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ABSTRACT

Simulation-based analysis is essential in the model-based design
process of Cyber-Physical Systems (CPS). Since heterogeneity is
inherent to CPS, virtual prototyping of CPS designs and the simu-
lation of their behavior in various environments typically involve
a number of physical and computation/communication domains
interacting with each other. Affordability of the model-based design
process makes the use of existing domain-specific modeling and
simulation tools all but mandatory. However, this pressure estab-
lishes the requirement for integrating the domain-specific models
and simulators into a semantically consistent and efficient system-
of-system simulation. The focus of the paper is the interoperability
of popular integration platforms supporting heterogeneous multi-
model simulations. We examine the relationship among three exist-
ing platforms: the High-Level Architecture (HLA)-based CPS Wind
Tunnel (CPSWT), mosaik, and the Functional Mockup Unit (FMU).
We discuss approaches to establish interoperability and present
results of ongoing work in the context of an example.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; • Computing methodologies → Modeling

and simulation; • General and reference → Cross-computing
tools and techniques.
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1 INTRODUCTION

Cyber-physical systems (CPS) are engineered systems where func-
tionality emerges from the networked interaction of physical and
computational processes [17]. Design of these systems requires the
integrated use of domain-specific abstractions and analysis methods
that have been developed over the past decades in disparate areas of
computing and networking as well as physical systems engineering
such as mechanical, thermal, electrical, electronic, hydraulic, and
other domains.

Highly diverse CPS components, multi-physics behavior do-
mains and complex interactions make it impossible for a single
simulation tool to satisfy all of the modeling and analysis require-
ments [29] [15]. Therefore a suite of simulation tools, each simulat-
ing some aspects of a particular CPS, need to be used for system
level CPS simulation. For example, a communication network can
be simulated by a variety of well-known open-source simulation
tools such as OMNeT++ [31] and NS-3 [11] or by commercial simu-
lation tools such as OPNET [12]. Physical processes in plants can
be simulated by Dymola [8] or MATLAB-Simulink [3]. These simu-
lation tools also provide a large set of curated model libraries that
enables efficient construction of good models using them. Thus, by
necessity, we have to integrate in a semantically precise manner
different modeling languages and simulators to perform a system-
of-systems level holistic analysis of CPS.

Figure 1: A Network-Controlled Processing Plant

Fig. 1 shows a simple illustration of three aspects of a processing
plant. The plant is simulated using MATLAB-Simulink [3] software,
the event-based controller is simulated using Colored Petri Net
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(CPN) [18], and the communication network connecting the plant
and controller is simulated using OMNeT++ [31]. Integrated evalua-
tion of the three simulators can show the effects of network delays
on plant operation. It can also answer questions about the resilience
of the processing plant to physical faults or cyber-attacks.

Integrating simulations tools in a semantically precise manner
is highly challenging. These diverse simulation tools differ heav-
ily in the types of models and modeling languages they use, their
models of computation, their implementation language, interfaces,
and behavioral semantics. In addition, industry heavily uses propri-
etary simulators that make ad-hoc approaches for their connection
ineffective. The simple input-output connection among simulators
running on a distributed computing platform completely overlooks
the fundamental integration requirements such as precise time co-
ordination and distributed object management for data exchange.

This paper describes a conceptual integration framework that
we have developed over last several years [26] [14] [15]. The frame-
work incorporates three distinct integration platforms: the model-
integration platform (MIP), the tool-integration platform (TIP), and
the execution-integration platform (EIP). We focus mainly on model
and tool integration platforms, which represent the core part of
model-based integration approaches. In Section 2 we summarize the
specific services integration platforms need to provide and discuss
the overall framework and the relationship among the MIP, TIP and
EIP platforms. In Sections 3, 4, and 5, and we respectively review
three specific integration platforms, the Cyber-Physical Systems
Wind Tunnel (CPSWT) [14] [15], the mosaik platform developed
for smart-grid co-simulation [10], and the Functional Mock-up Unit
(FMU) [6]. In Section 6 we discuss the need for interoperability
among various simulation integration platforms. We present our
ongoing work to enable interoperation among the above integra-
tion platforms in Section 7. Finally, Section 8 concludes the paper
and highlights directions for future work.

2 SIMULATION INTEGRATION CHALLENGES

Real-world CPS are frequently large-scale system-of-systems that
are built using many different subsystems. These individual sub-
systems often exhibit dynamic behavior and utilize discrete- or
continuous-time models for their simulations. During simulation,
these dynamical models compute system behavior over time, so
interactions among simulated subsystems need to support both
data exchange and time-based coordination.

