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Transient scalar hair for nearly extreme black holes
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It has been shown recently that extreme Reissner-Nordstrom black holes perturbed by a minimally coupled,
free, massless scalar field have permanent scalar hair. The hair, a conserved charge calculated at the black
hole’s event horizon, can be measured by a certain expression at future null infinity: The latter approaches
the hair inversely in time. We generalize this newly discovered hair also for extreme Kerr black holes. We
study the behavior of nearly extreme black hole hair and its measurement at future null infinity as a transient
phenomenon. For nearly extreme black holes the measurement at future null infinity of the length of the newly

grown hair decreases quadratically in time at intermediate times until its length becomes short and the rate at
which the length shortens further slows down. Eventually, the nearly extreme black hole becomes bald again like

nonextreme black holes.
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I. INTRODUCTION

Scalar fields, which are ubiquitous in theoretical physics
(e.g., the Higgs field) and in astrophysics (e.g., the inflaton,
certain dark matter, and dark energy models), have been pro-
posed as candidates for black hole (BH) hair [1], in possible
violation of the no-hair conjecture. The latter states that all
BH solutions of the Einstein-Maxwell equations of general
relativity can be completely characterized by three and only
three externally observable classical parameters, specifically
the BH’s mass M, charge ¢, and spin angular momentum a.
Bekenstein provided a proof for the nonexistence of scalar
hair given a set of assumptions [2—4]. A number of scalar
field hair models have been found, where one or more of the
assumptions underlying Bekenstein’s theorem are violated.
Those include scalar fields with nonstrictly positive poten-
tials, scalar fields which are noncanonical or nonminimally
coupled to gravity, bound states of “bald” BHs and solitons
[1], or spacetimes with more than four dimensions [5]. Also,
nonscalar field hair models have been suggested, including
non-Abelian Yang-Mills [6] or Proca fields [7]. In all these
examples it is the field itself that constitutes the BH’s hair. In
addition, when quantum mechanical effects are included, BHs
can carry quantum numbers [8] and have soft hair [9].

More recently, a different kind of scalar hair for extreme
Reissner-Nordstrom (ERN) BHs was found by Angelopoulos,
Aretakis, and Gajic (AAG) [10], where a certain quantity s[y/]
evaluated at future null infinity (.#*) equals a nonvanishing
quantity H[v{¥]—which may be called the Aretakis charge,
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the AAG hair, or the horizon integral—that is calculated
on the BH’s event horizon (EH), but vanishes if the BH is
nonextreme. Since H[y] is a conserved charge for ERN
BHs [11], it would naturally be related to a candidate for
BH hair. Indeed, in [10] it was shown that s[y] equals
H[vy]. The AAG hair may be construed as a different class
of BH hair than the types of hair discussed above, as it is
made of a minimally coupled, free, massless scalar field.
However, it is not the scalar field itself which constitutes the
measurement at ¢ of the AAG hair, but a functional of
the scalar field ¢ which is calculated by adding two terms
evaluated at .#", an asymptotic term s;[y] and a global
term sy [¥],

1 1
s[Y] = — lim u® x (ryr) + _/ (rp)d2du,
4M w0 87 J s+nu=0)

ey

where v is evaluated on £+ (Y| »+) and u is retarded time.
Angelopoulos, Aretakis, and Gajic showed that s[vy] = H[v]
for ERN BHs, but s[y/] = 0 for nonextreme RN BHs, where

MZ
HIY =~ /E 3.0, %)

which is calculated on the BH’s EH (AAG hair). We evaluate
below s[v¥](#) by evaluating si[vy](u) [without taking the
limit in Eq. (1)] and by truncating the integration in sy[y] at
u. We evaluate below H[¢](v) by integrating separately for
each value of advanced time v.

