. Muller, “Remote core locking: Migrating critical-

section execution to improve the performance of

multithreaded applications,” in Proc. USENIX Conf.

Annu. Techn. Conf., 2012, USENIX Association,

Berkeley, CA, USA, pp. 6–6.

7. L. Dhulipala, G. Blelloch, and J. Shun, “Julienne:

A framework for parallel graph algorithms using

work-efficient bucketing,” in Proc. 29th ACM

Symp. Parallelism Algorithms Archit., 2017, pp. 293–304.

8. M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A

benchmark suite for multithreaded graph algorithms

executing on futuristic multicores,” in Proc. IEEE Int.

Symp. Workload Characterization, 2015, pp. 44–55.

9. X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and

M. Stonebraker, “Staring into the abyss: An evaluation of

concurrency control with one thousand cores,” inProc.

VLDBEndowment, Nov. 2014, vol. 8, pp. 209–220.

10. M. A. Zinkevich, M. Weimer, A. Smola, and L. Li,

“Parallelized stochastic gradient descent,” in Proc.

23rd Int. Conf. Neural Inf. Process. Syst., J. D. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A.

Culotta, Eds., Vol. 2. Red Hook, NY, USA: Curran

Associates Inc., 2010, pp. 2595–2603.

11. F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,

W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level

accuracywith 50x fewer parameters and <1MBmodel

size,” 2016, arXiv:1602.07360.

12. P. Sermanet and Y. LeCun, “Traffic sign recognition

with multi-scale convolutional networks,” in Proc. Int.

Joint Conf. Neural Netw., 2011, pp. 2809–2813.

Masab Ahmad is currently a Senior Silicon

Design Engineer with AMD Research. He received the

Ph.D. degree in computer engineering from the Univer-

sity of Connecticut, Storrs, CT, USA. His research inter-

ests include parallel computing, computer architecture,

and workload characterization. He is a member of

IEEE. Contact him at masab.ahmad@uconn.edu.

Halit Dogan is currently a Software Architect with

Intel, Santa Clara, CA, USA. He received the Ph.D.

degree in computer engineering from the Univer-

sity of Connecticut, Storrs, CT, USA. His research

interests include improving intra and inter node com-

munication in high performance computing. Contact

him at halitdoganeem@gmail.com

Jos�e A. Joao is currently a Staff Research Engi-

neer with the Architecture Group, Arm Research,

Austin, TX, USA. He received the Ph.D. and MS

degrees in computer engineering from the Univer-

sity of Texas, Austin, TX, USA, where he was super-

vised by Professor Yale Patt. He also holds an

Electronics Engineering degree from Universidad

Nacional de la Patagonia San Juan Bosco, Argen-

tina, where he was an Assistant Professor. His cur-

rent research interests are high-performance

energy-efficient scalable system architectures for

HPC and server workloads. He is a member of the

IEEE and the ACM. Contact him at jjoao@ieee.org.

Omer Khan is currently an Associate Professor with

the Department of Electrical and Computer Engineer-

ing, University of Connecticut, Storrs, CT, USA. He

received the Ph.D. degree in electrical and computer

engineering from the University of Massachusetts

Amherst, Amherst, MA, USA. Prior to joining UConn,

he was a Postdoctoral Research Scientist with the

Massachusetts Institute of Technology, Cambridge,

MA, USA. His research interests include developing

cross-layer methods to improve the performance

scalability and security of multicore processor archi-

tectures. He is a member of IEEE and the ACM.

Contact him at khan@uconn.edu.

General Interest

92 IEEE Micro

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:13:06 UTC from IEEE Xplore. Restrictions apply.

mailto:masab.ahmad@uconn.edu.

