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QED calculation of the dipole polarizability of helium atom
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Abstract

The QED contribution to the dipole polarizability of the *He atom was computed, including
the effect of finite nuclear mass. The computationally most challenging contribution of the second
electric-field derivative of Bethe logarithm was obtained using two different methods: the integral
representation method of Schwartz and the sum-over-states approach of Goldman and Drake. The
results of both calculations are consistent, although the former method turned out to be much
more accurate. The obtained value of the electric-field derivative of Bethe logarithm, equal to
0.0485572(14) in atomic units, confirms the small magnitude of this quantity found in the only
previous calculation [Phys. Rev. Lett. 92, 233001 (2004)], but differs from it by about 5%. The
origin of this difference is explained. The total QED correction of the order of o? in the fine-
structure constant «, amounts to 30.6671(1)-107%, including the 0.1822:107% contribution from
the electric field derivative of Bethe logarithm and the 0.01112(1)-107% correction for the finite
nuclear mass, all values in atomic units. The resulting theoretical value of the molar polarizability
of helium-4 is 0.517254 08(5) cm?/mol with the error estimate dominated by the uncertainty of
the QED corrections of order a* and higher. Our value is in agreement but is an order of mag-
nitude more accurate than the result 0.517 254 4(10) cm?®/mol of the most recent experimental

determination [Phys. Rev. Lett. 120, 123203 (2018)].
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I. INTRODUCTION

Accurate knowledge of the electric dipole polarizability a4 of helium is critical for the
development of new primary standards of temperature [1-3] (which is of importance due to
the new definition of kelvin [4, 5]), and for novel realizations of pressure employing electrical
[6, 7], microwave [8], or optical methods [9, 10]. This significance of the polarizability is a
consequence of the direct linear relation (e, — 1)kgT = 4magq p connecting at low density the
relative electric permittivity e, (and consequently the refractive index n) with the gas pres-
sure p and the thermodynamic temperature 7. The Boltzmann constant kg, appearing here,
is now known exactly and fixed at 1.380649 -10~2* J/K. Corrections to this linear relation,
depending the second and higher powers of density p, are small for helium [9, 11] and can
be determined with much lower relative accuracy than the targeted accuracy of p or T. An
information about an accurate value of a4 is also essential in experimental determinations of
density and dielectric virial coefficients of rare gases using dielectric-constant gas thermom-
etry [12, 13]. One may note that the knowledge of accurate value of the dipole polarizability
of helium was employed the experimental determinations of the value of the Boltzmann

constant [14, 15], before this constant was fixed by the new SI definition of kelvin [16, 17].

For microwave [8] and optical [9, 10] methods, the dependence of aq on frequency w is
relevant, but for helium the frequency dependent part of ag(w) is small [18] for experimen-
tally useful frequencies [19], and does not have to be known with high relative accuracy.
One may also note that the index of refraction depends not only on a4(w) but also on the
static magnetic susceptibility x and, at the 1077 level, on other frequency dependent mag-
netic and quadrupole contributions [20]. In this work we consider only the static dipole

polarizability aq.

Since the helium atom is a very small system bound by electromagnetic forces, its prop-
erties, including the polarizability, can be computed with very high accuracy using the
quantum electrodynamics (QED) theory. The strong nuclear forces can be accounted for
by the empirical values of the nuclear mass and nuclear charge radius. The nuclear po-
larizability and effects of the weak nuclear force give a completely negligible contribution
to the atomic polarizability. The current status of the QED theory in the description of

helium atom has been recently examined in Ref. 21. No relative discrepancies higher than



1078 have been found [21] between the best theoretical calculations of transition energies
and their most reliable experimental determinations. In some cases the agreement between
theory and experiment reaches even the 1079 level [22]. Since in thermal metrology the
required relative accuracy is at most at the 10~ level, one can be confident that the theory
tested in Ref. 21 is sufficient for a metrology-useful prediction of the static polarizability of

helium.

The nonrelativistic polarizability of helium a((io), defined by the standard Schrodinger-
Coulomb equation, can be computed with accuracy limited only by the accuracy of the
experimental value of the electron-to-nucleus mass ratio. The most accurate value of ozéo)
for “He reported in the literature, 1.383 809 986 408(1) a3, where ag = h?/(me.€?) is the atomic
unit of length, has a relative error 10712, see Table I in Ref. 23. The leading relativistic
correction to a((io), being of the second order in the fine-structure constant a and denoted

)

by a((f , can be computed using the Breit-Pauli Hamiltonian [24] and is also known with

more than sufficient accuracy. Its value for “He is —80.4534(1)-107¢ a3 [18], the reported
uncertainty of 10710 a3 accounts for neglected terms of the order of a?(m./m,)?, where m,,

is the nuclear mass.

Calculation of the next correction, aé?’), of the order of o, requires a field-theoretic, QED
treatment of the electron-electron and electron-nucleus interaction that takes into account
the effects of the electron self-energy and the vacuum polarization. The first calculation
of a((f’) was reported by Pachucki and Sapirstein [25] in 2001. These authors assumed the

infinite nuclear mass, i.e., considered the nuclear-mass-independent part a((f”o) of a((f’)

, and
neglected the computationally demanding second electric-field derivative 92 In kg of the so-
called Bethe logarithm In ky. To estimate the uncertainty of their calculation they assumed
that 92 In kg represents at most 10% of the known field-independent value of In kg, which

B0 The complete calculation of a((f”o), including the

translated into about 10% error in «
effect of 92 In kg, was reported in Ref. 26. The obtained value of 92 In ko, equal 0.0512(4),
turned out to be about an order of magnitude smaller than the estimate made by Pachucki
and Sapirstein [25] and about two orders of magnitude smaller than the atomic value of
Inkg. The 0%1In ko independent part of a((is,o) obtained by Lach et al. [26] agreed well with

the calculations of Pachucki and Sapirstein [25].

The calculation of 92 In kg is computationally complex and error-prone since it involves



numerical treatment of divergent integrals, and since the final, unexpectedly small value of
0% In kg results from cancellations of terms much larger than 92 Inkg. Therefore, it is clear
that an independent confirmation of the results of Ref. 26 is needed. The main purpose of
the present work was to perform a new, substantially more accurate calculations of 92 In kg
to verify the accuracy of the value obtained in Ref. 26 and to obtain an improved value of
ozé?”o). To achieve this goal we employed two different methods to compute Bethe logarithms:
the modification of the integral representation method of Schwartz [27] proposed recently by
Pachucki and Komasa [28] and the sum-over-states method of Goldman and Drake [29-31]
modified by us to compute the second derivative of Inky. Another objective of this work

was to include the nuclear-mass dependent part a((f”l) of a((f’), referred to as the QED recoil

correction, which has not been computed before. By adding the computed values of a((is,o)

(3:1)
d

and o, a definitive value of the a® QED correction to the polarizability of helium will

become available for metrological and other applications.

The plan of this paper is as follows. In Secs II and III we present calculations of 9% In kg
performed using the integral representation and the sum-over-states methods, respectively.
Sec. IV contains the description of the calculation of the QED recoil correction to the
polarizability of helium. Finally, in Sec. V a summary of the obtained results is presented
and the conclusion of this work are formulated. Appendix contains a derivation of a constant

defining the the asymptotic behavior of the integrand used in Sec. II to compute 92 In k.