2.1 Common Requirements in Distributed

Simulation and Experimentation of CPS

The common challenge for simulation integration platforms is that
the suite of domain specific simulation tools that need to be sup-
ported is not fixed. Depending on the type of CPS to be analyzed,
specific goal of the analysis, and the experimental scenarios tar-
geted, the tool configuration varies. Listed below are typical re-
quirements that simulation integration platforms need to satisfy.

• Time Management: In order to maintain logical and tem-
poral consistency among time-dependent simulations, it is
required to manage timed execution of simulation models,

synchronize time across simulators, coordinate their time ad-
vancement through a configurable time advancement proto-
col, allow time-stamped events that are shared and processed
in a time-dependent manner according to a pre-determined
event delivery and handling protocol, permit across simula-
tors different time-scales and time-resolutions (potentially
even dynamically varying), and support for simulation exe-
cution in a real-time or as-fast-as-possible manner.

• Distributed Object Management: Rich interaction models
are necessary for distributed, multi-model simulations. Data
exchangemay occur via one-off interactions or through state-
ful shared data-structures. Both mechanisms should support
time-stamped and untimed data updates, reliable and best-
effort data delivery and processing rules and methods. Sup-
port also is needed for ensuring a desired Quality of Service
(QoS) of the physical network used for data exchanges [13].
In addition, often some simulators join and leave the execut-
ing integrated simulations multiple times during run-time,
thus requiring dynamic discovery and tracking of the simu-
lators, maintaining current data model types for exchanged
data, and updating the assignment of data producers and
consumers for the updated data model among the updated
set of currently executing and integrated simulators.

• Coordinated SimulationOrchestration: For temporal con-
sistency, all the integrated simulators must start executing
simultaneously. User control of simulation execution and ex-
perimentation with different logical and physical start times
is also needed. In addition, these complex simulation exper-
iments require configuring many parameters and settings.
Such tasks are usually accomplished using a dedicated simu-
lation manager component [15].

• Integration with Hardware, Humans, and Existing Sys-
tems: Many physical phenomena are better suited to execu-
tion in the physical hardware than simulation for reasons
such as unavailability of high-fidelity models or significantly
lower computational performance (e.g. software-defined ra-
dios) [23]. In addition, large systems and services (e.g. exper-
iment infrastructure or remote laboratories) may need to be
integrated directly with simulations. Further, these simula-
tions often need integrated modeling of human interactions
(e.g., machine operators), human organization models, oper-
ational workflows, and decision-making processes. As the
physical hardware and humans operate in real-time, the in-
tegrated simulations must also execute in real-time. Many
other challenges arise due to synchronization, network de-
lays, authentication and authorization, and other operational
factors such as availability and costs.

• Communication Network Simulation and Emulation:
In CPS, networking is a key component that cuts across many
simulations. Thus, integrated CPS simulations invariably
require simulation (or emulation [33] using physical devices)
of the communication network. This allows for studying
CPS security and resilience against effects such as network
delays, packet drops, and cyber-attacks.

• Scenario-Based Experimentation: This is needed for eval-
uating the systems with a range of run-time variability in
the component models and in operation scenarios [23] [25].
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• Compositionality and Semantic Interoperability: For sim-
ulation interoperability, binding them using same inputs and
outputs is highly inadequate. The simulation models and
tools make internal assumptions behind their interfaces that
must be respected for their semantically accurate compo-
sition. For example, simulation exchanging voltage value
might use different measurement units and assume different
update frequencies. Thus, each simulation has a contract for
its input-output ports that specifies the conditions that must
be satisfied for meaningfully interacting with it. The con-
tents of this contract must be defined by each co-simulation
platform, and a mechanism must be implemented to ensure
that two simulations can interoperate at this contractual
level when attempting to perform a combined experiment.

• Rapid Synthesis of Integrated Simulations and Experi-
ments: Important CPS simulation applications such as auto-
mated design-space exploration [22] and automated vulner-
ability analysis [19] require changing modeling abstractions
during the search process that implies changing the suite of
included simulators. Manual integration of needed simula-
tions is inefficient, error-prone, and inflexible in these cases.
However, automated integration of simulations [14] using
integration models is a hard problem requiring significant
configurable tools and computation infrastructure [5].

• Broader Usability: These tools are the front-end that a CPS
researcher uses for experiments and so these must be us-
able by a broad range of users, some of whom have limited
background in co-simulation, distributed systems, and pro-
gramming. Developing complex CPS co-simulation requires
significant expertise, thereby requiring a suite of support
tools to improve the user experience andmake the benefits of
co-simulation available to other researchers. These include:
tools for automated and managed compilation of updated
simulation sources and models and packaging compiled arti-
facts for their run-time use; tools for deploying simulations
and provisioning resources for them across different com-
putational platforms such as servers, virtual machines, or
a computation cloud; tools for monitoring and controlling
simulation runs and reporting run-time events; and tools for
comprehensive analysis of experiment results.

