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Abstract—Microprocessors enable aggressive hardware virtual-
ization by means of which multiple processes temporally execute
on the system. These security-critical and ordinary processes
interact with each other to assure application progress. However,
temporal sharing of hardware resources exposes the processor to
various microarchitecture state attacks. State-of-the-art secure
processors, such as MI6 adopt Intel’s SGX enclave execution
model. MI6 architects strong isolation by statically isolating
shared memory state, and purging the microarchitecture state
of private core, cache, and TLB resources on every enclave entry
and exit. The purging overhead significantly impacts performance
as the interactivity across the secure and insecure processes
increases. This paper proposes IRONHIDE that implements
strong isolation in the context of multicores to form spatially
isolated secure and insecure clusters of cores. For an interac-
tive application comprising of secure and insecure processes,
IRONHIDE pins the secure process(es) to the secure cluster, where
they execute and interact with the insecure process(es) without
incurring the microarchitecture state purging overheads on every
interaction event. IRONHIDE improves performance by 2.1× over
the MI6 baseline for a set of user and OS interactive applications.
Moreover, IRONHIDE improves performance by 20% over an
SGX-like baseline, while also ensuring strong isolation guarantees
against microarchitecture state attacks.

I. INTRODUCTION

Modern microprocessors enable aggressive hardware vir-

tualization that allows multiple processes to co-locate and

temporally execute on the system. These security-critical

and ordinary processes interact over their execution for an

application to progress. However, these processes suffer from

interference channels due to the temporal sharing of processor

hardware resources, such as caches, translation look-aside

buffers, on-chip networks, and even memory controllers. The

execution footprint of processes leaves microarchitecture state

vulnerable in these shared hardware resources by means of

which an attacker process can infer secret data value(s). Thus, it

is imperative to ensure non-interference for guaranteeing robust

security across secure and insecure processes. To enable non-
interference, various software and hardware based solutions

have been proposed in literature. At the software level, process-

level isolation (e.g., Intel’s SMAP and KASLR) is traditionally

adopted across co-executing processes to guarantee memory

isolation. However, it falls short in providing processor security

as the hardware resources still remain shared across temporally

executing processes [1].

Architectural solutions to prevent microarchitecture state

attacks predominantly fall in two categories. The first cate-

gory comprises of traditional non-enclave based mitigation

Fig. 1. Performance of various secure processor architectures is compared in
(a). IRONHIDE secure multicore architecture is shown in (b).

schemes [2], [3], where secure and insecure processes tempo-

rally execute on the system. In such solutions, the memory

locations of all processes are randomly mapped to cache loca-

tions, resulting in diminished information leakage via scrambled

address accesses. However, these works only mitigate non-

speculative microarchitecture state attack vectors [1], [4]. To

protect against speculative state leakage [5], [6], prior works [7],

[8] allow only non-speculative data to be committed, and

introduce complex hardware buffers and coherence/consistency

extensions to avoid shared cache pollution with speculative

data. However, moving the speculative data across caches

and side-buffers opens a security vulnerability window that

can be exploited to reveal secret information. On the other

hand, the second category involves enclave-based architectural

mechanisms [9], [10], where secure processes execute in con-

tainers that are isolated at the hardware-level from temporally

executing ordinary (insecure) processes. Enclave-based secure

processors have been commercialized (e.g., Intel’s SGX [9]),

and recent research has also explored robust security against

both speculative and non-speculative microarchitecture state

attacks [11], [12], [13]. Hence, this paper primarily focuses

on enclave-based secure processors, as the software-level and

non-enclave based mechanisms do not provide holistic security

assurances, and are not commercially adopted.

Intel’s SGX creates a pristine environment for the secure

enclave by (1) flushing the core-pipeline, and (2) encrypting

and decrypting enclave-related data, on every secure enclave

entry and exit (context switch). Moreover, it introduces various

hardware security primitives, such as memory integrity support.

Figure 1:(a) shows the normalized geometric mean completion

time of the evaluated applications. These applications comprise

of multiple secure and ordinary (insecure) processes that

frequently interact with each other to assure application

progress [14], [15]. The completion time of various enclave-

based mechanisms is normalized to an insecure baseline that
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does not implement the enclave-based security primitives. The

performance of an SGX-like enclave setup suffers by ∼33%

since it incurs overheads associated with pipeline flushing and

cryptography operations on every secure enclave entry and exit.

Moreover, due to temporal execution of the secure enclave

with insecure processes, an attacker process can either directly

monitor accesses made by the enclave [1], [4], [16], or befuddle

the system in making speculative accesses [5], [6], [17] to leak

secure enclave’s data.

Recent academic secure processor, MI6 [11] considers the

Intel’s SGX enclave execution model and provides protection

against all microarchitecture state attack vectors by enabling

strong isolation [18]. The idea of strong isolation across the

secure enclave and ordinary processes ensures that secure

process’s data does not leak through the shared hardware

resources. MI6 ensures strong isolation by (1) statically

distributing last-level caches and main memory region(s) across

secure and insecure processes, and (2) flushing or purging

the state of temporally shared per-core private resources

(e.g., private caches and TLBs) on every secure enclave

entry and exit. Certainly, as the frequency of interactions

across processes increases in an interactive application, the

purging overheads stack up since each interaction invokes the

enclave’s entry/exit protocol. Figure 1:(a) shows that the MI6

architecture experiences ∼2.25× performance loss relative

to the insecure system. It is clear that strong security in

enclave-based architectures comes at the cost of significant

performance degradation. Hence, there is a need to re-think

secure processor designs that provide strong isolation, yet

enable high performance.

All prior secure processor works [9], [11], [12], [13]

consider the processor as a single monolithic entity, where

secure and insecure processes temporally execute. This work

proposes to take a step further in the context of multicore

architectures that incorporate tens or even hundreds of cores

on a chip [19]. Unlike traditional secure processors where

applications temporally execute on all cores, multicores allow

spatial sharing of cores as well. Figure 1:(b) shows the

envisioned IRONHIDE architecture, where two clusters of

cores are formed to enable strong isolation between the secure

and insecure processes. When an interactive application is

executed, its mutually trusting secure process(es) are pinned to

the secure cluster. These secure process(es) interact with the

insecure process(es) using a secure communication protocol,

and do not require enclave context switches. Thus, purging

overheads to mitigate microarchitecture state attacks are not

accumulated in IRONHIDE.

MI6 [11] is considered as the baseline secure processor

architecture, since it is built on top of recent secure processor

works [12], [13]. To model MI6 on a multicore processor,

all strong isolation mechanisms are adopted, where (1) time-

multiplexed private resources are flushed/purged on every

secure enclave entry and exit, and (2) per-core shared cache

slices (and TLBs), and main memory regions are statically

distributed across the secure and insecure processes. To attest

and authenticate secure processes, a secure kernel (similar to

the security monitor in MI6) is implemented. Additionally, a

hardware check for mitigating speculative microarchitecture

state attacks [20] is also adopted from MI6. Lastly, interactions

across the secure enclave and insecure processes are carried out

via a shared inter-process communication (IPC) buffer, which

resides in the shared cache slices (or memory regions) of the

insecure process(es) [11], [15]. However, frequent interactions

across processes lead to intermittent flushing/purging overheads

in the MI6 baseline, leading to degraded performance.