Unless otherwise stated, the atomic units are used throughout this papers. We assume
that a=1/137.0359991, ag = 0.052917721 nm and that the mass of the *He nucleus equals
7294.2999536 m,. For the Avogadro number, we take the new SI value of 6.02214076-10%.

II. INTEGRAL REPRESENTATION APPROACH TO THE ELECTRIC-FIELD
DERIVATIVE OF BETHE LOGARITHM

The formula for o>

% can be obtained by the electric-field differentiation of the general
expression for the a® QED correction E®3? to the energy of two electrons in a nondegenerate

singlet state, derived by Araki and Sucher [32, 33] in the 1950s. In the compact, present-day
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notation this formula can be written the form, see e.g., Ref. 21,

8 r19 164 14 7
EGO —o? [g (% —9lna—In ko)D1 n <E + lna>D2 - Ag] (1)
where
= (Y]6°(r1) + 6% (r2)|9), (2)
= (|6 (r12) [0), (3)
= (V|P(rp ) = lim (Y]0(r12 — a) 1y’ + 47 (v +1Ina) 6°(r12) ), (4)

with 63(7) being the three-dimensional Dirac distribution, v the Euler-Mascheroni constant,
0(x) the Heaviside step function, and v the ground-state eigenfunction of the nonrelativistic
electronic Hamiltonian H of the considered system. The quantity In ky, appearing also in

Eq. (1), is the Bethe logarithm defined as the quotient

g P — E)n[2(H — E)]p|¢)
’ (¥|p(H — E)p|v) ’

where FE is the ground-state eigenvalue of H, i.e., (H — E)y = 0, and p = p; + py is the

(5)

total momentum operator for the electrons. The numerator and the denominator in Eq.
(5) will be denoted by N and D, respectively. One can show that D = 47 D;. In our case,
H = Hy+ E(21 + 22), where Hj is the nonrelativistic electronic Hamiltonian for the helium
atom and &(z; + 27) is the perturbation due to a uniform static electric field £ directed
along the z axis. Thus, all quantities in Eqgs. (1)-(5) depend on the electric field strength
£. In this and in the next section, we assume that the nuclear mass is infinite and that H,

contains only electronic kinetic energy.

Differentiating Eq. (1) twice with respect to € and reversing the sign, one obtains [25, 26]
8719 8
off? = o* [ - > (% ~2Ina —Inky 32D, + < D1 0% Inko
164 14 7
—|=—+—=1In )82D —82A].
( 15 3 2T g el

where all electric-field derivatives and the quantities In kg and D; which are not differentiated

(6)

are taken at £ =0 .

The evaluation of the derivatives 92Dy, 02D,, and 0% A, is relatively easy and can be

done using the double-perturbation theory formula,

02X = 4 (YolzRozRo X tbo) + 2 (| 2Ro (X — (0| X b)) Roztho), (7)

bt



where X=D;, Ds, or Ay, X stands for the operators appearing in Egs. (2)-(4), z=2z1+22, Yo
is the ground-state eigenfunction of Hy, i.e., Hytyg = Egtg, and Ry = (1—Py)(Hy— Eo+Pp) ™"

is the reduced resolvent of Hy, with F, being the projection on .

To evaluate 92Dy, 02Dy, and 92A, via Eq. (7), we need two auxiliary functions: the
first-order function Ryz1y of natural P symmetry and the S-wave part of the second-order
function RyzRyz1. These auxiliary functions were represented using the basis set of expo-

nentially correlated Slater functions of the form

K
Gy re) = (14 Pra) > Y (ry,my) e Smmmramvne, (8)
=1

where Pjy exchanges vectors r; and 7o and Y (rq,79) is the angular factor equal to z; or
1 in the present case. The linear and nonlinear parameters in Eq. (8) were obtained by

minimizing the static form (w = 0) of the Hylleraas functional
FP] = ($|Ho — Eo + w|)) +2(|h) (9)

where the function h is equal to 21y or zRyzvy. The ground-state wave function 1y was
also represented by Eq. (8). All nonlinear parameters &;, 1;, and v; were fully optimized for

bases with K equal 128, 256, and 512. The results are shown in Table I.

TABLE I. Mean values and their second electric-field derivatives obtained with the basis sets
optimized in this work. The values of o are conservative error estimates of the values computed
for K = 512. They were obtained by observing the pattern of convergence with increasing K and

by performing additional calculations with other basis sets.

K D; 8§D1 Do ang A2 8?;142

128 3.620860 71 —5.1686139 0.106 345341  —0.3949376 0.9892746 —2.573745
256 3.620858 67 —5.168624 4 0.106 345364 —0.3949374 0.9892739 —2.573764
512 3.620 858 63 —5.168624 1 0.106345370  —0.3949374 0.989 2736 —2.573766
o 0.00000001 0.000000 1 0.000 000 001 0.0000001 0.0000002 0.000 002

Inspecting the values collected in Table I, we see that our calculations of D, 92D, 92Ds,

an 9 are accurate to better an ppm level. Sin € Vvalues obtalned wi (§]
d 924 te to better than 1 level. Using the val btained with th
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largest basis set and the best literature value [34] of the atomic Bethe logarithm Ink, =
4.370160 223070 3(3), we find that the neglect of 92 Inky, i.e., the approximation used by
Pachucki and Sapirstein [25], leads to the value of 30.4738(1) - 107% as an approximation to

a((f”o). This value agrees very well with the result of 30.474(1) - 107¢ published in Ref. 25.

The computation of the electric-field derivative of In kq is substantially more complicated
than the computation of expectation values Dy, Do, and A, and their electric field deriva-
tives. In this section we present the calculation of Inky using the integral representation
method of Schwartz [27] in a computationally convenient formulation proposed by Pachucki
and Komasa [28]. In this formulation, the electric-field dependent Bethe logarithm In kg is

In kg = /1 f(t) = fo— fot® it (10)
0

computed as the integral

D3
where fo = (¥|p*), fo = —2D, and the function f(t) is defined by

F(t) = wJ(w) = w (lp (H — B +w)'pv) (11)

with w = (1 —2)/(2t?). The denominator D as well as the expectation values in the defini-
tions of J(w), fo and fy are assumed here to be obtained with the electric-field-dependent
ground-state eigenfunction ¢ of H. Schwartz [27] and Forrey and Hill [35] developed the
asymptotic, large-w expansion of J(w) that can be transformed into the expansion of f(t)

at small ¢ which, up to the ¢* term, takes the form [28]

) ~ fop(t) = fo+ fo 2+ fst? + fut'Int + fit*, (12)

where f3 = 16D, fy = 64D and f; = 2D (8C3+ 161n2 — 1). The constant C5 determines
the w™ term (equal to 4DC3w™) in the asymptotic expansion of J(w). The computation

of C5 and its electric-field derivative 02Cs is discussed in Appendix.