• Reusable Component Libraries: Curating and validating
simulation models and experiments are time-consuming and
expensive. Reusing parts of simulations in new experiments
and different use-cases is an important goal. However, CPS
simulation tools use many different models with different
meta-data that would need to be captured in a consistent
manner. The challenge is in coming up with a generic com-
ponent model that is versioned and configurable and enables
packaging componentized models and experiments for reuse
in different experiment context with reasonable confidence.

2.2 Framework for Horizontal Integration of

Simulators

Existing simulation tools are usually tied to specific domains such as
power flow analysis or transportation networks. These simulation
tools are vertically integrated and incorporate modeling languages,

modeling tools, model libraries, simulation engines and interfaces
for getting access to results. However, system-of-systems simu-
lations require horizontal integration (see Fig. 2) that cut across
these vertically isolated simulation tools and models and facilitate
cross-domain interactions. Our framework incorporates three hor-
izontal integration platforms: (1) Model Integration Platform, (2)
Tool Integration Platform, and (3) Execution Integration Platform.

Simulation tools integration for co-simulation have several well-
established architectures. The High Level Architecture (HLA) [1]
(IEEE Standards Association 2016) is a standardized architecture
for distributed computer simulation systems. The Functional Mock-
up Interface (Modelica Association 2014a) for co-simulation is a
relatively new standard [2] targeting the integration of different sim-
ulators. In spite of the maturity and acceptance of these standards,
there are many open research issues related to scaling, composi-
tion, large range of required time resolution, hardware-in-the-loop
simulators and increasing automation in simulation integration.
Execution Integration Platforms for distributed co-simulations are
shifting toward cloud-based deployment, developing simulation-as-
a-service use model via web interfaces, and increasing automation
in dynamic provisioning of resources as required.

Figure 2: Horizontal Integration Platforms for CPS Simula-

tions

The key components of the three integration layers are:
(1) Model Integration Platform (MIP): The function of the

model integration platform is to model interactions among
a wide range of heterogeneous domain models in a semanti-
cally soundmanner. The integrationmodel captures the high-
level system-of-systems architecture where subsystems may
use different domain-specific modeling languages (DSML)
[30] and simulators. One of the major challenges is semantic
heterogeneity of the constituent systems and the specifica-
tion of integration models. There are several approach for
supporting the integration of heterogeneous models.

Modeling Language Embedding: Embedding requires an in-
jective, structure preserving mapping between one or more
DSML and a host language. Accordingly, the semantic do-
main of the host language must be rich enough to provide
a common semantic domain for all DSMLs. For example,
the continuous time (CT) semantics of Simulink [3] can
embed the discrete event (DE) semantics of CPN [18] and
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OMNeT++ [31], but mapping many of their domain-specific
languages constructs onto Simulink constructs would be im-
practical. Some variant of model embedding is facilitated by
the ’external’ blocks allowed in some modeling languages
(e.g. Modelica’s ’external’ function calls [6], FMU import
[8], and Simulink’s S-function interface [3]) but they require
suppressing many details of an external model, transform it
into a simple construct in the host language, therefore they
cannot be considered model embedding in the usual sense.

Formal Modeling Language Composition: There have been
established methods for the formal composition of DSMLs
in an algebraic/logic framework. The approach introduces a
range of composition operators (includes, restricts, extends,
as, pseudo-product ’*’, pseudo-coproduct ’+’) with appro-
priate semantics. These composition operators have been
introduced in the FORMULA tool [16] developed by Ethan
Jackson at Microsoft Research. While precise and tool sup-
ported, practicality of a full formal treatment is restricted by
the absence of a formal, FORMULA-based specification of
the semantics of the constituent modeling languages.

Model Integration Language: In most multi-modeling prob-
lems, the goal of model integration is to capture the inter-
action among physical or computational objects modeled
using different DSMLs. The interaction might have behav-
ioral, structural or conceptual meaning. If the semantics of
the interaction is restricted only to some shared aspects
of the semantics of the individual modeling languages, the
problem can be solved effectively by specifying a model
integration language that includes the specification of a se-
mantic interface for the individual modeling languages and
the specification of integration constructs that are not part
of either of the integrated modeling languages but support
the integration of the models across the semantic interfaces.
For example, in Fig. 1, the purpose of the model integration
is the coordination of timed behavior of physical processes,
discrete controllers and communication networks. The re-
quired interaction semantics is discrete event and the data
semantics is based on a distributed (but partial) data model
that need to be established for the scenario. Consequently,
model integration requires the specification of a relatively
narrow semantic interface for the individual DSMLs, a Model
Integration Language which is built on these semantic inter-
faces and extended with integration specific constructs such
as timed interactions and data models.