IRONHIDE forms two strongly isolated secure and insecure

clusters of cores, where each cluster is provided with spatially

partitioned private–shared caches and TLBs, and DRAM

regions (on-chip memory controllers are spatially distributed).

The deterministic on-chip network is isolated across clusters

ensuring network packets originated by and destined to a given

cluster do not drift to the other cluster (c.f. Figure 1:(b)–�).

A key insight here is that the secure process (attested by a

trusted light-weight secure kernel) is pinned to the secure

cluster, where it spatially interacts with insecure processes

via the shared IPC buffer (c.f. Figure 1:(b)–�). Hence, no

secure process entry/exits are necessary for an application’s

execution, thus avoiding the need for microarchitecture state

flushes without violating strong isolation.

IRONHIDE implements dynamic hardware isolation, where

the clusters of cores are allowed to be reconfigured to ensure

load balanced execution for performance, while guaranteeing

strong isolation (c.f. Figure 1:(b)–�). The secure kernel

employs a core re-allocation predictor, and orchestrates the

process of re-configuring core-level resources among the two

clusters. To ensure strong isolation for each reconfiguration

event, the system is stalled and the private resources of the

reallocated cores are flushed-and-invalidated, followed by the

re-allocation of memory pages (data structures) mapped to

the shared cache slices (and TLBs) of the respective cores.

Prior works [21], [22] have shown that an adversary can

infer secret-information based on timing and termination

channels introduced due to resource scheduling. However, this

information leakage can be bounded by limiting the number of

unique scheduling events. Thus, IRONHIDE takes a security-
centric approach and bounds the leakage to a small constant

factor by limiting the cluster reconfiguration to once for each

interactive application invocation.

This paper highlights the performance and security pitfalls of

enclave-based secure processors. State-of-the-art MI6 considers

the Intel’s SGX enclave execution model and deals with its secu-

rity limitations by ensuring strong isolation against microarchi-

tecture state attacks. However, strong isolation leads to degraded

performance for MI6 due to frequent microarchitecture state

purging in interactive applications. To mitigate the performance

limitations, IRONHIDE forms spatially isolated secure and inse-

cure clusters of cores, where the secure process(es) are pinned

to execute in the secure cluster. Consequently, IRONHIDE
minimizes microarchitecture state purging overheads compared

to SGX-like and MI6 baselines, while ensuring strong isolation

guarantees for robust security. IRONHIDE is prototyped on

a real Tilera®Tile-Gx72TM multicore, and evaluated using a
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set of user-interactive and OS-interactive parallel applications.

IRONHIDE is shown to improve performance by an average

of ∼2.1× over the multicore MI6 baseline (c.f. Figure 1:(a)).

Moreover, IRONHIDE improves performance by ∼20% in

comparison to the SGX-like baseline architecture.

II. THREAT MODEL

The threat model is adopted from MI6 [11], where both

speculative and non-speculative microarchitecture state attacks

that rely on covert/side channels are considered. Similar to

MI6, it is assumed that the operating system (OS) and user

applications are untrusted. However, the processor hardware,

main memory (DRAM), and a security monitor (or secure

kernel) are trusted. The threat model considers that an ad-

versarial process can co-locate with a victim process on the

processor’s shared microarchitecture structures, e.g., the per-

core pipeline buffers, private and shared caches and TLBs, the

on-chip networks, and the shared memory controllers. With its

co-location, the adversarial process can conduct various non-

speculative state attacks, such as cache timing/access based

attacks [1], [2], [4], [16], and/or on-chip network exploits [23].

Moreover, the adversary has the capability to manipulate/train

the hardware resources dedicated for speculative execution,

such as branch predictor, to launch attacks that rely on leaking

the speculative microarchitecture state in the shared hardware

resources [5], [6], [17]. Additionally, the adversary is capable

of monitoring the timing and termination channels to leak

information [21], [22]. The key objective of IRONHIDE is to

deliver high performance for secure multicore processors that

mitigate microarchitecture state attacks using strong isolation.

The threat model exclusively focuses on software-based

microarchitecture state attacks, and assumes the absence of

any adversary with physical access. Thus, physical channels

dependent on power, thermal imaging, and electromagnetics

are considered as orthogonal attack vectors. This also in-

cludes physical attacks on memory that can be efficiently

mitigated by incorporating mechanisms, such as memory

integrity checking [24] and oblivious-RAM [25]. Moreover,

attacks by compromised system software, e.g., OS refusing to

allocate secure application resources are not possible within

the proposed threat model. Lastly, hardware attacks outside the

microarchitecture state, such as exploiting hardware bugs to

conduct fault-inject attacks, and employing trojan applications

to leak information are all orthogonal attack vectors.

III. MULTICORE ARCHITECTURE WITH STRONG ISOLATION

The baseline multicore architecture builds on an Intel’s

SGX-like enclave model, where the ordinary (potentially

insecure) processes temporally co-execute with security-critical

processes. For every secure enclave entry and exit, data is

encrypted/decrypted and the core pipeline queues are flushed to

clear secure process’s memory footprint, essentially forming a

pristine execution environment [26]. However, flushing the core

pipeline buffers and adopting strong cryptography primitives

falls short of ensuring robust security, since the on-chip cache

hierarchy, on-chip networks, and main memory still remain

Fig. 2. Strong isolation in state-of-the-art MI6 secure processor.

shared across the temporally co-executing processes. Conse-

quently, an attacker (insecure) process can monitor accesses

made by the enclave [16], [17] to leak secure data through

these temporally shared hardware resources. To enable a secure

architecture baseline, strong isolation mechanisms proposed by

MI6 [11] are first adopted in the context of multicore processors.

Next, the proposed IRONHIDE architecture and its formulation

of spatially isolated clusters of cores is described.

A. The Multicore MI6 Architecture

Figure 2 shows the strong isolation based enclave execution

model of MI6 [11] processor, where it is ensured that no

insecure process is allowed to infer secure process’s data via

the shared hardware resources. The security monitor in MI6

attests and authenticates secure processes before allowing them

to execute in the secure enclave. It runs in the machine mode,

managing its own memory and hardware resources. For strong

isolation, the security monitor verifies all decisions made by

the untrusted OS, e.g., resource management decisions that

no memory regions assigned across processes overlap. Upon

failure, the security monitor raises an exception and disallows

execution of the secure process on the system. A secure boot

protocol is also enabled to ensure that the security monitor has

not been compromised. Furthermore, in case of page faults

and interrupts, the security monitor is expected to intervene

for preserving strong isolation. The multicore MI6 setup also

time multiplexes core-level resources of the system across

the secure and insecure processes of an application. Thus,

the strong isolation capabilities of the MI6 architecture are

implemented for all shared hardware resources in the multicore.