Performing the electric-field differentiation of Eq. (10) and setting £ = 0, one obtains

1 92 _92r a2 2 2
92 1n kg :/ Of(t) = Oefo=Oehol” ), af—Dlnko, (13)
0

D D

where 0% fy = 02(vy |p*bo), O0fy = —20:D, whereas D and Inkg on the right-hand side
represent the atomic, field-independent values of these quantities. Equation (12) shows that
the integrand in Eq. (13) is finite at ¢ = 0 so the integral is convergent. However, at small

values of the argument ¢, the function 9% f(¢) is very difficult to compute accurately using

7



finite basis set expansions. Actually, when 9%f(t), 9%fo, and 0% f, are computed using a
finite basis of the form of Eq. (8), the singularity of the integrand at ¢ = 0 is not canceled
and the integral diverges. To circumvent this difficulty, the integral over ¢ was separated
into two parts: part 1 from 0 to € < 1 and part 2 from € to 1, with only part 2 computed
using numerical values of 92f(¢). P art 1 was obtained by approximating J3f(t) using Eq.
(12) and its generalization involving higher powers of ¢. To reduce the contribution from
part 1, it is convenient to subtract 9% f3 t3 + 02 fu t* Int + 92 f4 t* from the numerator in the
integrand of Eq. (13) and integrate the counterterms analytically. The resulting expression

for 02 In ko takes then the form

YO2f(t) — OF foxp(t) Oif,  O0:D
2 _ g £.Jexp cj4  Ce
85 In ]{70 = /0 D dt + 2D D In ]{50, (14)
where
Of1 =16 DO2C5 +20:D (8C3 +161n2 — 1). (15)

To derive Eq. (14), the use has been made of the fact that the integral over f3 + fytlnt
accidentally vanishes for helium. The integrand I(¢) in Eq. (14) behaves at small ¢ as
fsit?Int + f5t* and for small € gives a very small contribution to 9% Inky. Accurate com-
putation of f5 and f; would be very difficult and was not attempted. Approximate values
of these parameters were obtained, vide infra, by interpolating I(t) for 0 <t <e using a few

t > € values of I(t).

From Eq. (14) we see that to obtain 92 In kg we need (in addition to D and 9% D) accurate
values of 02%(1o|p*0), Cs, 02Cs, and 92f(t) for t > ¢ . The computation of 92 {1y|p?1y)
and 92C5 was performed using Eq. (7) and the basis set of Eq. (8). The computation of
02C5 and Cj is somewhat intricate since matrix elements that have to be evaluated are more
complex than the matrix elements of p or §°(r), see Appendix for details. The results of

these computations are displayed in Table II.

In view of the very strong cancellation between 02 f(t) and 92 (¢o|p?io) at small ¢, it is
important that the accuracy of 92(1g|p*yy) is very high. As shown in Table II this quantity

was computed with a relative error of less than 10712,

The calculation 92 f(t) was done via the computation of w 92J(w) for w = (1 —t%)/(2t?).

The appropriate expression for 92J(w) is obtained by double electric-field differentiation of
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TABLE II. Parameters defining the behavior of f(¢) at small ¢. See caption to Table I for the

definition of o.

K (¥0lp*¢o) 9z (¥o[p*40) Cs 93C3
128 6.125 587703 81709 —9.012082 33363 5.000 826 —0.049 28
256 6.125 587704 239 64 —9.012082 339 72 5.000 634 —0.05249
512 6.125 58770423993 —9.012082 33974 5.000 624 —0.052 30
o 0.000 000 000 000 02 0.000 000 00001 0.000 002 0.000 02

% In Eq. (29) of Ref. 36, Korobov uses the value 5.000624 87 without giving an uncertainty estimate.

Eq. (11). The result of this differentiation can be written in the form [26]

92J(w) = 4 (tho|z Ry 2 Ry pR(w) pibo) + 4 (tho|z Ry pR(w) 2R(w) ptbo)
+ 2 (tho|z Ro pR(w) pRo 2¢0) + 2 (tho|pR(w) 2R(w) 2R(w) pibo)
— 2 (¢o|z R(2) z1hg) (o |pR(w) Pho) — 2 (o2 Ro 23o) <¢0|pR2(w) i), (16)

where R(w)=(Hy — Fy +w)~! is the frequency dependent resolvent of the field-free Hamil-
tonian Hy. Some terms in Eq. (16) are singular at w = 0, but these singularities as well as
the w independent parts cancel so that 92J(0) = 0 and, as a consequence, both 92 f(t) and
the derivative of 9% f(t) with respect to ¢ vanish at t = 1.

To evaluate 92 f(t) via Eq. (16), we can employ the functions Ryzthy and RyzRy21 used
to obtain 92D but we also have to compute, for each value of w, several auxiliary functions:
the first-order function R(w)piy as well as the scalar, pseudovector, and tensor components
of the second-order functions R(w)pRozty and R(w)zR(w)piy. All these functions were
computed variationally for each required value of w using appropriate versions of the func-
tional (9). The trial functions ¢/ were expanded using the basis set of Eq. (8) with the
angular factors corresponding to the symmetry of considered auxiliary function. For the
vector and pseudovector functions we set Y (rq,79) = x1 or z; and 125 — 2125, respectively.
For the functions of D symmetry the basis consists of two parts each containing K terms:
the first part with the angular factor z;2; or 77 — 32% and the second part with the factors

T129 + z1T9 OF 717y — 3z129. For each value of t on a grid of 100 points between 0.01 and



1.0 (and a few additional points below 0.01), full optimizations of all nonlinear parameters
were performed for three successively increasing basis sets labeled by the integers K =128,

256, and 512 which specify also the size of the basis used to expand .

In Table IIT we show the basis set convergence of the integrand I(t) in Eq. (14) for small
values of t. It is seen that the convergence, very good at t > 0.005, deteriorates dramatically
for small values of . At t = 0.002, the value of I(t) is not accurate enough to be used in
numerical integration. This is shown in Table IV where we list the values of the integral of
I(t) from € to 1 computed with our two largest basis sets. The integral from 0.005 to 1 turns
out to be sufficiently accurate and we have chosen ¢ = 0.005 to separate the integration
range in Eq. (14) into the “small t” and “large t” parts. Using € larger than 0.005 gives
more accurate values of the “large t” integral, cf. Table IV, but is not advantageous since,
as shown in Table V, the error of the whole calculation is determined by the interpolation
error in the range ¢t <e (performing the integration using every second point we verified that
the error of our numerical integration procedure is smaller than 10~® and therefore negligible

compared to other error sources).

TABLE III. Basis set convergence of the integrand I(¢) in Eq. (14) for small values of t. K denotes
the basis set size used to represent 1y and the auxiliary functions. Extrapolated results were
obtained assuming exponential decay of error. The uncertainty o is defined as the difference of the

two preceding rows.

K 1(0.002) 1(0.005) 1(0.01) 1(0.02) 1(0.03)
128 —21.91782900 0.14613471  2.22617850 9.34234812  20.52412502
256 —2.78361795 0.49908734  2.30166902 9.34931045  20.52630907
512 0.03568909 0.50676476  2.30195231 9.34932498  20.52631193
extrp. 0.52288119 0.50693547  2.30195337 9.34932501  20.52631194
o 4.9-1071 1.7-107% 1.1-1076 3.0-1078 3.8-107°
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TABLE IV. Integral of I(t) from e to 1 computed with our two largest basis sets. The uncertainty

o is defined as the difference of the two preceding rows.