(2) Tool Integration Platform (TIP): The function of the tool
integration platform is to ensure that the execution of sim-
ulations can be synchronized by a distributed global time
clock (or with the real-time clock). Furthermore, the events
generated by the individual simulators can be used for coor-
dinating event-driven interaction among objects controlled
by different simulators. TIP needs to also ensure that data can
be routed among the simulators under the time constraints
required by the progress of the distributed global clock. In-
tegration platform for simulation tools is a well developed
area with several known standards.

(3) Execution IntegrationPlatform (EIP): The simulation tools
used for large system-of-systems are usually special-purpose
and complex and require tool-specific computational re-
sources; and tools and methods to control, monitor and su-
pervise their execution. Automated experimentation using
integrated simulation and analysis through high-level evalu-
ation scenarios require tools and services that orchestrates
the distributed simulation in a coordinated manner on the
available computational resources such as servers, virtual
machines, and cloud. The MIP includes tools and methods
that enable dynamic experiment configuration and deploy-
ment on computational infrastructure as well as execution
and monitoring of integrated simulation experiments and
collection and processing of generated experiment results.

The above three horizontal integration platforms provide a con-
ceptual framework for approaching simulation integration chal-
lenges that occur in all system-of-system simulations. The tools and
services provided by each of these integration platforms should be
domain-independent and vendor neutral. The instantiation of these
tools and services in a domain-specific way is accomplished by
model parameterization and configurations. Together, these three
integration platforms enable robust and extensible frameworks for
rapid synthesis of heterogeneous simulation integration and auto-
mated experimentation. In the sections below, we detail the key
elements of model and tool integration platforms in three specific
architectures, the CPSWT [14] [15], mosaik [10] and FMI [6].

3 CYBER-PHYSICAL SYSTEMS WIND

TUNNEL (CPSWT)

Over the past decade, Vanderbilt has developed a model-based,
multi-model simulation integration platform called the Command
and Control Wind Tunnel (C2WT) [15]. The initial motivations
came from the need of experimental evaluation of command and
control architectures in different mission contexts [14]. Later, the
system was extended to the simulation-based study of networked
controllers [33], cyber-attacks on CPS [7], and became the founda-
tion for virtual prototyping in the OpenMETA design automation
tool chain [29] under the name of CPSWT. Driven by the needs of
studying resilience of large-scale infrastructures such as traffic con-
trol [19], railway control [7], and transactive energy [27], in 2014,
C2WT was adopted by NIST and, working jointly with Vanderbilt,
C2WT evolved into NIST’s CPS simulation platform (UCEF) [9]. In
this section, we provide an overview of CPSWT model and tool
integration platforms using the conceptual framework described
before. Fig. 3 shows a simplified view of the two platforms and their
connection using the processing plant example in Fig. 1.

3.1 Tool Integration Platform in CPSWT

We adopted the High Level Architecture [1] as the basis for the Tool
Integration Platform. The HLA provides a set of standard services
for configuring, executing, and coordinating the system-of-system
distributed simulations. CPSWT uses an open-source implementa-
tion of HLA called the Portico [4] Run-Time Infrastructure (RTI),
which is written in Java language and also supports full bindings for
C++ language, and is fully compliant with HLA 1.3 and implements
the latest version HLA-1516e.
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Figure 3: Model and Tool Integration Platforms

We have selected HLA because it is a well known mature stan-
dard, and offers flexible services for advanced and configurable
time management, data distribution, object management and ob-
ject migration and overall simulation management performed by a
Federation Manager. Coordination and data distribution across the
individual simulators is performed by the HLA-RTI via the Federate
Interfaces. The semantic interface between the modeling languages
of the individual simulators is provided by the HLA standard. The
integration models between the models of each simulators and
the RTI are used for generating the corresponding HLA Federates
that directly supports the construction of complex multi-model
simulations. It is not our purpose to describe the details of the stan-
dard HLA services, because they are extensively documented in the
standard and in many tutorials. A frequently mentioned argument
against HLA is that it is complex, heavy weight and extremely
hard to use. However, the model-based integration framework we
developed in CPSWT largely alleviates these concerns:

• A Model Integration Platform (Section 3.2) enables the auto-
generation of Federate Interfaces and the Federation Man-
ager from a high-level system-of-system model specified in
a graphical modeling environment, WebGME [21].

• The integration architecture allows the separation of the fine-
grain internal interactions in the domain specific simulators
and the federation-level interactions managed by HLA-RTI.

• Decomposition of large dynamic models into distributed,
interacting simulation models based on differences in system

dynamics offers an effective way to manage highly different
time resolutions [24].

