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Loop quantum cosmology is a symmetry-reduced application of loop quantum gravity that has
led to the resolution of classical singularities such as the big bang, and those at the center of
black holes. This can be seen through numerical simulations involving the quantum Hamiltonian
constraint that is a partial difference equation. The equation allows one to study the evolution
of sharply-peaked Gaussian wave packets that generically exhibit a quantum “bounce” or a non-
singular passage through the classical singularity, thus offering complete singularity resolution. In
addition, von-Neumann stability analysis of the difference equation — treated as a stencil for a
numerical solution that steps through the triad variables — yields useful constraints on the model
and the allowed space of states. In this paper, we develop a new method for the numerical solution
of loop quantum cosmology models using a set of basis functions that offer a number of advantages
over computing a solution by stepping through the triad variables. We use the Corichi and Singh
model for the Schwarzschild interior as the main case study in this effort. The main advantage of
this new method is computational efficiency and the ease of parallelization. In addition, we also

discuss how the stability analysis appears in the context of this new approach.

I. INTRODUCTION

Classical general relativity is plagued with singulari-
ties such as those at the center of black holes and also
the big bang in cosmological models. In loop quantum
gravity, the spacetime continuum is replaced by a discrete
quantum structure wherein geometric operators such as
areas and volumes have discrete eigenvalues with a non-
zero minimum [1-3]. The discrete structure of quantum
spacetime only plays a significant role when the curva-
ture approaches Planck scale; otherwise, strong agree-
ment with general relativity is found. Nearly two decades
of study has been performed in the context of singular-
ity resolution in symmetry-reduced cosmological models
with fairly robust results that replace the big bang with a
big bounce [4-7]. States sharply peaked on classical tra-
jectories when the universe is large and expanding, can be
evolved backward using the quantum Hamiltonian con-
straint; such states evolve in a stable and non-singular
way, and bounce in the deep Planck regime into a con-
tracting branch [11].

Several of the above mentioned results were obtained
through the application of computational techniques in
the field of loop quantum gravity (See Refs. [8-10] and
references therein). Recently, similar numerical studies
were performed in the context of the Corichi and Singh
(CS) model of the Schwarzschild interior [12] resulting
in a clear numerical demonstration of singularity resolu-
tion [13]. The CS model improves upon previous mod-
els, offering a consistent and correct infra-red limit and
independence from fiducial structures used in the quanti-
zation procedure. The quantum Hamiltonian constraint
is a partial difference equation in two discrete triad vari-
ables making it somewhat more complicated in compar-
ison with the previously studied cosmological models.
Von-Neumann stability analysis of this equation results

in a stability condition for black holes which have a very
large mass compared to the Planck mass. In addition,
further analysis for such large black holes leads to a con-
straint on the choice of the allowed states in numerical
evolution. Evolution of a sharply peaked Gaussian wave
packet yields a bounce in one of the triad variables, but
for the other triad variable singularity resolution arises
through a simple passage through the classical singu-
larity. In addition, states are found to be peaked at
the classical trajectory for a long time before and af-
ter the classical singularity [13]. These results support
a symmetric quantum black hole to white hole transi-
tion paradigm that has received tremendous attention in
recent years [14-16].

Needless to say that the semi-classical behavior of the
model is expected in the regime where the triad variables
have large values in comparison to the Planck scale. This
implies that the numerical triad grid required must span
a very large domain, and is often limited by the finite
computational resources (memory, compute time, numer-
ical precision, etc.). In practice, our previous efforts suc-
ceeded in performing numerical simulations only on the
scale of a few hundred Planck units in each triad dimen-
sion [13]. The method used therein was a straightforward
approach inspired by a finite-difference stencil computa-
tion — a recursive stepping through a 2D grid built using
two discrete- valued triad variables. The method was dif-
ficult to parallelize owing to its intrinsically serial struc-
ture and was also constrained by finite floating-point nu-
merical precision. In this paper, we develop a new numer-
ical solution method inspired by the well-known spectral
collocation approach for numerical solutions of partial
differential equations that utilizes a set of basis functions
in one triad variable, and performs an explicit stepping in
the other variable. This allows for high computational ef-
ficiency, especially for the larger sized computations and
reduced numerical precision requirements. Moreover, the



basis function approach is readily parallelizable on multi-
and many- core processors like modern CPUs and GPUs.