K e = 0.002 e = 0.005 e=0.01 e =0.015 e=0.02

256 65.32851048 65.32854759  65.32840496 65.32799881 65.32720487
512 65.32856319 65.32854787  65.32840479 65.32799878 65.32720488

o 5.3-107° 2.8.1077 1.7-1077 3.4-1078 2.3-1079

The integral from 0 to € was obtained analytically by interpolating I(¢) with the function

n

I(t) =) (art*Int + by t") (17)

k=2
using our best (extrapolated) values of I(t) for t = ¢ and for 2n — 3 next higher values of
t. The results of this integration are shown in Table V as a function of n together with
the corresponding values of 9% In kg obtained from Eq. (14) using our best values of D and
02D (from Table I), of C3 and 92C3 (from Table 1), and of the “large t” integral (from
Table IV). One should note that the obtained values of 92 In ky are more than three orders

of magnitude smaller than the individual terms in Eq. (14).

TABLE V. Dependence of the integral of I(t) from 0 to € = 0.005 and of the value of 9% In kg on the
length n of the fit function of Eq. (17). For the ¢ > € integral we took 65.32854787, cf. Table IV .

no [y I(t)dt 9% 1n ko

2 0.00001736  0.04855859
3 0.00001636  0.04855759
4 0.00001608  0.04855731

5 0.00001599  0.04855722

Table V shows that the integral from 0 to € is very small but its relative accuracy is

not high. From the observed convergence pattern we can infer that the value this integral

11



amounts to 0.0000160(14) with the uncertainty conservatively estimated by the total spread
of values shown in Table V. Taking into account the error estimations for both integration
regions, we find that the value of 92 In ko obtained using the integral representation method
is 0.0485572(14). This value differs by about 5% from the value 0.0512(4) reported in
Ref. 26. The origin of this difference is discussed in Sec. III.

III. SUM-OVER-STATES APPROACH TO THE ELECTRIC-FIELD DERIVA-
TIVE OF BETHE LOGARITHM

To resolve the discrepancy between the values of 92In kg obtained in Sec. IT and in Ref. 26,
we performed computations using the sum-over-state approach [29-31]. In this approach,
the numerator N in Eq. (5) is represented by the spectral expansion in terms of the eigen-

functions 1, of the excited states of the Hamiltonian H,
N =" waln(2w,) [ {olpvn) ) (18)

where w,, are the excitation energies. In practice, an expansion in terms of pseudostates
diagonalizing H in an appropriately chosen basis set is used [29]. Although the pseudostate
expansion is converging extremely slowly (it is on the verge of divergence [37]), it has been
successfully applied [38-41], also in the acceleration gauge [42, 43], to accurately compute
electric-field-free values of In kg . In this section we present the application of this method

to compute d2lnky for the ground state of the helium atom in a static electric field €.

To cope with the extremely slow convergence of the pseudostate expansion, we use a
parameter L > 0 which attenuates the importance of highly excited states and enables us

to control the convergence rate. Using the integral representation of Inw,,

L > dw
lnwnzln(1+L)—ln<1+w—n) —l—(wn—l)/L CETRICESL (19)

one can show that N can be written in the form

N =Np+DIn(2L+2)+ / g(w)dw, (20)
L

where

Vo= =3 (14 2 fwnlpvn)? 1)

12



and

gles) = @I (@) — {olp? o)+~ (22)

One may note that the modification of the original approach of Goldman-Drake, as defined
by Egs. (20)-(22), bears close resemblance to the approach used by Korobov [34, 36], see
also Ref. 44.

When the energies w,, of the excited states are large (much larger than L) the successive
contributions in the summation in Eq. (21) decrease with n as L|{tg|pt,,)|*. This should be
compared with the w,, Inw, [(¢y|pth,)|* decrease of terms in Eq. (18). One can thus expect
that the convergence of the summation in the expression for Ny will be faster than the
convergence of the series in Eq. (18). When L is sufficiently large, the last term in Eq. (20)

is small and can be easily computed using the large-w asymptotic expansion of g(w)
g(w) = g3 w32 4 g41W_2 Inw+ g4 w4 Js w2l ’ (23)

where the coefficients g3 = 4v/2 D, gy = —8 D, and g4, = (4C5 — 1) D can be obtained by
changing the variable in the expansion of Eq. (12), or directly from the work of Schwartz [27].
Forrey and Hill [35] derived an expression for g5 but this expression is too complex to evaluate

in practice.

Carrying out the w integration in Eq. (20) using the first three terms in the asymptotic
expansion of g(w) and adding the result to the first two terms in this equation, one obtains

the following expression for In k:
In ]{?0 =In ko(L) + RL, (24)

where

N
Inko(L) = ﬁ +In(2L +2) + 8V2L V2 — 8L 'InL + (4C5 — 9) L (25)

and Ry is the error resulting from truncating the asymptotic series of Eq. (23). We know

from the work of Forrey and Hill [35] that R vanishes with increasing L as
Ry =Cy L34+ Cs L7 2In L+ Cs L2 + O(L7°?). (26)

Knowing this error formula, one can perform the extrapolation of Inky(L) and obtain an

improved value of In ky by solving a small system of linear equations.
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In view of Eq. (25), the second electric-field derivative of In ko(L) is given by the expres-

sion

1 N 4
&2 Inko(L) = 5 2Ny, — ﬁ RD | + 7 D2Cs. (27)

The derivative of the error 2R, has the same large-L behavior as R, so that 02 Inky(L)
can be extrapolated in the same way as Inko(L) using Eq. (26).

Since the intermediate wave functions 1), of the pseudostates and the excitation energies
wy, in Eq. (21) depend on the electric field &, the differentiation of Ny with respect to &€
is much more difficult than the differentiation of D or (¥|p?y). A suitable sum-over-states

expression for 93N, can be obtained from the formula

L
0N, = [ wakIw)dw — Lo (uulpin) (28)
0

resulting from Eqgs. (20) and (22). Using Eq. (16) and noting that terms diverging linearly
with L are eliminated with the help of Eq. (7), one finds that 93N, can be written as the

sum of six contributions

OiNp=Ix+1Ip+1Ic+1Ip+Ig+Ip, (29)
defined by
Iy = =4 Mwn)(tol2RozRoptbn) (| pro), (30)
IB = _22)‘(wn)<¢0|2R0pwn><wn|pR0 Z¢O>> (31)
Ie = 2(yo|2 RS 2¢b0) ZA(Wn)‘<¢o|p¢n>‘2a (32)
Ip = =2 (ol Ro 2t00) Y i(wn)|(Wolptin)[, (33)
In =4 > 7wk wn) (Yolz Ro ptbi) (el 24bm) (¢ |p0), (34)
k n
Ip =2 Z Z Z G(wr, Wiy W) (Yo|pYr) (i|290k) (V| 290n) (Y] PY0) (35)
l k n
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where
A(t) =t (1 + %) , (36)

k() = In <1 + 5) L (37)

t) L+t
s,y = 22220, (39
S Vs S (& B 11 )

(r—s)(r—t) (s—t)(s—r) (E—r)(t—s)
Equations (38) and (39) are valid when all arguments r, s, and ¢ are different. If ¢t = s then
v(s,s) = k(s). This case is very unlikely however since the states ¢, and v, in Eq. (34) are
of different parity. The function ¢(r, s,t) is symmetric in its arguments. This may be used
to simplify somewhat the summations in Eq. (35). When only two arguments are equal, for
instance r and ¢ (¢, and 1, are of the same parity), one obtains

r L L L
=—— In{l4+—)—In{1+— . 4
A P [( H) ( +s)}+<L+r><r—s> )
In an unlikely case when all arguments are equal (1, must be of different parity than that

of ¢y and 1)), one finds

L2

o(r,r,r) = m (41)

To obtain the final formula for the analytic second derivative of the Drake and Goldman
expression for In kg, we have to eliminate the logarithmic divergencies in the square bracket
of Eq. (27) by taking the limit L — co. This is not entirely straightforward since the loga-
rithmic divergencies in the individual components of 92 Ny, given by Egs. (30)-(35), must be

isolated and shown to cancel against appropriate counterterms resulting from (Ny/D) 02D.