1) Protecting the Non-Speculative Microarchitecture State:
The temporally shared per-core private resources, such as

private caches, TLBs, and core pipeline buffers are purged

(flushed) on every secure enclave (process) entry and exit. The

purge operation performs flush-and-invalidate routine on each

core concurrently to clean up per-core private microarchitecture

state. Moreover, each temporally executing process on the

multicore MI6 is provided with spatially partitioned large

stateful resources, i.e., shared cache slices and TLBs, and

DRAM memory regions.

Multicores deploy a last-level cache that is logically shared,

but physically distributed as cache slices across all cores.

By default, an entire memory page is hashed across all

shared caches at cache line granularity. However, hashing data

among all shared cache slices violates strong isolation as the

data for one process may be mapped to the shared cache

slices of another process, essentially forming an information
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leakage channel. To avoid leakage through such a channel,

it is important to keep each process’s data within its own

set of shared cache slices (clustered together). Therefore, a

local homing policy is adopted, where an entire memory

page (or data structure) is mapped to a single shared cache

slice. Data replication in last-level cache is disabled to ensure

that a memory access to each shared cache slice is made

by a single process. This limits an insecure process from

accessing secure process’s shared cache slices. Similar static

partitioning schemes have recently been proposed in Intel’s

Cache Allocation Technology (CAT) [27], and DAWG [12].

MI6 partitions the main memory into multiple physically

isolated DRAM regions, where these regions are statically

distributed across secure and insecure processes. The last-level

cache misses of a process are routed to the memory con-

troller(s) that map the respective DRAM region(s). Multicores

deploy multiple memory controllers, and DRAM regions are

interleaved across all memory controllers to optimize memory

bandwidth. However, shared buffers/queues in the memory

controllers are vulnerable to microarchitecture state attacks.

MI6 ensures strong isolation by assuming constant latency

memory controllers, and leaves the exploration of variable

latency controllers as future work. Since commercial multicores

deploy variable latency memory controllers, the multicore MI6

implements a purge of all memory controller queues/buffers

at each enclave entry and exit. This approach ensures strong

isolation for the off-chip memory accesses.

2) Protecting the Speculative Microarchitecture State:
Speculative state attacks (e.g., Spectre [5], [20]) have shown

that a victim (insecure) process can be tricked by an attacker

(insecure) process to speculatively access secret data by

manipulating hardware structures, such as branch predictor and

return stack buffer. Later, the victim process performs a second

memory request with an address based on the secret data. This

evicts attacker’s primed data from a shared hardware resource.

Hence, the attacker infers (leaks) secret data by observing the

timing difference in accessing primed entries.

To mitigate such speculative microarchitecture state attacks,

a solution proposed by MI6 is adopted, where the physical

address range of the secure process is checked in hardware

for each access made by the insecure process. In multicore

MI6, a hardware check is employed in the core pipeline that

tracks memory accesses destined to data mapped in the secure

cluster’s DRAM region(s). This is done by checking whether

the home location of the data is physically mapped to the given

memory region. If an insecure process initiates a request to

access the DRAM region of a secure process, the progress of

such a request is stalled until it is resolved. Consequently, the

request is discarded if it is resolved to be on the speculative

path, thus incurring no performance overhead. However, if

resolved as non-speculative, the exception handler detects such

a request due to protection check enabled under MI6 strong

isolation. In this situation, the memory request is discarded

without performance impact.

3) Communication Across Interactive Processes: Similar

to MI6 and HotCalls [11], [15], the multicore MI6 adopts

shared memory inter-process communication across secure and

insecure processes. This allows processes to exchange their

respective output states, and the secure enclave to communicate

with the insecure OS. This is achieved using a shared memory

region (referred to as shared IPC buffer) that is granted access

to both processes. Strong isolation for the shared IPC buffer is

assured by allocating it to the dedicated DRAM region(s) of the

insecure process. This disallows insecure processes to access

secure process’s data. However, the secure process (enclave) is

allowed to access the shared IPC buffer, which does not violate

strong isolation because, (1) the shared data is considered

insecure, and (2) no secure data crosses DRAM regions

dedicated to secure processes. Indeed, a microarchitecture state

attack never commences without the insecure process accessing

secure data.

B. The IRONHIDE Architecture

Under the multicore MI6 architecture, the microarchitecture

state of time-shared private resources is purged on every secure

enclave entry and exit that further escalates the state reload

latency when the same process is temporally switched back later.

Alongside purging, static partitioning of the shared cache slices

disallows processes to exploit locality in shared cache resources.

Indeed, these factors contribute to degrade the performance of

co-executing processes, and these overheads stack up as the

interactivity across the secure and insecure processes increases.

IRONHIDE architecture overcomes the performance limita-

tions of multicore MI6 while keeping strong isolation intact.

It creates two strongly isolated clusters of cores, where secure

and insecure processes are temporally executed within their

respective clusters. IRONHIDE adopts spatial partitioning for

shared cache slices and DRAM regions from multicore MI6.

However, instead of time multiplexing per-core resources

(private caches and TLBs) across secure and insecure processes,

it proposes to spatially distribute these per-core resources across

the secure and insecure clusters. Moreover, to enable load

balanced execution of clusters, dynamic hardware isolation
is implemented to securely reconfigure core-level resources,

including the shared cache slices. The on-chip network is

isolated across clusters to ensure that no such packets that are

originated by one cluster and destined to the same cluster, drift

outside the cluster boundary. Only network packets intended

for application interaction purposes are allowed to drift from

one cluster to the other. Lastly, the memory controllers are

statically partitioned across secure and insecure clusters to

enable strong isolation. The secure process(es) are pinned to

the secure cluster where they execute and interact with the

processes executing in the insecure cluster. By pinning secure

processes, these interactions happen without incurring enclave

entry/exit purging overheads.

1) The Spatio-temporal Execution Model: Similar to mul-

ticore MI6, IRONHIDE enables temporal execution of mul-

tiple secure and insecure processes on the multicore system.

However, the temporally executing processes do not require

microarchitecture state flush/purge operations since the secure

processes of an application are strongly isolated from the
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Fig. 3. IRONHIDE with strongly isolated clusters of cores.

insecure processes due to their respective execution in spatially

allocated clusters of cores. If an application comprises of

no secure process(es), IRONHIDE (using dynamic hardware

isolation) reconfigures the system to a single cluster utilizing

all available core-level resources. In such a scenario, the data

for the secure cluster resides in its dedicated off-chip memory

regions that are never accessed by the insecure cluster.

IRONHIDE differentiates execution of secure processes

within and across interactive applications. Multiple secure

processes are considered mutually distrusting when they

belong to different interactive applications. IRONHIDE time

multiplexes the core-level resources of the secure cluster across

these mutually distrusting secure processes from different

applications. When applications context switch, the per-core

shared hardware resources are purged. However, IRONHIDE
considers multiple secure processes mutually trusting if they

belong to the same interactive application. In this scenario, it

co-executes the secure processes in the secure cluster without

purging the microarchitecture state.