An alternative method of solution to quantum Hamil-
tonian constraints could also offer a different perspective
on the role of the von-Neumann stability analysis in loop
quantum cosmology models. After all, one may ask, are
the discovered instabilities through that analysis a true
feature of the model and possibly the underlying physics,
or simply an artifact of some sort of how one solves
the equations? The von-Neumann stability analysis is
most commonly used to evaluate finite-difference stencil-
based computations, i.e. a local stepping approach on a
grid built using the triad variables’ discrete set of values.
What if one took a more global approach towards solving
the equation, that doesn’t involve any stepping? Does
the same instability manifest itself in some other way?
If so, then indeed, that would be a strong indication of
the inherent nature of the instability and its relevance
to a property of the model and possibly even something
physical. In this paper, we study this question in some
detail and show that the previously discovered instabili-
ties are not simply artifacts of the manner in which the
equations where solved, rather they are indicative of the
issues within the CS model itself or something else of
significance (see Ref. [13] for different possibilities).

This paper is organized as follows: In Sec. II we intro-
duce the loop quantum CS model and briefly describe its
key features. In Sec. III we present the new numerical
method to solve such models, and in Sec. III A we apply
this technique to a variable-separated representation of
the CS model. In Sec. III B the application is broadened
to the full 2D form of the CS model. A discussion of
some of the technical aspects of the implementation of
the new numerical technique are also presented therein.
A detailed discussion of the instability exhibited by the
CS model is presented in Sec. IIIC. We conclude with
a discussion of results in Sec. IV, and the novel benefit
that the numerical technique offers is elaborated on in
Sec. IV A and Sec. IV B.

II. BACKGROUND

The loop quantization of the Schwarzschild interior is
performed using a Kantowski-Sachs vacuum spacetime
with a phase space expressed in terms of holonomies of
Ashtekar-Barbero connection components b and ¢, and
the two conjugate triad variables p, and p.. The space-
time metric in terms of these variables is given by

2
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Here L, is a fiducial length scale in the z-direction
of the spatial manifold. To relate this with the usual
Schwarzschild metric variables, p, and p, satisfy
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where m = GM, with M as the ADM mass of the black
hole space-time. In the classical theory, the horizon at
t = 2m is identified with p, = 0 and p. = 4m? while the
central singularity is where both p, and p. vanish. In the
quantum theory, the eigenvalues of triad operators are
given by
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where v is the Immirzi parameter and ¢p; is the Planck
length. Loop quantization of the classical Hamiltonian
constraint using the holonomies of the connection com-
ponents b and ¢ yields the following quantum difference
equation [12]
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Here, for a Schwarzschild black hole interior correspond-
ing to mass m,
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where A denotes the minimum area eigenvalue in loop
quantum gravity, i.e. A = 4v/37v03,.

III. BASIS FUNCTION METHOD

In this section, we demonstrate the use of our newly
developed basis function method (BFM) to solve discrete
quantum Hamiltonian constraints in loop quantum cos-
mology. As mentioned earlier, this approach is inspired
by the well-known spectral collocation method use com-
monly for numerical solutions of partial differential equa-
tions. The main advantage of the basis function method
is its high computational efficiency and ease of paral-
lelization on modern computer hardware. We also com-
pare the basis method based solutions with the previous
approach of recursively stepping (RSM) through a grid
of triad variable values.

We use the example of the CS model of the
Schwarschild interior throughout. We set 8, — 0 (a re-
quirement for stable solutions [13]) and set 0, = 20, = 1
without loss of generality.

A. Separable Solutions

Let us begin with performing a separation-of-variables
solution of the CS model under consideration. To demon-



strate the viability of the basis function method so-
lution for this model, ¥ is taken to be of the form
U, = A(pw)B(71), which reduces the CS model to

(u+20p)A(p +40p) + (0 —205)A(p — 40p) = 211 A (1)
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and
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where )\ is the separation parameter.