To identify these counterterms, we replace Ny, in Eq. (27) by the large-L estimate
Ny =N — DIn(2L) + O(L~/?), (42)

resulting from Eqgs. (20) and (23), and write the difference in the square brackets in Eq. (27)
as

OFNL — % 02D = 0Ny + 9:DIn L — (Inko — In2) 92D + O(L~/?). (43)

The derivative 92D is calculated in practice using the relation D = 47 D; with D; given

by the right-hand side of Eq. (2), but to obtain the counterterms needed to cancel the
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logarithmic divergence of the individual contributions to 93Ny, cf. Egs. (30)-(35), we
differentiate the expression (¢ | p(H — Ey) ptby) also defining D. The second derivative of

this expression at £=0 is

92D = 2(0¢v0 | p(H — Ep) pibo) — (Yo | p*0) 03 Eo
+ 2(0sv0 | p(H — Ey) pOsiho) + 4(0sbo | Pz PY0), (44)

where Ost)o= —Rozthy, 0thg =2RozRozhg— (1o | zREz1b0) ¥y, and 03 Eg=—2(tby | zRozty),
are the appropriate derivatives of the wave function and the energy. Inserting these deriva-

tives into Eq. (44), one finds that 92D can be written as a sum of the following five terms

0¢D = D4+ Dp+ Do + Dp + D, (45)
where
Da=4) walto|zRozRopby) (Ynlptho), (46)
Dp =2 Xn: wn (tho| 2Ropbn ) (¥n [P Roztbo), (47)
Dc = -{Wa 2t0) Y wal (olpvn) (48)
Dp = 2(tho|z Ro 2¢0) <onp2¢o>, (49)
Dp = —4(¢o|2Ro pz pio). (50)

Let us now consider the logarithmically divergent terms in Eqgs. (30)-(34). To isolate them

we need the following large-L estimates

At)=tlnL—tlnt+O (L) (51)
k(t)=InL—Int—1+0(L7"). (52)

Inserting Eqs. (51) and (52) into Egs. (30)-(34), it is easy to see that all terms propor-
tional to In L cancel exactly against the second term on the right-hand side of Eq. (43).
More specifically, the In L component of Ix cancels against DxIn L, X=A,B,C, D, FE, cf.
Eqgs. (46)-(49). What remains after these cancellations is the sum of contributions given
by Egs. (30)-(34) in which the factors A(t) and x(t) are replaced by —tInt and —Int — 1,
respectively, and the (s, t) factor by

slns —tInt
Vool$: 1) = Py — (53)
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for s # t and by 7 (t,t) = —Int — 1, when s=t.

To finish the discussion of the L — oo limit, we still have to consider the contribution
from the I term of Eq. (35), which is finite at large L. One can easily show that the
L — oo limit of the factor ¢(r, s,t), denoted by ¢ (r, s,t), is given by

rinr slns tint
colTy 8, 1) = , 54
bolrss ) = = T oo T =) (54)
when all arguments r, s, and ¢ are different, and
t(Int —1Inr) 1
o0 Y 7t - Y
boelrimt) = = Ty (55)
brelrrr) = o (56)
wo(r, 7 m) = o

when two of them or all three are equal.

Summarizing, the final formula for the second derivative of the Goldman-Drake expression

for the Bethe logarithm is

92n ky — %(GA + Gy +Go+Gp+ G+ Gr) — (Inky —n2) a%D, (57)
where

Ga =4 walnw, (YolzRozRoptn) (alpto), (58)

Gp =2 iwn Inwy (o] zRoptin) (n|PRoztbs), (59)

Geo = —2?w|zR3 20} Y wa In(wn) [(Yolpvn) (60)

Gp = 2 (|2 R 21bo) fj(l + Inw,)|(Yolptn) |, (61)

Gp=14 ij > voow,tun) (olz Ro pi) (k| 20n) (Yu Do), (62)

Gp =2 Z Z Z Poo (Wi, W, W) (Vo|PVr) (i 20k) (k] 220m) (n | PY0) - (63)

All components in the expression for 92In kg are finite, but substantial cancellations of indi-
vidual terms can occur and the final value of 92In ky is expected to be at least two orders of

magnitude smaller than the individual contributions in Eq. (57).

Since Ni, = 0 when L = 0, one can think of deriving Eq. (57) by differentiation of Eq. (20)
setting L = 0. The individual integrals resulting then from the application of Eq. (16) are
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divergent at infinity and require regularization that in practice is the same as the one used
by us to derive Eqgs. (57)-(63). Thus, L can be viewed as a regularization parameter needed

to derive the second derivative of the Goldman-Drake expression for the Bethe logarithm.

The problem of finding a basis to represent pseudostates needed to accurately compute
the quantities defined by Eqs. (58)-(63) presents a serious challenge. Unless L is very small,
the same problem appears in calculating the quantities defined by Egs. (30)-(35). The
difficulty stems from the fact that pseudostates with extremely high energies are required
to converge the logarithmic sums of the form of Eq. (18) or Eq. (21) and, also, from
the additional flexibility needed to describe the polarization by the external electric field.
To obtain a suitable basis, we followed the procedure employed by Korobov [42, 45] in his
highly accurate calculations of Bethe logarithms for the helium atom. In his method, the
parameters &;, 1; and v; defining the basis functions of Eq. (8) are distributed stochastically
within one or several three-dimensional boxes while the positions and sizes of these boxes are
determined by minimizing the Hylleraas functional of Eq. (9) setting w = 0 and replacing the
inhomogeneity function h by hy = (2177 + 2575 *)1)s. The singular behavior of h; at r; — 0
increases the flexibility of the basis at small r; which is needed to represent pseudostates
with very high energies. The inhomogeneity function h; was used by us to optimize bases of
natural P symmetry. To optimize bases of S and D symmetry, we used the same Hylleraas
functional but with the inhomogeneity h replaced by the S and D part, respectively, of the
function hy = (2177 + 2275 °) Roz1bg. To optimize bases of P® symmetry, the inhomogeneity

hg = (l’lTl_gR()ZQ — ZgTz_gRoxl)lpo was used.