In what follows we first verify numerically the occurrence
of AAG hair for ERN BHs. We then generalize the AAG hair
also for extreme Kerr (EK) BHs. We next consider nearly
extreme BHs (NERN or NEK BHs) and show the AAG hair
as a transient behavior, including observational features from
far away.
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FIG. 1. (a) Measurement at .# " of the AAG hair s[v](u) (solid
curve) and the AAG hair H[¥](v) (dashed curve), in units of M2,
as functions of retarded (#) and advanced (v) times, respectively, for
ERN. (b) Relative difference between the measurements in (a) when
the EH integral is evaluated for v > M (solid curve). The dashed
curve is the reference curve 100M /u.

II. NUMERICAL METHOD

Our numerical simulations begin with writing the (2 4
1)-dimensional scalar wave equation in Reissner-Nordstrom
(RN) or Kerr spacetime backgrounds (Teukolsky equation)
for azimuthal (m = 0) modes in compactified hyperboloidal
coordinates, which allow us to access 1 at a finite ra-
dial coordinate [12]. The resulting second-order hyperbolic
partial differential equation is then rewritten as a coupled
system of two first-order hyperbolic equations. We then
solve this system by implementing a second-order Richtmyer-
Lax-Wendroff iterative evolution scheme [13,14]. The initial
data are a “truncated” Gaussian (to ensure compact support)
with nonzero initial field values on the EH. Specifically, in
hyperboloidal coordinates (p, ) (see [13] for definitions),
the initially spherical (¢ = 0) Gaussian pulse is centered at
p = 1.0M with a width of 0.22M so that we have horizon
penetrating initial data that lead to H[¥/] # O on the initial
data surface [10]. (For example, the horizon is at p = 0.95M
for ERN and EK BHs in these coordinates.) The Gaussian is
truncated beyond p = 8.0M and the outer boundary is located
atS = p(SF 1) =19.0M.

In practice, we approximate H[v](v) with H[{](7). At
finite times the difference between t and v (see Fig. 1 in [14])
is manifested in an apparent variation in H[v](v) which is
a numerical artifact resulting from this approximation. For
that reason, the physically relevant value which we use is
H[y (v > M).

III. EXTREME RN OR KERR BLACK HOLES:
NUMERICAL TESTS

First, we show in Fig. 1 s[y/](«) and H[y](v) as func-
tions of u# and v, respectively, for an ERN BH. Both
fields vary as functions of time, although the (unphysical)
changes in H[{](v) are not visible on the scale of this
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FIG. 2. Same as Fig. 1 for an EK BH. Note that (b) shows the
results for both low and high grid resolutions.

logyo(H[9]/s[t](u) —1) s[¥](

figure. Figure 1 also shows the relative difference H[y](v >
M)/s[¥](u) — 1 as a function of u, where H[{](v > M) ap-
proximates H[{¥](v — 00). We find that s[¢/](«) approaches
H[{y (v — oo) for late u as 1/u (i.e., s[{Y](u) ~ H[Y](v —
00) + S RN[Y]/u). We find for our choice of initial data
SN[ M3 ~ 100 + 1.

We then apply s[¢/] and H[v/] also for EK BHs and present
our results in Fig. 2. Accurate numerical calculation of H[v/]
is more challenging for EK BHs than for ERN BHs and re-
quires us to increase the numerical grid density substantially.
Figure 2 shows evidence for AAG hair for EK BHs. We find
also for EK BHs that s[v/](«) approaches H[y](v — o0o) for
late u as 1/u (i.e., s[¥]1(w) ~ H[Y (v = 00) + SX[]1/u).
Here JX[y1M~3 ~ 70 £ 1.

IV. NEARLY EXTREME AND NONEXTREME RN OR
KERR BLACK HOLES: NUMERICAL RESULTS

Next we consider NERN and NEK BHs. The AAG hair
H[y](v) is shown in Fig. 3 for a number of ¢/M and a/M
values for RN and Kerr BHs, respectively. For the extreme
cases Fig. 3 shows the respective Aretakis charges [11]. For
nonextreme BHs H[vy](v) attains vanishing values rapidly.
For nearly extreme BHs the H[y/](v) start at early times with
values close to their extreme counterparts, and at late times
they approach the nonextreme vanishing values. The closer
the BH to extremality, the longer H[v](v) takes to get close
to zero.