2) Strong Isolation using Clusters of Cores: IRONHIDE
forms two clusters of cores that temporally execute their

respective secure and insecure processes. Each cluster is

assigned a set of non-overlapping cores, and their corresponding

cache and TLB resources. The respective process threads are

pinned to their assigned cluster cores.

For each cluster, the network traffic must be routed such that

all requests and data packets remain within the boundary of the

cluster. Thus, a deterministic network routing protocol (such

as X-Y routing) is envisioned in the target multicore, since

it enables isolation of on-chip network traffic. For example,

X-Y routing with 2-D mesh network topology recognizes each

router by its coordinates (X, Y), and transmits packets first in

X direction followed by Y direction. In a square floor plan,

rows of cores are assigned to each cluster with their respective

memory controller(s) on the outside edges, such that X-Y

routing never drifts across the clusters. However, with just X-Y

routing in place, an entire row of cores must be allocated to any

given cluster. If cores within a row are allocated among the two

clusters, it is possible for the X-Y routing to drift packets across

cores allocated to different clusters, violating strong isolation.

Employing Y-X routing mitigates this scenario, since packets

are routed in Y direction first to ensure they safely traverse to

their respective row of cores. Hence, the deterministic routing

algorithm supports bidirectional routing [28] (allows both X-Y

and Y-X routing) of packets in the on-chip network.

For each cluster, the memory controllers must be strongly

isolated such that the respective DRAM region(s) of the

process being executed in that cluster are accessible. Unlike the

multicore MI6 baseline, the memory controllers are statically

partitioned among the two clusters1. The respective DRAM

region(s) are mapped in such a way that they are accessible

from their dedicated memory controller(s). For strong isolation

guarantees, memory controller(s) assigned to clusters must

never overlap each other. Specifically, the secure cluster

dedicates the DRAM region(s) of all secure processes to the

memory controller(s) that allow any given secure process to

access its respective physical memory channels, banks, and

rows. At each secure process context switch, the queues/buffers

of memory controller(s) assigned to the secure cluster are

purged to ensure strong isolation. The insecure cluster has its

dedicated memory controllers and it is free to context switch

without any purging overheads.

3) Dynamic Hardware Isolation: As shown in Figure 3,

the formation of spatially isolated secure and insecure clusters

enables each cluster to temporally execute respective processes,

while utilizing its dedicated hardware resources i.e., private

caches and TLBs, shared cache slices and TLBs, and memory

controllers/channels. However, statically partitioning core-level

hardware resources across secure and insecure clusters leads

to under-utilization of hardware core and cache resources.

To tackle this challenge and adapt the performance varia-

tions among the processes of a given interactive application,

IRONHIDE implements dynamic hardware isolation that en-

ables a mechanism where the secure cluster is allowed to give

up or gain cores [30], yet guarantee strong isolation. Similar

to the security monitor in MI6, IRONHIDE implements a

secure kernel that deploys signature checking and attestation

mechanisms to ensure that only secure processes temporally

execute in the secure cluster. The secure kernel executes

alongside the secure processes in the secure cluster. However,

to ensure load-balanced system performance, the secure kernel

further deploys a core re-allocation predictor that re-configures

the number of core-level resources to the secure and insecure

clusters at the application granularity. Prior works [21], [22]

have shown that an adversary can infer secret-information

based on timing and termination channels introduced due

to resource scheduling, and this leakage can be bounded by

limiting the number of unique scheduling (reconfiguration)

events. Although, processes of an interactive application may

exhibit sensitivity to varying core-level resource allocations

during their execution, IRONHIDE adopts a security-centric
approach and limits the cluster reconfiguration to once per every

interactive application invocation. Thus, when an interactive

application comprising of secure and insecure processes is

scheduled on the system, IRONHIDE computes and sets a

single core-level resource binding (distribution) for each cluster.

4) Heuristic for Cluster Reconfiguration: The heuristic for

re-allocating the number of cores per cluster is deployed

1An alternative is to statically partition memory bandwidth [29]. However,
the on-chip network must still guarantee strong isolation between clusters.
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Fig. 4. An illustrative example of an interactive application. Per-process
MPKI trends as a function of core counts are shown.

in the secure kernel. This heuristic computes the resource

distribution for each cluster by analyzing the individual shared

cache misses per kilo-instruction (MPKI) as a function of

core counts. The MPKI trends highly correlate with the

performance scaling variations as the core counts are varied

for a process. Therefore, these trends are used to approximate

the number of core allocations per cluster. The interactive

applications are repetitive in nature, and are composed of

processes that are available for the secure kernel to characterize

using representative inputs. Thus, the individual MPKI trends

for the secure and insecure processes are computed offline
using hardware performance counters. As the MPKI trends do

not reveal any secret information, they are stored anywhere

in the system memory. The re-configuration decision heuristic

for adjusting the number of cores per-cluster adopts a security-
centric approach by analyzing the pre-computed MPKI trends.

For each interactive application invocation, it finds a single
distribution of cores-per-cluster at runtime. Since the resource

allocation decision is deterministic and bounded, it does not

violate strong isolation guarantees.

Figure 4 shows the example MPKI trends of a security-

critical machine learning model, ALEXNET that periodically

classifies images provided by an insecure off-the-shelf VISION

pipeline for real-time perception. The normalized individual

MPKI values for both processes are shown in Figures 4:(a)

and 4:(b) as a function of core counts. The heuristic’s goal

is to find core allocation for each cluster, such that the total

cores in the system are fully utilized, while the aggregate

MPKI is minimized (maximum performance). An exhaustive

search method provides an optimal allocation of cores across

clusters by scanning all points (N) in one MPKI trend for

every point of the other MPKI trends. This essentially results

in NCM ≈ NM computations, where M represents the number

of interactive application’s processes. Instead of adopting this

compute intensive search, IRONHIDE proposes a gradient-

based heuristic search.

As shown in Figure 4, the MPKI trends of a process

comprise of three regions, namely; (1) non-linear region,

(2) linear region, and (3) saturation region. For maximum

performance benefits, each cluster must operate in the saturation

region, i.e., point B and onward in Figure 4. At the minimum,

it is imperative for each process to operate in the linear

region for near-optimal performance, making it the region of

interest. IRONHIDE’s gradient or slope-based search heuristic

maximizes for all processes to operate in their linear region,

and as close as possible to the saturation region. The heuristic

first captures the saturation point B from the MPKI values by

scanning from end of the trend to the point where the absolute

slope value becomes greater than 0.1. It also captures point A
by checking for points from the start of the trend to the point

where the slope becomes lesser than 0.5. This procedure is

done for all processes that compose the interactive application.

However, for ease of explanation, the heuristic is described

using an interactive application where a single secure process

interacts with an insecure process.