The basis set for pseudostates of natural P symmetry needed to evaluate N via Eq.
(21) was constructed as follows. We start with the primary box [Ay, Ay] X [By, Ba] X
[C, C5] with a uniform stochastic distribution of Ky triples of real exponents &;, n;, v;. This
box defines K| basis functions. Then, following the ideas presented in Refs. 42 and 45,
we build a set of secondary boxves [TFA}, TFAL] x B}, By x [C},C4], k = 0,...,14, where
T=As/A; and where A', A}, B, B}, C}, C} are parameters subject to nonlinear optimization
together with the primary box parameters A;, As, By, By, C1,C5. In each secondary box,
we distribute stochastically ny Ky/25 basis functions, where n,=10,8,6,5,4,3,3,2,22/1,1,1,1,1
for k = 0,...,14, respectively. The parameters &;, 1;, v; were always constrained by the

conditions & +n; > V21, 0, +v; > V21, v; + & > /21, where [ is the ionization potential
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of helium. This ensures that the basis functions fall off sufficiently rapidly when r{,ry — o0
to represent a bound state. If a randomly generated basis function fails to fulfill these

conditions, it is rejected and another one is generated.

To represent pseudostates of P symmetry, we used 3K, basis functions defined by 12
nonlinear parameters. The bases with Ky = 100, 200, and 400 were optimized. To represent
g, we used a single box with K basis functions and box parameters determined by min-
imizing the ground-state energy. The helium atom energies obtained using bases with K
= 100, 200, and 400 terms were only 9x10719 11x107!2, and 5x10~'* above the accurate

ground-state energy of the helium atom [46-48].

Using the pseudostates obtained with the basis sets optimized as described above, we
evaluated Ny, via Eq. (21) for L = 100,200,500, 1000. The resulting values of In ko(L), cf.
Eq. (25), are shown in Table VI. It is seen that the convergence with increasing L is very
slow, as expected from the error estimate of Eq. (26), and that the basis set convergence
is also slow, deteriorating appreciably with the increase of L. The extrapolation to L = co
based on the error estimate of Eq. (26) is, however, quite effective reducing the error of In kg
by three orders of magnitude compared to the L = 1000 value given in Table VI. Specifically,
applying Eq. (26) for L = 100,200, 500, 1000, neglecting the O(L~%/?) terms, and solving
for the unknown variables In kg, Cy4, C5 and Cg we obtain In kg = 4.370 162 1 when Ky = 400.
This value has the relative error of 5- 107 comparing to the best available value [34] and
is significantly more accurate than the results of the first two applications of the Schwartz

method [27, 49].

TABLE VI. L-dependence of the approximate Bethe logarithm In k(L) for helium.

Ko\L 100 200 200 1000

100 4.410654 707 4.385346797  4.374273575 4.371701275

200 4.410629878 4.385315192 4.374232108  4.371 652027

400  4.410629718  4.385314986  4.374231829 4.371651683

To calculate the second electric-field derivative of Bethe logarithm, we need also bases

of scalar S, pseudovector P°, and natural D-symmetry. The specific composition of these
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TABLE VII. L dependence of 02 log ko(L), see Eq. (27). For 92C5 we assumed the value —0.05230,

see Table IT and Appendix.

Ko\L 50 100 200 500

100 0.041523 0.044121 0.049995 0.050930

200  0.044327 0.046739 0.048492  0.049 303

400  0.044476 0.046882 0.048075 0.048617

bases was as follows. For the S symmetry, we used seven boxes. The first box, containing
Ky/2 functions, was the same as optimized earlier in the calculations of the ground-state
wave function vy. The second box was optimized using the modified Hylleraas functional
and also contains K(/2 functions. The remaining five boxes had exponentially growing sides
[T A, AL k= 0,...,4 with 7 = Ay /A; defined by the parameters A; and Ay optimized
for the second box. These boxes contain njK,/25 basis functions, where n, = 7,6,5,4,3
for K =0,...,4. In this way, by optimizing 12 nonlinear parameters, we have generated the

total of 2K scalar functions.

For pseudostates of P¢ and D symmetry, we used six boxes. The primary boxes contained
Ky, and 3/2K, basis functions in the case of the P® and D symmetry, respectively. The
remaining five boxes had exponentially increasing sides as for the S symmetry. These five
boxes contained Ky, and 5/2K basis functions for the P® and D symmetry, respectively,
distributed proportionally in the same way as in the case of the last five, exponentially
growing boxes of S symmetry. In total, we stochastically generated 2K, basis functions of
P°¢ symmetry and 4K, functions of D symmetry. In each case 12 nonlinear parameters were
optimized. Bases for the first-order functions Ryzvy and Rop.vy and for the second-order
function RozRoz1 (S symmetry only) contained K, elements and were obtained from a

single box, optimized using appropriate Hylleraas functionals.

Using the bases optimized for Ky = 100, 200, and 400, we evaluated the L dependence of
0% Inko(L), see Eq. (27), for L = 50,100,200, 500. The results are shown in Table VIL. Tt is
seen that the convergence both in Ky and in L is much slower than in the case of In kq(L).

This is due to the loss of at least two digits in the subtraction in Eq. (28) and to the much
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increased basis set sensitivity of the components of Eq. (29) compared to the already hard
to converge summation in Eq. (21). The slowest convergence occurs in computing the Ip
contribution of Eq. (31), which determines the final accuracy of 9% Inky(L). In fact, the
results for L=1000 were not accurate enough to perform a reliable extrapolation and are not
shown in Table VII. Also the values of the limit L = oo obtained from Eq. (57) were very

inaccurate and are not reported.

Employing the values of 92In ko(L) obtained with L = 50,100,200, 500, and the error
formula of Eq. (26), we find that the extrapolated values of 92In kg are 0.04924 and 0.04875
when bases with Ky=200 and Ky=400, respectively, are used. From these values one can
infer that the accurate value of 92In kg is smaller than 0.00487, in disagreement with the
result of Ref. 26. Based on the convergence pattern observed by us, it is very difficult
to assign a reliable uncertainty to the value of 92In kg resulting from our sum-over-states
calculation. We estimate that this uncertainty is no worse than about 0.005 (i.e. about 1%)
and that our sum-over-states value of 92In kg amounts to 0.0487(5). This value differs by
5% from the value published in Ref. 26, but is in perfect agreement with the value obtained
by us in Sec. II using the Schwartz method. It is clear that in the case of polarizability
calculation the Schwartz method is much more accurate (since the nonlinear optimizations
are performed for each value of the frequency w) but the Goldman-Drake approach can be

used as an independent check of the result obtained using the Schwartz method.

We made some effort to explain the difference (of about 5%) between the results of our
calculations (obtained using two different methods) and the result of Ref. 26 obtained by
an application of the original version of the Schwartz method. We found that the observed
disagreement has three sources: (i) the omission of the singular, ¢y contribution to the
resolvent R(w) in Eq. (16) for 92J(w) used in Ref. 26 [the singularity w™', and the w
independent terms cancel out in the final expression for 92J(w), so this contribution is
small], (1) the insufficiently accurate value of 9%(1y|p?1o) used in Ref. 26 to evaluate the
integral defining 92In ko, and (i74) the value of 92C3 employed in Ref. 26 was incorrect since
it was computed from an incomplete formula, missing the explicit electric-field contribution

8§C§2) derived in Appendix of the present work.