We expect that for nearly extreme BHs at early times s[y/]
would appear to be similar to that of ERN or EK BHs, but
that at late times it would behave similarly to nonextremal
BHs. That is, we expect transient growth of the measurement
at .# T of scalar hair for NERN and NEK BHs, after which
they would become bald again. Figure 4 shows s[v](u) for a
number of a/M values for Kerr BHs and for a number of ¢/M
values for RN BHs. The measurement s[y/](u) approaches
a nonzero constant for extreme BHs as u — oo, whereas
s[¥](u) — O for nonextreme BHs. The values of s[y](u)
for nearly extreme BHs are close at early times to those of
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FIG. 3. Horizon integrals H[y](v) (in units of M?) as functions
of advanced time v for (a) a number of 1 — g/M values for RN BHs
and (b) a number of 1 —a/M values for Kerr BHs. In (a), from
bottom to top, the values are 1 — g/M = 0,4.5 x 10°%,1.25 x 1077,
1.8 x 1077, 5.0 x 107%, 4.5 x 107, and 5.0 x 107>. In (b), from
bottom to top, the values are 1 —a/M = 0,4.5 x 1078, 1.25 x 1077,
1.8 x1077,5.0 x 107, 4.5 x 107, and 2.0 x 10",

their extreme counterparts, but at late times approach those of
nonextreme BHs (i.e., vanishing values). The closer the BH
is to extremality, the longer it takes to lose its grown hair and
achieve baldness. We examine the rate at which this behavior
occurs below.
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FIG. 4. The AAG hair H[¥](v) and its measurement at .#*
s[¥1(u) (in units of M?) as functions of v and u, respectively, for
(a) ERN and (b) EK BHs, similarly to Figs. 1 and 2, correspond-
ingly. Also shown is s[y/](u) for a number of values of ¢/M and
a/M, respectively. The insets magnify the late time period of near
extremality. The values of s[y/](x) shown in either panel are the same
as in Fig. 3. We show H[v/](v) by a nearly horizontal line (variability
is unseen on the scale of the figure), at values of (a) ~— 0.88 and (b)
~—1.62.
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FIG. 5. Difference between the value of s[y] for nearly extreme
BHs and for an extreme BH, As[y] (in units of M?), as a function
of (a) 1 —g/M for NERN BHs at u, = 1000M and (b) 1 —a/M
for NEK BHs at u, = 600M. The numerical data points are shown
by circles, and the solid lines are linear best-fit lines with slopes of
0.997 + 0.010 (NERN BHs) and 0.994 + 0.010 (NEK BHs).

The behaviors shown above allow us to distinguish qual-
itatively between extreme, nonextreme, and nearly extreme
BHs, where the third exhibits transient behaviors between the
first and the second. We can obtain quantitative features of the
transient nature of s[v](u) for nearly extreme BHs by consid-
ering two complementary properties. First, consider a fixed
value of retarded time u = u,, and for a fixed value of a/M
or g/M for Kerr or RN BHs, respectively, consider for NEK
BHs As[y](a/M) := s[{]]., (a/M) — s[¥]l..(a/M = 1) and
an analogously defined function of g/M for NERN BHs. In
Fig. 5 we plot As[y] as a function of 1 — a/M for NEK BHs
and as a function of 1 — ¢/M for NERN BHs. For both cases
we find that As[v] is linear in the distance from extremality.