3.2 Model Integration Platform in CPSWT

The Model Integration Platform takes full advantage of the con-
figurability of the HLA services. The Model Integration Language
incorporates three sub-languages for interaction modeling, data
distribution modeling and course of action modeling. The level of
abstraction in these models can be adjusted via the definition of the
semantic interfaces for the individual simulators. The integration
models are built by means of our metaprogrammable graphical edi-
tor, WebGME [21] that facilitates the customization of the modeling
environment by means of metamodeling [30]. All of the sub-system
models are defined by using the native modeling languages and
tools of the integrated simulators, therefore the integration models
are restricted to the modeling of system-of-system level interac-
tions.

The course of action models represent a simulation scenario with
modeling elements such as events, event conditions, durations
between events, alternative scenario paths, and synchronization
points [23] [25]. With scenario models complex experiment scenar-
ios such as what-if situations or alternative evaluation paths can be
modeled. As Fig. 3 shows, the integration models are used by a suite
of generators (implemented as plug-ins for the WebGME model
builder) to synthesize the federate interfaces and the federation
manager.
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4 MOSAIK SMART-GRID CO-SIMULATION

PLATFORM

The mosaik framework has been designed especially for the co-
simulation of CPS in the energy domain (CPES, e. g. Smart Grids)
[10] by OFFIS and University of Oldenburg. True multi-domain
system analysis is a rather new topic in the energy domain, so
the established tools are so far not designed for integration with
other systems. Consequently, as shown notionally in Fig. 4, the
mosaik design is focused on the coupling of strongly heterogeneous
simulation tools from various different disciplines while imposing
as little structural requirements on the tools as possible.

Figure 4: mosaik Smart-Grid Co-Simulation Framework

Figure 5: mosaik Conceptual Architecture

Fig. 5 shows the original conceptual architecture of mosaik. The
framework directly supports key aspects of the model-integration,
tool-integration, and execution-integration as described previously.
Different requirements of integration are addressed in mosaik
through a set of distinct functional layers.

Model Integration in mosaik is accomplished using the Seman-
tic and Scenario layers. The semantic layer describes a reference
data model that is agreed for exchanging data among the integrated
simulators. In addition, the semantic layer also specifies interaction
ports that are used to describe data flows among the simulators
and support tools for verifying composability. The scenario layer
captures the actual configuration of integrated simulation models.
In addition to integration models, the scenario layer also supports
specification of co-simulation scenarios and a rule-based method
to validate them based on semantics described in the semantic layer.

Tool Integration in mosaik is accomplished using the Technical
and Syntactic layers. The technical layer provides the core physical
infrastructure to execute integrated simulations. This includes the

Sim-
Manager Scheduler

Component-
API

Scenario-
API

MODEL INTEGRATION PLATFORM

TOOL INTEGRATION PLATFORM

TCP Function calls

Figure 6: Components Implemented in mosaik

computational and networking hardware and supporting tools to
orchestrate the distributed simulations. The syntactic layer specifies
the technical interfaces needed to be implemented for integrating
simulation tools.

Execution Integration in mosaik is accomplished using the
Composition and Control layers. The composition layer provides
tools for validating the integrated simulations and executing them
based on the specification in the scenario layer. The control layer
provides the Control-API, which specifies the interfaces for access-
ing and updating state variables of the simulated models.

The encapsulation of distinct functions of model-integration,
tool-integration, and execution-integration into separate functional
layers allows mosaik to support experimentation with different
algorithms and implementations in each of the layers.

4.1 Current mosaik Implementation

The implementation of the mosaik concept has undergone some
changes since its original drafting. More precisely, some of the
coupling validation aspects associated with execution-integration
have been ported into an individually developed toolbox. The re-
sulting reduced scope of the mosaik core leads to higher modularity
and easier deployment and handling by new users. Fig. 6 describes
key components of the current mosaik implementation. As shown,
the system consists of three major parts: The algorithmic system
core, the Component-API for integration of simulation tools, and
the Scenario-API for the creation of co-simulation experiments.
All these framework components are purely based on the Python
programming language to ensure a seamless software installation
without a multitude of dependencies.

(1) Component-API : The communication between mosaik and
the simulation tools via the Component-API is based on the
exchange of JSON encoded messages through TCP sockets
so that any tool can be integrated that supports these two
concepts. Coupling of models with different temporal res-
olution can efficiently be solved via data buffering in the
mosaik core. The communication between mosaik and a
simulation tool is defined through a minimal set of four mes-
sage types called init, create, step, and get_data. The
first two messages are used during experiment description
and allow mosaik to send parameter values and other con-
figuration data to a given tool. In its response, the simulation
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tool provides mosaik with static information about the types
and numbers of models provided by the tool. The step and
get_data messages are called by the mosaik scheduling al-
gorithm during simulation execution to send input data to a
model, advance it in time, and request output data.