21



IV. QED RECOIL CORRECTION

Theory of nuclear mass dependence of the a® QED correction for two-electron systems
has been given by Pachucki in Ref. 50. The expressions derived in this reference have
been applied for the first time in Ref. 51 for the lowest S states of the helium atom and
subsequently for other excited states of helium [21] and helium like ions [52], as well as
for the low-lying states of lithium [53], beryllium [54], and boron [55] atoms. The leading
correction £V, of the order of 1/M = m,/m,, can be written as sum of three contributions
Eg’l’l), EI%I , and El%l). The first two represent the change linear in 1/M of the ingredients
in Eq. (1) that results from adding to H the nuclear kinetic energy operator P?/(2m,)
corresponding to the recoil momentum P = —(p; + py). The first contribution, Eg’l’l),
accounts for the effect of p?/(2my) + p3/(2my). It can be obtained by scaling Eq. (1) with
the reduced mass p1/me ~ 1 — 1/M, resulting in

where the second term in the parentheses is a consequence of the electric-field dependence
of the scaled wave function pSv(ury, ury, u=2€), while the last two terms originate from
the In 1 dependence of the Bethe logarithm Inkg [51] and from the p3In gt scaling of the
Araki-Sucher term A, [52]. The second contribution, Eg’él), is due to the mass polarization

term Hyp = p1p2/m, and requires new calculations. It has the form

ey _ 31 (8719 N _8
ER2 = Wi |:3 <30 2In« In ko)aMDl 3D1 0Mlnk0 (65>
164 14
(5 + 5 me)ouD: — o @MAZ}

where 0y, denotes the derivative with respect to 1/m, when only the mass polarization term
Hyp is added to H. The third contribution is a generalization of the Salpeter correction

known for the hydrogen atom [56]. It has the form [50]

6y _ s34 2 62 8 7
B = o ( ot lnk()) D, Al] (66)
where
= (Y|P(ri®) + P(r;®) ) (67)

with the distribution P(r=3) defined by Eq. (4).
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When & = 0, the evaluation of Eg’l’l) and El%l) is no more difficult than the evaluation of
EGO To evaluate of Eg’z’l), we need also the derivatives 0y[D1, OpDa, OnAs, and Oyslnky.
The first three of them can be easily obtained from the double perturbation theory expression
OuX = —2(1h| X Ry Hypt)), where X stands for the operators appearing in Egs. (2)-(4). Since
1/M is very small, these derivatives can also be obtained with sufficient accuracy using the
finite difference method. Analytic evaluation of the derivative 0y/Inkg is nontrivial. It has
been performed for the first time by Pachucki and Sapirstein [51]. Currently the most
accurate value of dy/Inkg = 0.0943894(1) has been reported by Yerokhin and Pachucki [52].
Somewhat less accurate value of dp/lnky = 0.09438(1) has been obtained by Drake and
Goldman [39] using the finite difference method. Using the result from the former reference
and the finite difference calculation of the remaining derivatives, we found that E®1) =

-5.12993-107?, in agreement with the value —5.129925 - 10~ reported in Ref. 52.

Performing electric field differentiation of Eqs. (64)-(66), setting £ =0, and reversing the

sign, we find

a((i?, 1) (3 D1 q (3 by g,gl)’ (68)
where
al® = L B0 32 0 D, + « 3 14 02D, (69)
R1 Vi d < 3 V¢ )
1 8 /19 164 14
a%l) = QSM [— §<% —2Ina —In k0)8M82D1 <E + 3 In a) 0M85D2
7 8 8 8 (70)
+ = OOy + Z02D; Dylnky + Z0uDy 0 Inko + 2 D1 01103 mko],
a(3,1) — Oé3 4 [( Ina — @ + = lnk())@ Dl + = Dl 8 lIlk‘() + 82A1] . (71)
R3 M 3 9 &£ 3 &£ 671 &£

Equation (69) can also be obtained by performing the reduced mass scaling of Eq. (64)
and observing that 02lnk, scales as p~* with the reduced mass pu. The first four terms
in the square brackets of Eq. (70) can be obtained by performing the 0y, differentiation
of the approximate expression for a((f”o) used by Pachucki and Sapirstein [25]. Since, as
found in Ref. 26 and confirmed in the present work, the derivative d2Ink, neglected by

Pachucki and Sapirstein is very small, we employed the same approximation and neglected
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the last two terms in the square brackets in Eq. (70). Actually, we know the contribution
of the penultimate term, containing the product dyD; 92 Inky. This contribution equals to
—1.3-107* and is completely negligible. The contribution of the last term can be estimated
assuming that the 9y, derivative of 92 In kq is of the same order of magnitude as 9% In kq (the
Oy derivatives appear to be always smaller than or of the same order of magnitude as the
differentiated quantities, see Table 1 of Ref. 51; the same holds for the 0y, derivatives of
02Dy, %D, and 02A,). Making this assumption, we find that the neglected contribution of
On 0% In kg is of the order of 107! and is negligible compared to other contributions to the
recoil correction. This justifies the Pachucki-Sapirstein approximation in evaluating a((f”l).
To compute the 0, derivatives of the expectation values, we used the finite difference method
and our largest basis set, N = 512, developed to obtain the derivatives shown in Table I.
We have found that al;") = 0.00484, a;" = 0.00087, a%;” = 0.00541, and that the whole
QED recoil correction a((f”l) is equal to 0.01112(1), with all values in the units of 10~%a}.

The assumed uncertainty results from a conservative estimate of the neglected electric-field

derivatives of Ink

V. SUMMARY OF THE RESULTS AND CONCLUSIONS

We performed calculations of the main, a® QED contribution to the static polarizability
of helium including the hard-to-compute electric-field dependence of Bethe logarithm and
the finite nuclear mass (recoil) effects. This work complements earlier studies of the leading
relativistic correction [51, 57|, relativistic recoil effects [18], and the QED correction in the
infinite nuclear mass approximation [26, 51]. Our calculations of the second electric-field
derivative of the Bethe logarithm 92 Inkg, performed using the integral representation method
of Schwartz [27], see Sec. 11, confirm the very small value of this quantity found in Ref. 26.
However, the value of 9% Ink, obtained by us, equal to 0.0485572(14), is smaller than the
value of Ref. 26, equal to 0.0512(4), by about 6 times the error estimate given in Ref. 26. To
resolve this discrepancy, we performed, see Sec. 111, calculations of 92 Inkg using a different
method based on the direct summation of the spectral representation of 92 Inkg in terms
of pseudostates, along the lines suggested by Goldman and Drake [29] and Korobov [36].
The result of this second calculation, equal to 0.00487(5), is consistent with the result the
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calculation using the integral representation method of Schwartz but is inconsistent with

the result of Ref. 26.

TABLE VIII. Static polarizability of helium 4 (in a3 unless otherwise noted) including relativistic
and QED corrections. The reported uncertainties are estimated based on the convergence in basis

sets, except as marked. When no error bar is given, the last digit is certain.

nonrelativistic 1.383 809986 4

a? relativistic —0.000 080 359 9*

a? /M relativistic recoil —0.000 000 093 5(1)°
o QED — 92 In kg term 0.0000304738

9% Inky term 0.0000001822

a® /M QED recoil 0.000000 011 12(1)°
a* QED 0.000 000 56(14)%
finite nuclear size 0.000000 021 7(1)¢
total 1.383 760 78(14)

molar polarizability 2FaqNa  0.517 254 08(5)/9

experiment, Ref. 58 0.517254 4(10)/

¢ Ref. 23.

b The uncertainty accounts for the included of terms of the order of 1/M? and of higher order [18].

¢ The uncertainty due to the neglect of the mixed derivative 002 Inko in Eq. (70).

¢ The uncertainty accounts for an incomplete calculation of the a* QED correction to
polarizability, see Ref. 18.