The heuristic computes the ideally desired core-level re-

sources, Rdesired by accumulating the core counts for each

process at point B. However, the desired number of cores per

cluster must satisfy the constraint of total available cores in

the multicore (N). Adjusting for this constraint yields three

different scenarios. In the first scenario, the total desired core-

level resources are equivalent to the available system resources

(Rdesired = N). Thus, no resource adjustment is needed, and the

heuristic terminates by forwarding the computed core counts

for each process at point B to the secure kernel. However,

resource adjustment is needed if Rdesired is either less than or

greater than N. When Rdesired <N, near-optimal performance is

already achieved since both clusters are allocated with enough

cores to operate at the MPKI saturation points. The heuristic

calculates the number of unoccupied resources (Anomaly) by

computing the difference between desired and available core-

level resources.

Anomaly= |N−Rdesired | (1)

These surplus cores are equally distributed across both clusters,

and the updated core-level resource binding is forwarded to

the secure kernel. Contrarily, when Rdesired > N, the resource

adjustment must keep the total allocation of cores within

N. Removal of core-level resources from the desired set of

resources implies that the processes now operate in the linear

region of their MPKI trends. The cores must be removed

from the clusters such that a given process executing in the

cluster operates in its region of interest. Thus, the cores are

proportionally adjusted (removed) by the heuristic based on

the slope values of each MPKI trend’s linear region. The linear

region’s slope for each process is computed by calculating the

rate of change between points A and B. To find the relative

difference between the linear regions, the heuristic computes

the ratio (SR) between the slopes of each trend’s linear region,

such that the process with smaller slope value is divided by

the process with larger slope value.

SR= slopesmaller/slopelarger (2)

Computing this ratio allows the heuristic to distribute (remove)

the extra cores (obtained from Equation 1) across clusters by

computing the proportionate adjusting factor.

Ad justFactor = �Anomaly×SR� (3)

The Ad justFactor is applied to the process that is more

sensitive to the cluster reconfiguration procedure, i.e., larger

slope. This ensures that proportionally less cores are adjusted

(removed) from the process with higher rate of MPKI change
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Fig. 5. IRONHIDE with dynamic hardware isolation, where cores are re-
allocated between secure to insecure clusters.

in the linear region as compared to the one with smaller slope.

Note that keeping SR< 1 biases the Ad justFactor towards a

smaller value that essentially removes lesser number of cores

from the process with higher linear region’s absolute slope

value. The distribution computed in Equation 4 is consequently

forwarded to the secure kernel for reconfiguration of clusters.

Rlarger slope = RBlarger slope−Ad justFactor
Rsmaller slope = RBsmaller slope− (1−Ad justFactor)

}
(4)

The gradient-based heuristic incurs a negligible overhead

of <0.01% of the total completion time of an interactive

application. However, the core reallocation heuristic requires

the secure kernel to obtain the MPKI trends at different core

counts for the underlying processes. Computing and storing

these MPKI trends offline burdens the security kernel. This can

be mitigated by profiling the MPKI trends for an application

processes at runtime. The online mechanism requires an

additional cluster re-configuration to enable the security kernel

to profile the MPKI trends by allocating all cores to the secure

cluster. This additional cluster reconfiguration must ensure

bounded information leakage. Moreover, the computations

for generating the MPKI trends must not add significant

performance overheads. Exploring the online evaluation of

the MPKI trends is left as part of future work.

5) Non-interference under Dynamic Hardware Isolation:
Figure 5:(a) depicts a scenario where the secure cluster gives

away a set of shaded cores to the insecure cluster. The

color codings are shown to differentiate secure from insecure

processes, while the shaded colors represent hardware sharing

vulnerabilities. Each core given up by the secure cluster

temporally shares the core pipeline, and private caches and

TLBs. The insecure process can monitor the private resources

of these reallocated cores to leak the microarchitecture state

of the secure process [1]. Moreover, the secure cluster’s data

remains pinned to the shared cache slice of each re-allocated

core. The data accesses from both secure and insecure clusters

contend on the shared network routers, leading to potential

information leakage of secure data. Figure 5:(b) shows a

scenario where the secure cluster gains a set of cores from the

insecure cluster. The insecure process’s data remains pinned to

shared cache slices of cores gained by the secure cluster. The

insecure cluster can contend the associated network routers

and create covert timing channels to leak information. Clearly,

dynamic hardware isolation exposes the core pipeline, cache,

and network resources of re-allocated cores between the clusters.

To ensure strong isolation, following mechanisms are adopted

in IRONHIDE.

To protect the exposed private microarchitecture resources

from leaking secure cluster’s data, IRONHIDE flushes-and-
invalidates the core pipeline buffers, and private caches (and

TLBs) of all re-allocated cores. This is done in the same

way as the multicore MI6 baseline, but it is only applied

once per interactive application invocation. The shared cache

(and TLB) resources of the re-allocated cores are indirectly

exposed due to sharing of network routers. To enforce strong

isolation, IRONHIDE re-allocates the process’s data structures

(memory pages) for all shared cache slices of the dynamically

re-allocated cores. This mechanism unmaps the data structure

from its current home (cache slice), by which all dirty data is

propagated to the off-chip memory. Lastly, the data structure

is re-mapped to the reconfigured secure cluster’s shared cache

slice(s). Consequently, strong isolation for the on-chip network

is ensured, as the network routers do not get shared across

clusters anymore.

On every dynamic hardware re-allocation event, IRONHIDE
first stalls all cores in the system. The re-allocated cores are

concurrently passed through the flush-and-invalidate routines.

Consequently, the data present in private resources is flushed

to the respective shared cache slices. Then, the shared cache
re-allocation routine is invoked, followed by both clusters pro-

ceeding with execution after the new thread work distribution.

IV. METHODOLOGY

IRONHIDE is prototyped on a real multicore Tilera®Tile-
Gx72TM processor [19]. It enables several hardware capabilities

needed for the proposed temporal and spatial strong isolation

mechanisms. An API library, Tilera Multicore Components

(TMC) includes facilities that are used to form clusters of

cores, manage network traffic across clusters, regulate on-chip

and off-chip data access controls, and manage shared cache

data placement. Tile-Gx72TM is a tiled multicore architecture

comprising of 72 tiles, where each tile consists of a 64-bit multi-

issue in-order core, private level-1 (L1) data and instruction

caches of 32KB each, private instruction and data TLBs of

32 entries each, and a 256KB slice of the shared level-2 (L2)

cache (LLC capacity of 18MB). Moreover, it consists of 5

independent 2-D mesh networks with X-Y routing, one for

on-chip cache coherence traffic, one for memory controller

traffic, and others for core-to-core and I/O traffic. The off-chip

memory is accessible using four on-chip 72-bit ECC protected

DDR memory controllers attached to independent physical

memory channels.