Second, we fix the value of a/M or g/M. De-
fine 8s[v 1(u; a/M) = s[y¥1(u;a/M) — s[y1(u;a/M = 1) for
NEK BHs and an analogously defined function of ¢/M for
NERN BHs. In Figs. 6 and 7 we show és[v¥](u; a/M) as func-
tions of u for NEK and NERN BHs, respectively. The differ-
ence between a nonextreme BH and its extreme counterpart is
O(1). For nearly extreme BHs the differences §s[v [(u; a/M)
or 8s[V¥](u;q/M) are small at early times (dominated by
quasinormal modes), but grow like u? at intermediate times.
At sufficiently late retarded times, which increase with the
greater closeness of the BH to extremality, the quadratic
growth in retarded time slows down and §s[v] approaches its
nonextreme BH value asymptotically. For the computations
we study in this work, the intermediate regime begins soon
after the quasinormal ringing phase (~100M) and then lasts
for several hundred to thousands of M depending on a/M.

We can now combine the previous results and suggest that
for NEK BHs

S[I/f](u, zivz) - s[w](u, A% - 1) + yoKu2(1 - A%) 3)
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FIG. 6. Difference 8s[y] for different values of a/M for Kerr
BHs as functions of u. The reference line (thick solid curve) is ~u?.

and for NERN BHs
s[w](u, 1%1) - s[w](u, A% - 1) + %RNuz(l — A%) @)

at intermediate times. We find that the dimensionless coeffi-
cients .7 = 0.065 + 0.001 and .7;*N = 0.15 £ 0.01 for our
choice of initial data.

V. DISTINGUISHING EXTREME, NEAR-EXTREME, AND
NONEXTREME RN OR KERR BLACK HOLES

This deviation of nearly extreme BHs from their extremal
counterparts allows for their observational identification by
distant observers. Specifically, measurements at .#* of a
newly perturbed nearly extreme BH show initial growth of
AAG hair. However, whereas for EK or ERN BHs where
this hair is permanent, for nearly extreme BHs the length
of the newly grown hair decreases initially quadratically in

Reference curve ~ u?

—
— 1-gM=50 x 107 b
— 1-gM=45x 10®
— — 1-gM=1.25x 107

1-gM=1.8 x 107

logy [s[1](u; /M) — s[¢](u; ¢/M = 1)]

. e 1-gM =5.0 x 107 7
= = 1.gM=45x 10"
—-—- 1.gM=5.0 x 10°
10 . | . . . .
1.4 1.6 1.8 2 22 2.4 26 2.8 3 32 3.4

logyo(u/M)

FIG. 7. Same as Fig. 6 for values of g/M for RN BHs.
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FIG. 8. Ratio si[y]/su[¥] as a function of u for (a) Kerr BHs and
(b) RN BHs.

time until its length becomes short and the rate at which the
length shortens further slows down. Eventually, the nearly
extreme BH becomes bald again like nonextreme BHs. The
nearly extreme BH may repeat its hair regrowth attempts
when it is perturbed again, but will never succeed for long:
It is to eventually lose its regrown hair and become bald
again.

We can gain additional insight into the transient behavior
of NEK and NERN BHs by considering the relative con-
tributions of the two terms in Eq. (1), si[¥] and sy[v].
Figure 8 shows the ratio s;[vy]/sy[¥] for EK and NEK BHs
and for ERN and NERN BHs. For both EK and ERN BHs
sil¥]/suly] -~ —1.71 as u — oo. For nonextreme BHs
si[¥]/sul¥] = —1 as u — oo. That is, each term in Eq. (1)
approaches a nonzero constant for nonextreme BHs, yet their
sum vanishes. For nearly extreme BHs Fig. 8 shows that at
early times the ratio s;[v]/su[v] is close to its extreme BH
counterpart, but at late times it approaches negative unity, as
for nonextreme BHs. We again find that the closer the BH
is to extremality, the longer it takes the ratio to get close
to —1.

Our analysis provides an answer to the question of when a
BH is considered nearly extreme. As implied by Figs. 3, 4, 7,
and 8, when 1 — g/M = 5.0 x 107> the transient scalar hair
of the BH behaves as for nonextreme BHs. For 1 — g/M =
4.5 x 107® we already see typical transient behavior, the
hallmark of nearly extreme BHs. This effect complements the
signature that can be detected by the emission of gravitational
waves from a plunge into a nearly extreme BH [15].
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