¢ Ref. 18.

7 In em?/mole.

9 Using the nonrelativistic polarizability of the 3He atom, equal to 1.38401218(1) [23] and scaling
the recoil corrections with the mass ratio of 1.32711 one finds that the molar polarizability of

helium-3 is 0.517 329 65(5) cm?3/mole.

After including the contribution of 92In kg, the total value of the a® QED correction
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to the polarizability of helium in the infinite nuclear mass approximation amounts to
30.6560(1)-107% a3. We derived a formula for the correction to this value due to the finite
nuclear mass (the QED recoil correction). In evaluating this formula we neglected 92 In kg
and the mass-polarization effect on 9% In kg, given by the mixed derivative 9y;0% In kq. This
approximation is well justified, see Sec. IV, in view the smallness of 9%1In kg, compared
to other ingredients of Eqgs. (69)-(71). The value of the a® QED recoil correction alPy
obtained by us equals to 0.01112(1)-107%3 and is only about 9 times smaller than the a?

((12’1). It may be of interest to note that the significance of

the finite mass contributions to the nonrelativistic, a((io), relativistic, a((f), and QED, aé?’),

relativistic recoil correction «

components of the static polarizability of helium 4 are quite different. Specifically, we found

that ol /o ~3.2/M, o}V /o) ~85/M, af /P ~2.7/M.

In Table VIII, the results of our calculations are added to the data obtained in earlier
work [18, 23] and compared with the most recent experimental determination [58] of ag,
given in terms of the molar polarizability A.=4wraqN4/3. The agreement between theory
and experiment is very good, although the uncertainty of the experimental value is an
order of magnitude larger than that of the theoretical determination. This high theoretical
accuracy appears to be presently sufficient for metrological purposes [9-11]. As shown in
Table VIII, this accuracy is currently limited by the incomplete calculation of the o* QED
correction. Complete calculations of this correction for the energy levels of helium have been
very challenging [52, 59, 60] and have not been attempted when the effect of the interaction
with external electric field is included in the Hamiltonian. The recent successful calculation
of the a* QED correction for the hydrogen molecule [61] shows that a similar calculation for
the helium atom in the uniform electric field, a system of the same symmetry as Hy, may
be possible if accuracy higher than achieved in the present work is required for metrological

or other applications.

APPENDIX

In this Appendix we present derivation of the second electric-field derivative of the Cj
coefficient that determines the w™ term (equal to 4DCsw™3) in the large-w asymptotic

expansion of J(w). To obtain this expansion, we consider an auxiliary function ¢ defined
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(H-E+w)e=p. (72)

where ¢ is the real ground-state eigenfunction of the Hamiltonian H=H, + £z. For the
sake of brevity, in Eq. (72) and in further in the text we suppress the dependence of ¢ on
€ and on w. Obviously J(w) = (p]e), but it is advantageous to compute J(w) from the

expression

J(w) = {plpv) + (Wlpp) — (p|H — E + wlp), (73)

which for an approximate ¢ gives J(w) with an error quadratic in the error of ¢ [and

provides a lower bound to J(w)]. Following Schwartz [27], we write ¢ in the form

1
p=—pY+il, (74)

where the real function U collects terms that vanish faster than w™'. Inserting Eq. (74)

into Eqgs (72) we find that U obeys the relation
2 2
(H=E+w)U = ——ay— =&k, (75)

and that J(w) can be represented in the form

D 4

Jw) = T(lp) — 5~ 2{aulU) ~ £ WUk~ (UIH ~ By +lU),  (76)

w?

where k is the unit vector on the z axis and @ = 7,7, ® +ryr,°, so that [H, p] = 2i(a — £k).

It is obvious that the solution of Eq. (75) can be written as U = U; + Us, where
2
U, = —= €k (77)

and U, is the solution of Eq. (75) with the last term neglected. Schwartz [27] has found an

approximate solution for U; which, when inserted in Eq. (76), correctly recovers the w=>/2,

w3 Inw, and w™? terms in the large-w asymptotic expansion of J(w). His result is [27]
2 T; —
U, :_EZE [1— e (14 pry)] 4, (78)

where y = (2w)'/2. In deriving Eq. (78), Schwartz neglected the potential energy terms in

the Hamiltonian on the Lh.s. of Eq. (75), see Ref. 62 for an alternative derivation based on
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this assumption. Thus, Eq. (78) is valid also for an atom in the electric field that enters Uy

only through the field dependence of ).
Combining Eqgs. (76)-(78), we find after some cancellations that

J(w) =

\_/

(D)~ + i) + o) + O™, (79)

Elr—‘

where
4
Jl(W):—a<alp|U1>— <U1|H—E0+M‘U1> (80)
and

Tow) =~ (@[U3) ~ ZEIUs) b — (UL H — B+ wlUh) = €%+ 5 lag) €, (81)

with a,=ak. Derivation of the large-w expansion of J;(w) is complicated. It has been
performed through the w™ term by Schwartz [27]. His result, confirmed by Forrey and
Hill [35], is

42D 8D 4D -T2
where the coefficient C’él), depending on £ via 1), is given by the expression [27, 35]
1 1 1 L[>~ dp(r) 2 e
C'?(’ ) — 4 (2 In2— 5~ 7) o) Inr 0 dr + o) <w|fr1r2r1 ®ry 3¢> : (83)

with p(r) denoting the angular average of the electron density p(r)=(¥|d(r—ri H6(r—r)|1).

From Egs. (79), (81), and (82), it is clear that C5 = C’?El) + C’?Sz), where C?EQ) is the

contributions from J,(w) given by
1 2
(2) _ 2
Cy7 = Dé' + D<w|az¢>5. (84)

Calculating the second electric-field derivative at £ = 0 we arrive at

2

o2Cs? ) (%‘ZROGZID& (85)

Since (¢g|zRoa,10) = 1/2, we finally obtain, cf. Table I,
a2c(2) _ 2 —
RO = = = —0.04305503(1). (86)

(1)

The numerical evaluation of 0¢C3 "’ is much more difficult. Performing electric-field dif-

ferentiation of Eq. (83), one finds
1 I 2 I
9:C = -5 (agll -~ 51 a§D> +5 (aglz -~ 52 agp) : (87)
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where I; and I, are the integrals

* o dp(r)
[1:/0 Inr 0 dr (88)
and
I = (Y|rirorPry®Y) . (89)

The electric field derivatives 02l and 92p(r), needed for the evaluation of 92C{" via
Eqgs. (87) and (88), were computed using Eq. (7) and basis sets with Ky, = 128, 256,
and 512 optimized as described in Sec. II. The convergence of calculations was rather slow
and we found that 8?03(,1) = —0.00834(2). The same value was obtained using an alternative
formula for C’él) in which the last two terms in Eq. (83) are replaced by the finite part of
(¥|a) /D, cf. Eq. (19) in Ref. 27. One may note that the contribution 92C{”, derived in
the present work, is about five times larger in absolute value than the second electric-filed

derivative of the formula for C5 given in Ref. 27.

Adding up 92C" and 02C{, we finally find that 92C5 = —0.05230(2). This value
compares reasonably well with the value —0.053(1) obtained from fitting the derivative of

t7302f(t) at t = 0, cf. Egs. (12) and (15).
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