(2) Scenario-API : The Scenario-API allows users to set the pa-
rameters of and the data exchange between simulation mod-
els to establish executable CPES co-simulation setups. The
data handles for access to the models is provided via the
init and createmessages. The data that is exchanged with
a model entity is divided into two types: parameters and at-
tributes. Parameters are used to configure model behavior at
the beginning of the simulation process, e. g. parameters may
be PV panel size or efficiency. Attributes, on the other hand,
are used to establish data exchange connections between
models from different simulation tools, i. e. an attribute of a
model may serve as a data input port, a data output port, or
both. Value assignment to parameters as well as attribute-
based model connections are realized via the interaction of
the Component-API and the Scenario-API. It should be noted,
however, that little domain-specific constraints are included
to avoid inflexibility towards heterogeneous tools. There-
fore, it is a task of the user to account for data consistency
between coupled models.

(3) Scheduler: The scheduler module is responsible for the tem-
poral and logical correctness of data exchange between the
simulation models. It maintains data flow dependencies be-
tween integrated tools, as defined by the user, and keeps
track of the simulation time of each tool. As the central co-
simulation executor, the scheduler can trigger or postpone
the next simulation step of a given model, depending on the
availability of its required input data.

(4) Simulation Manager: The simulation manager establishes
TCP connections among the integrated tools and handles the
JSON message exchange with them. It supports the sched-
uler module by providing data to and requesting data from
integrated tools via the step and get_data messages.

In summary, the mosaik framework is a CPS co-simulation plat-
form that directly addresses the basic challenges of simulation
integration. It uses its lightweight setup to boost flexibility and
its centralized structure to ensure usability. For the integration of
simulation tools, a number of technologies are supported. While
the basic integration is based on TCP sockets and JSON encoding,
several language-specific adapters have been developed to reduce
implementation overhead for interfaces.

5 SIMULATION INTEGRATION USING FMI

We consider the Functional Mock-up Interface (FMI) [6] [2] as it
is a widely used co-simulation standard. The key feature of the
FMI standard is that it provides a standardized template for encap-
sulating a dynamic system’s simulation model. While assuming a
generic solver that executes a dynamical system model, the stan-
dard provides standard interfaces for interacting with the model.
The generic solver executes the model and computes its behavior.

The FMI standard defines a set of functions that support configu-
ration, setup, and initialization of models, as well as their dynamic

use for access to and modification of model variables. The models
can keep the implemented behavior in binary format (thus pre-
serving IP) while providing an access and control mechanism that
supports these standard functions. The implemented executable
model based on FMI is called a Functional Mock-up Unit (FMU). An
FMU is a zip-file containing a meta-data description XML file and a
shared binary that implements its behavior and FMI interfaces.

5.1 FMI Model-Exchange and Co-Simulation

The FMI standard contains two key parts, viz. FMI for Model Ex-
change (FMI-ME) and FMI for Co-Simulation (FMI-CS). FMI-ME
specifies a standard mechanism for the distribution of a dynamic
system model. The model is described by differential, algebraic and
discrete equations with events based onmodel’s time, state, and step.
The distributed model could be in the form of generated C-Code
that can be directly linked to other models in a simulation environ-
ment. FMI-CS specifies a standard mechanism for co-simulation of
two or more simulation tools. The co-simulated models exchange
data at discrete time-points, and execute independently at other
times. The FMUs may or may not embed a solver for their execution.
Fig. 7 shows FMI-CS for models, which allows coupling FMUs that
do not embed a solver using a ’master algorithm’ that coordinates
their co-simulation for data-exchange and time-synchronization.
However, as the FMI standard does not specify the master algo-
rithm, its design and implementation is simply left to individual
simulation tool providers. The variation FMI-CS for simulation tools
allows coupling FMUs that do embed a solver. These FMUs are
interfaced using an FMI Wrapper that implements the standard
FMI functions. Here, the FMUs are solved by an external numerical
integration solver (supplied by the simulation environment).

Figure 7: FMI for Co-Simulation

5.2 Challenges with FMI Co-Simulation

Many tools exist, such as Dymola [8] and MATLAB-Simulink [3],
that support creating (and importing) FMUs and provide tool-specific
implementation of the master algorithm. However, as the FMI stan-
dard simply focuses on standardizing the dynamical systemmodel’s
interface, many of the fundamental simulation integration chal-
lenges (see Section 2.1) are not fully addressed. In particular, time
management and distributed object management, that are crucial in
large-scale distributed simulations, are not specified. Thus, different
simulation-tool-specific implementation of the master algorithm
can lead to different behavior in the co-simulation.
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6 INTEROPERABILITY OF SIMULATION

INTEGRATION PLATFORMS

As described in Section 2.1, integrating CPS simulations is a chal-
lenging task. Different simulation integration platforms use differ-
ent trade-offs of flexibility, usability, and performance in addressing
these challenges. Thus, no platform can achieve high quality in
all such aspects. For example, tool performance can be optimized
regarding the constraints of a given application case, but this de-
creases the tool’s flexibility. On the other hand, if performance
optimization is done for multiple applications to boost flexibility,
this increases the tool complexity, likely decreasing its usability.
Simply put, every simulation integration platform has a given niche.
Given trade-offs between different platforms and the overall com-
plexity of the CPS domain, two major goals can be identified for
enabling interoperability among simulation integration platforms:

• Synergy: Interoperation with other platforms can extend
the capabilities of individual platforms. In this case, each
platform governs a complex setup that benefits from its spe-
cific qualities in terms of flexibility or performance. Platform
coupling then allows for even more complex simulation ex-
periments without limitation due to platform specifications.