The basic idea behind the basis function method is to
start with a set of appropriate functions, and then solve
the difference equation on a linear span of this set. The
chosen basis should allow for highly variable behavior for
small values of the triad variables p and 7, but only cap-
ture very smooth behavior for much larger values. This
allows for very sharp quantum fluctuations in the deep
Planck regime, and yet very smooth semi-classical behav-
ior for large values of the triad variables. One approach
to build such a basis is to seek inspiration from a Fourier
basis as used in spectral collocation methods, but with
a non-constant wavelength, i.e. k(x). Note that our re-
quirement of smoother behavior for larger values of z,
then becomes the condition that k(z) be a monotoni-
cally decreasing function of x. Specifically, we let k drop
rapidly (exponentially) with x. Thus our desired modi-
fied Fourier basis would take the form, exp(inf(z)) where
0'(z) = k(z) drops exponentially with z. Given such a
form for a basis, we can then expand any solution as
a linear combination of these basis elements and obtain
the values of the coefficients by imposing the difference
equation. Thus, ultimately we solve a linear system of
equations for which a wide variety of efficient numerical
algorithms and solvers are readily available.

More specifically, we choose the basis functions to take
the form,

F o)) ®)

D, (1) = exp(ine”
which is a slightly modified version of a basis that was
proposed by one of us in Ref. [17] many years ago. Some
sample basis elements are depicted in Fig. 1.

The basis function method ultimately involves solv-
ing a linear system of equations for a vector of weights
wpn, Where n is an index spanning the number of basis
elements. The system matrix is represented as an “in-
terpolation matrix”, with each entry being the sequence
in Eqn. 7, and with each B replaced with an appropriate
representation of Eqn. 8. Each row in this matrix corre-

sponds to an increasing value of 7 in the domain of the
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FIG. 1: Sample basis elements utilized throught this work.
Note how they allow for highly oscillatory behavior at small
values of the triad and then smoothen out as the values get
larger.

computation. Thus, Eqn. 7 would be represented as
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To solve the above system for the function B(7), other
than the trivial B(r) = 0, inspiration was taken from a
standard technique for numerically solving partial differ-
ential equations. A row can be injected into the system
matrix, as long as there is an accompanying column, to
disrupt the homogeneity of the system without funda-
mentally changing the computation. This row can be in-
terpreted as numerically incorporating initial or bound-
ary conditions; and in our approach is treated as a re-
striction on the solution. For our results in this section,
we used ) w, P, (7 =T) =1 for a large value of T.

Using this approach, a reconstructed solution can be
generated, which is in precise agreement with the recur-
sively computed solution. In Fig. 2 we show a sample
basis solution for the B(7) equation as compared with a
recursion based solution computed by stepping through
the values of the 7 variable. There, we set vd, — 0 (a re-
quirement for stable solutions) and set §, = 20, = A =1
for simplicity.

Similarly to solve Eqn. 6 we first make the substitution

C(p) = A(p+ 26,) — A — 20p) which results in
,LL(C(M + 25[,) — C’(,u — 251,)) +
26, (C(p +20y) + C( — 26p)) = —2AC(p) . (10)

This allows us to easily solve Eqn. 6 using both the basis
function method and the recursive approach. The out-
come is similar as that shown previously for the B(r)
function.
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FIG. 2: Solution of the B(T) equation using the basis function
method as compared with a solution computed by stepping
through the 7 values using a recursive approach. The up-
per panel shows both solutions plotted together. The lower
panel depicts the absolute difference between the two solu-
tions, which is on the scale of machine precision.

B. Full 2D Solution: Evolution with Basis
Functions

The numerical solution computation for the full 2D
non-separable case, takes a similar approach. The so-
lution is again taken to be a weighted-sum of the basis
functions Eqn. 8, but with 7 dependent weights. This
leads to Eqn. 4 taking the form
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The solution can then be reconstructed on the full range
of p, T values via

U = 3w ()00 (n) (12)
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FIG. 3: Solution of the C'(¢) equation using the basis function
method as compared with a solution computed by stepping
through the p values using a recursive approach. The upper
panel shows both solutions plotted together. The lower panel
depicts the absolute difference between the two solutions.