A. Secure Processor Modeling on Tilera®Tile-Gx72TM

1) SGX-like Secure Multicore: Among the 72 available

cores, 64 cores are time-shared across secure and insecure

processes, and the core pipeline buffers are flushed on every
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enclave entry and exit (process interaction) [26]. Prior work,

HotCalls [15] quantifies the overhead of each Intel’s SGX

enclave entry (ECALL) and exit (OCALL) to be in the range

of ∼2.5μs to 5μs. This includes the overhead associated with

data encryption and memory integrity verification. To model

the ECALL and OCALL overheads, a constant 5μs latency

is added for each secure process entry/exit. All remaining

hardware resources, i.e., private–shared cache hierarchy, TLBs,

and off-chip memory remain temporally shared across secure

and insecure processes. Thus, the SGX-like setup exposes the

footprint of secure processes to an insecure process.

2) Multicore MI6: The SGX-like setup is extended with

strong isolation capabilities. Each process is provided with

statically partitioned L2 slices, and DRAM regions. For

example, in an application with an insecure and a secure

process, 32 L2 slices and half of the DRAM regions are

allocated to each process. The default hash-for-homing scheme

is overridden with the local homing scheme that maps

each process’s data structures on specific L2 slices using

tmc_alloc_set_home(&alloc, core_id) API call.

Moreover, L2-replication is disabled to allow only one process

to access any given L2 cache slice. All time-shared cores,

their L1 caches and TLBs, as well as the memory controllers

are purged/flushed on each secure process entry and exit. To

flush-and-invalidate the private L1, a dummy buffer of size

equal to the cache size is read into each L1 cache. Reading this

buffer removes all secure process’s data from private L1 caches.

Then, a memory fence operation (tmc_mem_fence() call)

is performed that ensures propagation of dirty data to respective

L2 slices. Similarly, the TLBs are flushed using Tilera specific

user commands. However, all L1s and TLBs are purged in par-

allel. Finally, the queues/buffers of all memory controllers are

purged using tmc_mem_fence_node(controller_id)

call that writes back all modified data to the DRAM.

3) IRONHIDE: The secure and insecure clusters of cores

are formed by pinning process’s threads to respective cores

via tmc_cpus_set_my_cpu(tid). The L2 cache slices

are allocated to their respective cluster using the local
homing scheme. A clusters’ accesses to its physically iso-

lated DRAM regions are realized by forwarding its re-

spective L2 miss traffic to dedicated memory controllers

via tmc_alloc_set_nodes_interleaved (&alloc,
pos), where pos represents the bit-mask representation

of memory controllers to be selected. For instance, pos =
0b0011 is used to dedicate MC0 and MC1 to the secure cluster,

whereas, pos = 0b1100 (MC2 and MC3) for the insecure

cluster. Tile-Gx72TM implements X-Y routing with 2-D mesh

network topology, which isolates the network traffic by routing

each packet to/from the allocated clusters’ memory resources.

The dynamic hardware isolation capability of IRONHIDE
is also supported on the prototype. At each interactive

application invocation, the private L1 and TLB flush-and-
invalidate mechanism from the multicore MI6 baseline is

invoked for the re-allocated cores. To re-allocate data structures

(pages) in L2s, the pages are first un-mapped from their

current L2 home cache slices using tmc_alloc_unmap

(*addr, size) API call, followed by setting the new home

for each page using tmc_alloc_set_home (&alloc,
core_id). Finally, each page is mapped to the new

L2 home using tmc_alloc_remap (&alloc, size,
new_size) call. Note, the prototype only contains private

TLBs, thus only shared L2 cache slices are re-allocated.

B. Benchmark Interactive Applications

1) User-Level Interactive Applications: Three different

classes of user-level interactive applications are evaluated.

• Real-time Graph Processing: This application uses an

insecure graph generation algorithm [31] (GRAPH) that reads

values at various time intervals from distributed sensors, and

generates temporal graph updates for an underlying static graph.

The safety-critical graph algorithm consequently performs

decision analytics on the spatio-temporally updated graph.

Three secure graph algorithms [32] are considered, i.e., Single

Source Shortest Path (SSSP), PageRank (PR), and Triangle

Counting (TC). The insecure GRAPH generation process

generates temporal graph inputs for the California road network

graph [33], and each of the three secure graph algorithms

combine with it to form a user-level interactive application.

• Real-Time Perception and Mission Planning: This appli-

cation builds on an insecure vision pipeline [34] (VISION)

that performs image processing kernels on RAW images. The

VISION pipeline consequently feeds input images to several

secure perception and mission planning secure algorithms.

The mission planning Artificial Bee Colony [35] (ABC)

algorithm is adopted from advanced driver-assistance system

with inputs from a real-world road scenario. The perception

neural network algorithms [36], ALEXNET and SqueezeNet

(SQZ-NET) process inputs that are communicated from the

VISION pipeline.

• Query Encryption: This application uses an insecure query

generation algorithm [37] (QUERY) that periodically generates

database queries for systems (e.g., ATM) to process. These

queries are then communicated to a secure encryption algorithm

from Advanced Encryption Standard (AES) to encrypt data

using a 256-bit key.

Each user-level interactive application is executed with 500,

1K, 5K, 10K, and 50K inputs, and the reported completion

time is the average across these runs.

2) OS-Level Interactive Applications: A set of interactive

applications are considered that require frequent support from

an untrusted OS process for generating and processing requests,

such as fread, fcntl, close, and writev [15]. The database

application, MEMCACHED [38] (version 1.4.31) computes

2 million requests via the memtier benchmark [39]. The web

server application, LIGHTTPD [40] (version 1.4.41) fetches

1 million pages (each of 20KB size) through 100 concurrent

client connections via the http load [41] tool.

For all considered applications, the interactions across secure

and insecure processes are carried out via the shared inter-

process communication buffer. In case of user-level interactive

applications, the secure process interacts with the insecure

process for an average of 13.3K inputs executed under MI6
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Fig. 6. Completion times of IRONHIDE against SGX and MI6 baselines for various interactive applications. Geometric mean completion times for user-level,
OS-level, and all appliations are also reported.

for 70 seconds, leading to an interactivity rate of ∼400 secure

process entry/exit events per second. However, the average

interactivity rate for OS interactive applications is measured

∼220K secure process entry/exit events per second. The OS

interactivity is similar to the rate observed in HotCalls [15].

V. EVALUATION

The SGX-like and MI6 baselines, as well as the proposed

IRONHIDE architecture are evaluated for the user-level and

OS-level interactive applications. Each setup is first warmed up

with sample inputs to obtain steady-state, and then completion

time is measured for a fixed number of inputs specified in

Section IV-B. For IRONHIDE, each process of an interactive

application is started with an initial cluster configuration of

32 cores per cluster. The system is then reconfigured to the

load-balanced core-level resource binding after executing the

gradient-based heuristic search. The overheads of re-allocating

cores among the clusters are measured and added to the

completion time. The purge overheads of each enclave entry and

exit for the MI6 architecture and SGX-like model (baselines)

are also added to their respective completion times.