• Reusability: Interoperability can improve reusability and
thus decrease implementation effort. One way to combine
two complex simulation setups, based on different integra-
tion platforms, is to directly extend the setup of one with
the tools of the other. However, that requires a significant
effort on interfacing. Platform interoperability can provide
an easier way for coupling existing simulation setups.

The above two goals also imply other potential benefits of platform
interoperation. For example, a synergy between platforms might
also lie in coupling of different time scales or levels of granularity.
However, expanding further on this topic is likely beyond the scope
of this paper. Therefore, we focus on two practical use cases that
exemplify the interoperability of simulation integration platforms.

Use case 1 is based on concepts like energy communities or
microgrids [20]. These potentially autonomous systems are typi-
cally defined by local power grid infrastructures and a high number
of distributed energy resources (DER) that are controlled to im-
prove the power consumption in the system, e. g. price efficiency
for the local consumers. However, this depends strongly on the
local energy mix, i. e. the number and types of DER, the types of
consumers, and the availability of storage capabilities. Furthermore,
interaction between the system and its surrounding region may be
influenced by transmission grid feed-in, weather phenomena, the
communication infrastructure and more. The proposed use case
involves a simulation of the microgrid using mosaik and a simu-
lation of the information and communication infrastructure (ICT)
as well as environmental and large-scale influences using CPSWT.
This setup is an example for a synergy in the interoperation be-
tween the two platforms. On the one hand, the orchestration of
the microgrid setup benefits from the centralized design of mosaik.
Also, the logical data exchange requirements between microgrid
components is unlikely to change, regardless of the numbers and
types of integrated DER. Therefore, mosaik allows rapid testing of
a high number of microgrid layouts and DER compositions with
only minimal setup changes via the Scenario-API. On the other

hand, CPSWT provides a greater flexibility of tool coupling due to
its HLA-based structure. This allows for easy integration of special
events, dynamic changes in the coupling, and so on. This way, ex-
treme weather events, communication delays as well as faults or
attacks in the ICT can be easily introduced into the testing.

Use case 2 follows a similar design as the first one, but implies a
different implementation (see Section 7). In this case, the majority
of components of a Smart Grid system are coupled via mosaik. This
involves the complete power grid simulation, all DER, the control
infrastructure, and energy markets. However, the communication
infrastructure is realized via a simulation tool integrated in CPSWT.
Through a composition of mosaik and CPSWT, communication
dynamics including delays or packet-loss can be integrated into the
overall Smart Grid simulation. On the one hand, this use case reflects
the synergy aspect of platform interoperation since the CPSWT
flexibility is more suitable than mosaik for realizing discrete-event
dynamics that lie at the core of communication simulation. On
the other hand, the use case shows the reusability aspect of plat-
form interoperation since CPSWT is already strongly integrated
with communication simulation while mosaik displays established
integration of DER and controller simulation.

7 INTEROPERABILITY APPROACHES

Interoperation among simulation integration platforms can be de-
signed in a modular way by employing a hierarchical approach.
This means that one platform (including all its integrated tools) is
integrated into the other platform in the same or a similar fashion
as standard simulation tools. In the following we describe our ap-
proach for bridging these platforms: (i) FMU co-Simulation with
CPSWT and mosaik, (ii) mosaik co-simulation with CPSWT.

7.1 FMU Co-Simulation with cpswt or mosaik

The CPSWT platform supports a variety of heterogeneous sim-
ulation tools to be integrated as part of the system-of-systems
simulations. In addition, CPSWT also supports interfacing with
components based on the Functional Mock Interface (FMI) stan-
dard [6]. FMI is a well-known co-simulation standard for model
reuse and IP protection. The FMI standard provides a template for
encapsulating dynamic system’s simulation models. However, FMI
does not specify how to execute FMI components in a coordinated
manner. In addition, FMI also does not support sophisticated time
management services and distributed object management that are
supported by HLA. Therefore, we extended the CPSWT platform
to integrated FMI components (a.k.a. Functional Mock-up Units
(FMUs)) as HLA federates. As shown in Fig. 8, for every FMU to
be integrated with other HLA-federates, we automatically gener-
ate a FMU HLA Wrapper that provides both the interconnection
with HLA and access and control of the FMU. We covered the FMU
integration in CPSWT in detail in [24].