The 7 dependence is captured by stepping through a 7-
valued grid of this reconstructed solution.

Similar to the 1D variable-separated case, the basis
function method ultimately leads to a linear system of
equations. The system involves finding the weights w,,
while the invertible system matrix represents the left-
hand-side of Eqn. 11. A boundary condition is im-
plemented in the manner of row-column injection used
previously, where lim,_,. ¥, , = 0 is represented as
Yonwn®r(p = M) = 0. As typically done in such
models, we impose a constraint that represents an ini-
tial “semi-classical” wave-packet, i.e. a Gaussian profile
for the solution at large 7, and then step backwards in
7, ultimately evolving the system deep into the quantum
regime and beyond.

The error denoted by the L..-norm as the maximum
value of the residual between the recursive step method
and basis method solutions at slices of constant 7 is de-
picted in Fig. 5. It is clear that the error stays low for
the larger values of 7, however it increases in the neigh-
borhood of 7 = 0. This is likely due to the use of a
relatively small number of basis elements. In fact, as
seen in Fig. 5, it is clear that overall error reduces dra-



FIG. 4: Solution of Eqn. 4 using the basis function method
(upper panel) as compared with a solution computed by step-
ping through the 7, . values using a recursive approach (lower
panel).
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FIG. 5: Loo-norm of the error at each value of 7 for different
number of basis elements N = 20, 23, 25.

matically with even a modest increase in the number of

basis elements. Of course, one can also envision a minor
tweak in the form of the basis to reduce the error in the
small 7 regime further. We do not attempt to do that in
this work.

The agreement between the basis and recursive method
can be even further inspected by examining the volume
expectation value (v). This is shown in Fig. 6.
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FIG. 6: (v) computed using both the basis function method
and the recursive step method, and the associated relative
difference.

1. Optimization

To reduce computational cost, we make use of a key
property of the solutions, i.e. they must get smoother for
the larger triad values. When the solutions are smooth,
they can be interpolated very effectively, thus allowing for
a significant reduction in the “sampling rate”. In order
to take advantage of this, we only solve over a subset of
triad values as computed through this expression

pivr = i+ 1+ (2)’] (13)

where | | denotes the “integer part” or the gint function.
Visually, this set can be represented as shown in Fig. 7.
Through some experimentation, we discovered that this



form yields significant computational benefit with rela-
tively little loss of accuracy. This allows us to reduce the
effective grid size by a factor of 10, offering us a tremen-
dous speed-up!
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FIG. 7: Subset of p variable grid values compared with op-
timal p variable grid values obtained through the empirical
interpolation method.

In addition, while the choice of basis etc. was made
largely based on physical considerations and numerical
experimentation, we can show that this choice is reason-
ably optimal using a reduced basis approach [18] with
an empirical interpolation method framework [19], calcu-
lated via the greedy algorithm [20]. This was done using
the open source code rompy [21, 22] which demonstrated
that the optimal sampling nodes have a similar distribu-
tion to the nodes generated with Eqn. 13. This is shown
graphically in Fig. 7. Utilizing the chosen basis function
in Eqn. 8, one can generate an associated Vandermonde
matrix, with the elements

Vii=®;(wi) - (14)

If the basis elements ®;(u;) are considered as a reduced
basis, one can then perform a singular value decomposi-
tion (SVD) of V; ;. This demonstrates that the chosen
basis is approximately orthonormal and well-conditioned.
This was further verified by performing Gram-Schmidt
orthonormalization on the basis, which led to no per-
ceived difference in the orthogonality of the basis, and
only an insignificant reduction in the conditioning. Thus,
we observe that while certain techniques may be used to
improve our basis function method (e.g. Gram-Schmidt,

Empirical Interpolation), they are not necessarily re-
quired.