A. Comparison of Intel’s SGX with MI6 and IRONHIDE

Figure 6 shows the completion time comparison of the

SGX-like baseline against MI6, and the proposed IRONHIDE
architecture. The reported numbers show the completion time

(left y-axis) for each interactive application (x-axis). The SGX-

like architecture does not enable strong isolation. Consequently,

it does not partition the shared cache and DRAM regions, and

avoids purging the cache and memory controller resources.

However, it incurs memory integrity checking and core pipeline

flushing overheads on every secure enclave entry/exit. The SGX

completion time results are broken down in process execution

time and the secure enclave entry/exit overheads. These

overheads account for increasing proportion of the completion

time for applications that incur high interactivity. All user-level

interactive applications exhibit negligible overheads, while

both OS-level interactive applications incur significant flushing

overheads.

To enable a secure execution environment, the multicore

MI6 baseline provides strong isolation support. However, this

holistic security comes at the cost of performance, due to (1)

frequent state purging of the private resources and memory

controller queues, and (2) static partitioning of shared cache

and DRAM memory resources. The MI6 setup observes an

average performance degradation of ∼71% compared to SGX.

In addition to purging overheads, the compute component

of MI6 also increases over SGX. This is attributed to the

overheads from statically partitioning the shared cache and

DRAM memory resources, as well as the data locality impact

of re-installing the purged microarchitecture state.
The IRONHIDE architecture also enables strong isolation.

However, it spatially pins the secure and insecure processes

on their respective clusters of cores, and significantly limit the

frequent purging overheads. It experiences a negligible one-

time cluster reconfiguration overhead of ∼15ms. Moreover,

similar to MI6, the spatial isolation of the two clusters also

partitions the shared cache and DRAM memory resources.

IRONHIDE experiences an ∼8.7% performance degradation

compared to SGX for user-interactive applications. This is

attributed to the limitations imposed by partitioning of the

shared cache and DRAM memory resources. For applications

that are not sensitive to the large state partitions, such as

<TC, GRAPH>, IRONHIDE observes minimal performance

degradation compared to SGX. The performance of IRONHIDE
is observed to significantly improve over SGX for both OS-

level interactive applications. As these applications exhibit

high interactivity rates, the core pipeline flushing overheads

stack up significantly under SGX. However, IRONHIDE pays

a one-time purging and re-allocation overhead, resulting in

performance gains. Overall, IRONHIDE delivers geometric

mean performance improvement of ∼20% compared to SGX,

while also ensuring strong isolation guarantees.

B. Comparison of MI6 Baseline with IRONHIDE
The key insight of IRONHIDE is its capability to pin

the secure process(es) to strongly isolated cluster of cores

without incurring purging overheads of repetitive enclave entries

and exits. Moreover, the number of cores per clusters are

adjusted for improved core-level resource utilization, while

the MI6 baseline statically distributes all shared cache and

DRAM resources. MI6 purges per-core private resources and
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Fig. 7. Private L1 and shared L2 cache miss rates for each interactive
application. Geometric mean miss rates are shown for all process interactions.

memory controller queues on each secure process interaction.

This overhead is measured as ∼0.19ms per interaction event,

resulting in the total purging overhead of ∼47% of the average

completion time for MI6. On the contrary, IRONHIDE incurs

a ∼15ms one-time overhead of private cache/TLB purging

and shared cache re-allocation overheads at each interactive

application invocation. The marker on top of each interactive

application bar (right y-axis of Figure 6) shows the number of

cores allocated to the secure cluster under IRONHIDE. The

geometric mean results from Figure 6 indicate that IRONHIDE
improves completion time component of purging by 706×
over the MI6 baseline. However, when accounting for the

total completion times including the execution times of the

interactive processes, IRONHIDE improves the geometric

completion time by 2.1× over MI6.

Figure 6 also shows that the compute time component of

processes improve from IRONHIDE relative to MI6. Purging

the private microarchitecture state under MI6 limits each

process from exploiting private cache locality, essentially

thrashing the L1 cache and TLBs on each purge event. This

overhead is not present in IRONHIDE, since it enables each

secure and insecure process to exploit its private resources

better. Moreover, statically partitioned L2 cache slices impact

the shared cache usage of processes, as a process may demand

larger shared cache capacity for improved performance. The

MI6 baseline operates with a fixed static partition, while

IRONHIDE implements dynamic hardware isolation to improve

the load-balancing of core-level resources, including the L2

cache slices per cluster.

The performance benefits of IRONHIDE over MI6 are more

prominent for highly interactive OS-level applications (∼3.1×)

as compared to the user-level applications (∼32%). The main

reason for performance benefits in OS-level applications arise

from the elimination of purging overheads under IRONHIDE.

However, for user-interactive applications that are sensitive

to cache behaviors, performance advantages also arise from

improved data locality and core-level resource utilization. To

further investigate these performance benefits, the L1 and L2

cache miss rate behaviors are evaluated next.

C. Cache Miss Behavior of MI6 and IRONHIDE

Figure 7:(a) depicts the private L1 cache miss rates for

each interactive application under the MI6 and IRONHIDE
architectures. As compared to MI6, the private L1 cache miss

rates dramatically reduce for IRONHIDE by up to 5.9×. MI6

experiences L1 cache thrashing as a consequence of frequent

L1 cache purging. However, the spatial execution of processes

under IRONHIDE pins respective threads on each cluster’s

cores, and dramatically improve private cache utilization. The

<TC, GRAPH> application does not exhibit much L1 cache

locality for the TC process, while the GRAPH process has a

small private working set. Therefore, the MI6 purge operation

does not impact the L1 cache miss behavior significantly. On

the other hand, TC is executed in a secure cluster configured

with only two cores, while GRAPH executes with the remaining

62 cores allocated to the insecure cluster (c.f. Figure 6). The

TC process incurs significant thread synchronization overheads,

thus it is allocated a small number of cores, while the GRAPH

process benefits primarily from core-level parallelism. As both

processes in this application are not primarily sensitive to L1

caches, IRONHIDE only shows slight improvements over MI6.

Figure 7:(b) depicts the shared L2 cache miss rates for

each interactive application under the MI6 and IRONHIDE
architectures. The L2 miss rates are improved by up to 2×,

with the exception of <TC, GRAPH> and <LIGHTTPD,

OS> applications. However, unlike L1 cache, the benefits

from IRONHIDE primarily arise due to its dynamic hardware

isolation capability that enables the processor to load-balance

the allocation of L2 cache slices. On the other hand, MI6

configures the last-level cache with a static allocation of

L2 cache slices per secure and insecure processes. Due to

better utilization of the available last-level cache resources,

IRONHIDE delivers improved L2 cache miss rates. For <TC,

GRAPH>, MI6 slightly improves L2 cache miss rate compared

to IRONHIDE. The TC process does not show much L2 cache

locality as it only traverses the input graph once. Thus, it is

allocated only two L2 cache slices (c.f. Figure 6). However, the

input graph being large, does not fit in these two allocated cache

slices, resulting in a higher L2 miss rate. The remaining 62 L2

cache slices are allocated to the GRAPH process, but it brings

insignificant improvements in the miss rate due to its small

working set. Similarly, the LIGHTTPD process does not exhibit

much L2 cache locality due to its random request generation.