We also showed in [24] a method to partition a dynamical model
into different sampling rate groups using FMUs. This allows ex-
ecuting parts of the model with slower rate dynamics at larger
step-sizes, thus leading to better overall simulation performance.

Similar to the coupling between FMI and CPSWT, FMUs can be
integrated into mosaik co-simulation processes. This is possible via
a mapping between the model description and methods specified by
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Figure 8: Integration of FMI Components in CPSWT

the FMI standard and those described by the mosaik Component-
API [28]. In case of a coupling, an FMU is controlled actively by
mosaik acting as a master algorithm. The coupling can be directly
achieved for FMUs following the FMI for Co-Simulation standard.
For those units following the FMI for Model Exchange standard,
additional solver capabilities have to be provided by mosaik. Tools
like the FMI++ library [32] help to integrate such capabilities in an
interface module.

7.2 mosaik Co-Simulation with cpswt

Since the mosaik core is based on the Python programming lan-
guage, a Python-API has been developed for CPSWT federates.
The API is based on the Py4J library1 that creates a bridge be-
tween Python and Java and enables calls to Java code from Python.
This way, the API can wrap the Java code of the CPSWT federate
ambassador interface and a call from the Python-API will lead to
corresponding call of the Java-API. The delegation and inheritance
pattern is used in this wrapping. In other words, a Java interfacemay
be implemented in the Python-API through inheritance (Fig. 9). This
is enabled by Py4J. The implemented Python class can be passed
in a method call of the Java-API. Since the Portico HLA-RTI works
asynchronously, typically callbacks with Python code are passed to
the Java-API. Similarly, the Python-API can delegate requests to the
Java code (Fig. 10). If non-primitive data types are to be received
by the Python code, Java objects are returned that are accessible
through access modifiers provided by Py4J.

Figure 9: Python-API for Portico using the Java-API

These APIs enable integration of an executable mosaik setup
as a CPSWT federate. This federate must contain the mosaik core,
integrated simulation tools, and an executable scenario script. The
scenario script defines how the integrated simulation tools and
models are coupled with each other, and allows execution of the
mosaik scheduling algorithm. Finally, data exchange between the
1https://www.py4j.org

Figure 10: Delegation from Python-API to Java-API

mosaik co-simulation and the CPSWT federates has to be enabled.
The easiest way to realize this is by implementing a dedicated data
exchange component via the Component-API. This module inter-
acts with the mosaik core like any other integrated simulation tool,
but all data obtained from mosaik can be forwarded to CPSWT
via the federate ambassador. Similarly, the data may be obtained
from other federates and forwarded to mosaik. The overall compo-
sition concept is outlined in Fig. 11. This represents a reasonable
implementation of use-case 1 described in Section 6.

Figure 11: Composition concept with mosaik federate.

8 CONCLUSIONS & FUTUREWORK

Cyber-physical systems (CPS) are inherently highly complex to
model and analyze as their behavior emanates from tight coupling
of physical and computational components. This necessitates the
use of domain-specific modeling languages and tools for their anal-
ysis. Simulation-based evaluation is a well-accepted method due to
apparent complexity in formal analysis of real-world complex CPS.

CPS component models are highly diverse, represent many dif-
ferent multi-physics domains, and are coupled together for interac-
tions over a communication network. Each of these aspects require
a special-purpose simulation tool for correctly modeling and sim-
ulating its behavior. This presents a huge source of heterogeneity
among the simulation models and tools.
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Many simulation integration platforms have emerged in the
past that aim to provide tools, methods, and approaches to inte-
grate the heterogeneous simulation models and tools in order to
create a semantically correct integrated simulation. This system-
of-systems simulation can support higher-level study of CPS that
properly takes into account cross-domain interactions between its
heterogeneous components. The main goal of simulation integra-
tion platforms is to enable integration of heterogeneous simulation
models and tools in a logically and temporally coherent manner.

In this paper, we reviewed the core challenges of simulation inte-
gration and introduced a conceptual framework that describes three
distinct horizontal integration platforms to integrate cross-domain
interactions among CPS components, viz. the model-integration
platform, the tool-integration platform, and the execution-integration
platform. We also described how these three horizontal integration
platforms are apparent in three widely used simulation integration
platforms, viz. CPSWT, mosaik, and FMUs.

Further, we highlighted the need for interoperability among
the different simulation integration platforms and presented our
current work to enable interoperation among the above three inte-
gration platforms.

In the future, we plan to continue extending the inteoperability
enabling tools and methods for interoperation among different
simulation integration platforms. Another research direction is to
look at formal specification of interoperation among simulation
integration platforms to support more semantically correct and
analyzable integrated simulations.
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