C. Instability

After performing von-Neumann stability analysis on
Eqn. 4, it was noted previously [13] that the model is
subject to an instability condition,

po> 4. (15)

This condition p > 47 is of particular interest as it only
appears through use of von-Neumann stability analysis in
the context of the full 2D system Eqn. 4, and not in the
variable-separable case. This is indicative of the fact that
the p > 47 condition is a consequence of the full 2D form
of the quantum Hamiltonian constraint. In this section,
we attempt to understand how exactly this instability
appears in the 2D equation — both, in the context of
the stencil-based, finite-difference-like stepping approach
and, of course, the basis function method.

1. The Large p, ™ Limat

Beginning with the original Eqn. 4 and taking the ap-
proximation (u,7) >> (dp,0.) and setting vd, — 0, we
obtain
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Next, we insert the following Taylor approximation, mak-
ing implicit use of the expectation that the solution tends
towards smooth behavior for large values of u, 7
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U+,

0? 0 0?

47—
T@uBT ou



which can be further reduced into an equation of the form
of the advection partial differential equation,

: mony
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Now, it is relatively easy to see why an instability appears
for ;o > 47 part of the computational domain. Making
an analogy with the so-called, “CFL condition” [23] that
commonly appears in numerical partial differential equa-
tion methods, Eqn. 18 presents an advection equation
with a locally defined speed of v = f=. This defines, at
each point in (7, ), a local light cone extending into the
past defined by the region traced out by the characteristic
speed v. However, the finite-difference stencil as defined
by the Hamiltonian constraint, has a triad stepping ratio
of 8,/20. = 1. This results in an instability when v > 1,
since the local physical domain of dependence is no longer
fully contained within the local computational domain as
determined by the quantum Hamiltonian constraint.

FIG. 8: Evolution using the basis function method into the
unstable regime of pu, 7.

As mentioned before, the instability condition of u >
47 is a result of recursive stepping through both p and
7 as in Eqn. 4. With a global method like the basis
method, it could be reasoned that such a local instability
condition may be avoided. However, it does not; this
can be seen by performing a “shift” of coordinates, pu —
1+ 555, 7 — 74 100 and allowing part of the Gaussian
wavepacket to evolve into the unstable regime. Fig. 8
depicts such a sample evolution.

We find that the instability condition as shown is still
applicable even in the basis function method. It is sus-
pected that this is due to an intrinsic issue with the CS
model, or perhaps due to the lack of a complete Hilbert
space of solutions or possibly even a reflection of some
underlying physics. Thus, von-Neumann analysis con-
tinues to be beneficial towards providing insight on the
viability of models in loop quantum cosmology. More
specifically, it is able to provide various constraints on
such models based on the requirement that evolutions
must be stable [8, 13, 25].

2. Stability in the Basis Function Method

To understand the instability in the context of the basis
function approach, we take Eqns. 4 and 12 together, while
noting that the only time-varying component in Eqn. 12
is J. We then rewrite Eqn. 4 using vector and matrix
notation

N
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i=0
ZQ(M + kéb)ﬁrinéc . (19)

where ® is a square matrix with the different basis ele-
ments arranged in columns and each row representing a
different p value. In this notation the CS model can be
rewritten as
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Given that ® is a matrix of full rank, we can compute the inverse of matrix A (defined below) and obtain
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This can be further reduced down to
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Finally, if the following definitions are made,
) —iaD g1

then one can use Eqn. 23 to express Eqn. 22 in the fol-
lowing manner,

§T+26C = Hq:— . (24)

Now, we use the eigenvalues of matrix IT to test for
stability; if any of the eigenvalue magnitudes exceed
unity, that makes the solution of Eqn. 24 grow unbound-
edly. With some additional simplifications (in particu-
lar, (p,7) >> (d,0.)) accompanied with some numeri-
cal computations it is not difficult to see that one obtains
the same unstable region (p > 47) as derived before in
Ref. [13] using basic von Neumann stability analysis.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have developed a new numerical
method that is particularly suitable for computing solu-
tions to the quantum Hamiltonian constraint of models in
loop quantum cosmology. The method is inspired by the
spectral collocation method that is commonly used for
numerically solving partial differential equations. It uses
a special set of basis functions that take full advantage of
the expected behavior of physical solutions of the model.
We also compared the new basis function method with
the previously used approach of a stencil-style computa-
tion using a recursive computation over a grid of allowed
values for the triad variables. In addition, we also dis-
cussed how the stability analysis appears in the context
of the basis approach.