Thus, it is provided with only one L2 cache slice (c.f. Figure 6),

whereas the OS process utilizes the remaining cores. Again,

due to the asymmetric L2 cache allocation, IRONHIDE shows

slightly worse L2 miss rate compared to MI6.

D. Cluster Reconfiguration Heuristic

IRONHIDE performance depends on the number of cores

(and the associated compute and cache resources) allocated to

each cluster for load balanced execution. This resource binding

is computed by the proposed security-centric heuristic discussed
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Fig. 8. Impact of the variations in decisions made by the core-reallocation
predictor on the performance of IRONHIDE.

in Section III-B3. The geometric mean completion time across

all interactive applications is reported in Figure 8 for the MI6

baseline, and the Heuristic for IRONHIDE. The Heuristic
delivers a geometric mean ∼2.1× reduction in completion time.

To analyze the efficacy of the heuristic, IRONHIDE is evaluated

for a variety of fixed decision variations, as well as Optimal that

exhaustively computes the best resource binding without any

overheads. The fixed decision variations are measured by taking

a percentage of cores away from the secure cluster, or allocate

cores to the secure cluster. The +x variation represents that

the secure cluster is provided with x% more cores compared

to Optimal. Conversely, the -x variation represents that x%

cores are taken away from the secure cluster and re-allocated

to the insecure cluster. The x is varied between ±5% and ±25%

to evaluate the impact of cluster reconfiguration accuracy on

performance. The Optimal delivers ∼2.3×, while the Heuristic
delivers ∼2.1× improvement in geometric mean completion

time over the MI6 baseline. Figure 8 also shows that Heuristic
performs well within the ±5% decision variations.

VI. RELATED WORK

A. Secure Processor Architectures

Academic works, such as Aegis [42] reduce the trusted

computing base (TCB) to a secure processor chip. The TCB

assumes a program running on the processor to be trusted such

that the memory accesses do not leak sensitive information.

Industry developed AMD-SEV [10], Trustzone [43], and TPM

[44] as a fixed-function unit with limited set of capabilities.

To secure arbitrary computation, TPM was extended with TXT

[45] to implement an integrity checking boot process that

attests to the software stack. Intel’s SGX [9] maintains on-

chip enclaves that isolate processes from the untrusted OS.

HotCalls [15] makes an effort to quantify the overheads of SGX,

and report ∼2.5 to 5μs for each ECALL/OCALL. Performance

degradation of ∼40% is reported for a database application

generating 200K requests per second to the untrusted OS.

Moreover, various microarchitecture state leakage channels in

SGX have led to security vulnerabilities [16], [17].

Recent secure processor works [11], [12], [13] extend the

idea of enclaves to alleviate microarchitecture state attacks.

MI6 [11] introduces strong isolation that requires purging the

microarchitecture state of time-shared hardware resources at

each enclave entry/exit. MI6 reports an average purge overhead

of ∼5.4% of the total completion time of an application.

IRONHIDE re-thinks secure processor design in the context of

multicores, where spatially isolated secure and insecure clusters

are formed. The secure process(es) are pinned to the secure

cluster to limit the purge overheads for interactive applications.

B. Protecting Non-Speculative Microarchitecture State

Cache side-channel attacks [1], [4] have been studied

extensively, such as Prime+Probe [1], where the attacker’s

goal is to determine which cache sets have been accessed

by the victim application by observing the latency difference

between a cache hit or a miss. Page translation caches have also

been attacked [46] using similar schemes under Intel’s SGX.

Various works on cache partitioning either isolate caches [12],

[47], or scramble addresses [2], [3] to diminish information

leakage. Research has also shown that routers in the on-chip

networks expose application traffic traces [23] that leads to

information leakage. Furthermore, information can also be

leaked via off-chip memory-based timing channels, where the

adversary monitors memory latencies of the victim applica-

tion [48], [49]. Prior works have explored various mitigation

mechanisms, such as employing time-multiplexed memory

bandwidth reservation [29], or adopting a non-interference

memory controller [50]. The aforementioned works focus on

certain covert channels, while IRONHIDE takes a holistic

approach to protect all microarchitecture state attacks.

C. Protecting Speculative Microarchitecture State

DAWG [12] utilizes protection (or security) domains to

isolate secure data from malicious insecure applications. Both

caches and DRAM are partitioned to ensure secure data

is physically isolated from the insecure data. Therefore,

speculative microarchitecture state attacks [5], [6], [17] do

not materialize due to strong isolation. However, since these

caches are latency sensitive to capacity and conflicts, the

performance penalties stack up with DAWG-like approaches.

InvisiSpec [7] does not assume security domains, and handles

speculative microarchitecture state in both private and shared

caches by temporarily holding unresolved data in side-buffers

invisible at each level of cache hierarchy, and only commit

non-speculative data. It also adds hardware to ensure data

consistency checks before committing loads that resolve as non-

speculative. However, this causes performance losses (reported

>15%) due to diminished benefits from speculative execution.

Unlike the redo-based solution of InvisiSpec, a recent work

CleanupSpec [8] considers the InvisiSpec model and improves

performance by undoing the changes made to the cache sub-

system through speculative instructions. Nevertheless, these

works open a security vulnerability window as a consequence of

moving speculative data across on-chip caches and side-buffers.

In IRONHIDE, the victim and attacker process pairing for

speculative state attacks is only possible in the insecure cluster.

The secure process(es) are strongly isolated from the attacker

since secure data is only allowed to map inside the secure

cluster. Similar to MI6, IRONHIDE envisions a hardware check

for each memory access that ensures the insecure cluster does

not access the secure cluster’s data.

121

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore.  Restrictions apply. 



VII. CONCLUSION

To enable a secure processor, Intel SGX introduces the

concept of enclaves that temporally execute alongside ordinary

processes. However, it is vulnerable across various speculative

and non-speculative microarchitecture state attacks. State-

of-the-art MI6 secure processor adopts the idea of strong

isolation to mitigate such vulnerabilities. However, it suffers

from performance degradation due to microarchitecture state

purging of the private resources on every secure enclave entry

and exit. IRONHIDE extends strong isolation capabilities

in the context of multicores, and forms spatially isolated

secure and insecure clusters of cores. For an interactive

application, IRONHIDE pins the secure process(es) to the

secure cluster, where they interact with the insecure cluster

process(es) without purging the microarchitecture state on each

enclave entry/exit. IRONHIDE implements dynamic hardware

isolation that dynamically re-allocates core-level resources

across clusters for load balanced execution. For a set of user and

OS interactive applications, IRONHIDE improves geometric

mean performance over the multicore MI6 baseline by 2.1×.
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