In this section we will document how the basis func-
tion method improves upon previous approaches. As
pointed out earlier, the main advantage is computational
efficiency and ease of parallelization.

(
A. Parallelizability

The basis function method ultimately involves the
computation of a solution of a linear system of equations
of size proportional to the square of the number of basis
elements in use. Since this is a very well-studied prob-
lem, there exist many highly optimized solvers available
even for parallel hardware such as multi-core CPUs and
many-core GPUs. On the other hand, the recursive step
method is intrinsically serial and rather challenging to
parallelize.

Cores| BFM Run-Time (s)

1 161.110
2 85.805
4 48.852
8 29.751

TABLE I: Run-Time by number of cores with simple OpenMP
multi-threading on p, 7 € [—1600, 1600] grid

With a simple multi-threaded implementation for the
BFM algorithm, the benefit of parallelization can be
clearly seen. Increased benefit is expected when the num-
ber of basis elements gets larger; and we anticipate a more
in-depth study of this feature for both multi-core CPUs
and many-core GPUs in future work.

B. Precision

As mentioned above, the basis function method in-
volves solving a linear system of equations. Performing
an analysis on the backward error of matrix inversion
techniques yields

AZ =b

EBFM = HAilg— f” = (KZGHLachine)
ko =||AT | |All o N . (25)

On the other hand it has been found that for a recur-
sive step method with p € [=2£, 2] and 7 € [5F, L],
the error egsyr & O(T X Meémachine). Since standard
backward error is proportional to the number of basis el-
ements, we have shown that a small and constant number
can compute solutions on a range of domains accurately;
it stands to reason that as long as the non-zero regions

of the computed solution are reasonably well sampled by



the basis, the BFM approach can calculate a larger range
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of solutions with a set level of computational precision.

FIG. 9: Relative L2 error for various size domains, and evolution with the basis function method over large domain, u,7 €

[—1600 : 1600]

It can be seen in Fig. 9 that the recursive step method
based solution experiences unbounded growth due to
fixed, finite available precision; while the basis method
computed solution maintains the correct overall behav-
ior expected. For a closer analysis of the effects that
finite precision can have on the recursive step method
solutions a precision test can be performed. For such a
test, we maintain a constant domain and solve identical
simulations with varying precision. The error can then
be analyzed by taking the highest precision solution as
most accurate. Our standard error analysis follows as

ep(rs) = 2o YQuadliin, 7i) = Vp(pin, )"
Zn \P2Quad (:un’ Ti)

where P is a precision other than quadruple-precision
(e.g. double, single). The results are depicted in Fig. 10.
They suggest that the recursive step method is far more
prone to suffer from precision limitations over the basis
method. This ultimately translates into a major compu-
tational advantage in favor of the basis method.

In summary, we have developed a new numerical ap-
proach towards solving quantum Hamiltonian constraints
in loop quantum cosmology. The approach makes use
of a set of basis functions, specifically designed using
key physical features of the solutions in mind. This ba-
sis method, borrows from the well-known spectral collo-
cation method for solving partial differential equations.
We demonstrate the efficacy of the method and compare

1E-06 ; . . : .
1€-08 | 4
1E-10 | 4

)

1

= Rel L, P=8 —e—

T Rel Ly P=4 —o—

& 1E12 | 4
1E-14 | 4
- M%

FIG. 10: Precision test for single (4-byte), and double (8-
byte) precision. It is clear that error grows significantly as
the evolution progresses (recall, the system evolves backward
in 7).

it with the previously used recursive step method. We
find that the basis method offers a number of benefits
over the previously used approach, especially in the area



of computational efficiency. Throughout this paper, we
use the Corichi and Singh loop quantum model of the
Schwarzschild interior for demonstration purposes.
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