2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

IRONHIDE: A Secure Multicore that Efficiently Mitigates
Microarchitecture State Attacks for Interactive Applications

Hamza Omar and Omer Khan
University of Connecticut, Storrs, CT, USA
{hamza.omar, khan} @uconn.edu

Abstract—Microprocessors enable aggressive hardware virtual-
ization by means of which multiple processes temporally execute
on the system. These security-critical and ordinary processes
interact with each other to assure application progress. However,
temporal sharing of hardware resources exposes the processor to
various microarchitecture state attacks. State-of-the-art secure
processors, such as MI6 adopt Intel’s SGX enclave execution
model. MI6 architects strong isolation by statically isolating
shared memory state, and purging the microarchitecture state
of private core, cache, and TLB resources on every enclave entry
and exit. The purging overhead significantly impacts performance
as the interactivity across the secure and insecure processes
increases. This paper proposes IRONHIDE that implements
strong isolation in the context of multicores to form spatially
isolated secure and insecure clusters of cores. For an interac-
tive application comprising of secure and insecure processes,
IRONHIDE pins the secure process(es) to the secure cluster, where
they execute and interact with the insecure process(es) without
incurring the microarchitecture state purging overheads on every
interaction event. IRONHIDE improves performance by 2.1x over
the MI6 baseline for a set of user and OS interactive applications.
Moreover, IRONHIDE improves performance by 20% over an
SGX-like baseline, while also ensuring strong isolation guarantees
against microarchitecture state attacks.

I. INTRODUCTION

Modern microprocessors enable aggressive hardware vir-
tualization that allows multiple processes to co-locate and
temporally execute on the system. These security-critical
and ordinary processes interact over their execution for an
application to progress. However, these processes suffer from
interference channels due to the temporal sharing of processor
hardware resources, such as caches, translation look-aside
buffers, on-chip networks, and even memory controllers. The
execution footprint of processes leaves microarchitecture state
vulnerable in these shared hardware resources by means of
which an attacker process can infer secret data value(s). Thus, it
is imperative to ensure non-interference for guaranteeing robust
security across secure and insecure processes. To enable non-
interference, various software and hardware based solutions
have been proposed in literature. At the software level, process-
level isolation (e.g., Intel’s SMAP and KASLR) is traditionally
adopted across co-executing processes to guarantee memory
isolation. However, it falls short in providing processor security
as the hardware resources still remain shared across temporally
executing processes [1].

Architectural solutions to prevent microarchitecture state
attacks predominantly fall in two categories. The first cate-
gory comprises of traditional non-enclave based mitigation

2378-203X/20/$31.00 ©2020 IEEE

DOI 10.1109/HPCA47549.2020.00019

111

@ Security: Strong (Secure Communication

E ;‘21 3 . - Hardware Isolation for process interaction
. o o o s s

$1z | | OO0 H-
Q16] N

g14 4 —"—"— Insecure
S 1? £ |2 1 |s

§ 0s i[= g = E : ecure —"—"—
=06 (2| (@ I

Sos ||Bl |2 | B | I H-
502 42| |2 = o

2 0 @ Performance: Load-balanced resource allocation
Fig. 1. Performance of various secure processor architectures is compared in

(a). IRONHIDE secure multicore architecture is shown in (b).

schemes [2], [3], where secure and insecure processes tempo-
rally execute on the system. In such solutions, the memory
locations of all processes are randomly mapped to cache loca-
tions, resulting in diminished information leakage via scrambled
address accesses. However, these works only mitigate non-
speculative microarchitecture state attack vectors [1], [4]. To
protect against speculative state leakage [5], [6], prior works [7],
[8] allow only non-speculative data to be committed, and
introduce complex hardware buffers and coherence/consistency
extensions to avoid shared cache pollution with speculative
data. However, moving the speculative data across caches
and side-buffers opens a security vulnerability window that
can be exploited to reveal secret information. On the other
hand, the second category involves enclave-based architectural
mechanisms [9], [10], where secure processes execute in con-
tainers that are isolated at the hardware-level from temporally
executing ordinary (insecure) processes. Enclave-based secure
processors have been commercialized (e.g., Intel’s SGX [9]),
and recent research has also explored robust security against
both speculative and non-speculative microarchitecture state
attacks [11], [12], [13]. Hence, this paper primarily focuses
on enclave-based secure processors, as the software-level and
non-enclave based mechanisms do not provide holistic security
assurances, and are not commercially adopted.

Intel’s SGX creates a pristine environment for the secure
enclave by (1) flushing the core-pipeline, and (2) encrypting
and decrypting enclave-related data, on every secure enclave
entry and exit (context switch). Moreover, it introduces various
hardware security primitives, such as memory integrity support.
Figure 1:(a) shows the normalized geometric mean completion
time of the evaluated applications. These applications comprise
of multiple secure and ordinary (insecure) processes that
frequently interact with each other to assure application
progress [14], [15]. The completion time of various enclave-
based mechanisms is normalized to an insecure baseline that

IEEE
(@ computer
socl

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

ety

does not implement the enclave-based security primitives. The
performance of an SGX-like enclave setup suffers by ~33%
since it incurs overheads associated with pipeline flushing and
cryptography operations on every secure enclave entry and exit.
Moreover, due to temporal execution of the secure enclave
with insecure processes, an attacker process can either directly
monitor accesses made by the enclave [1], [4], [16], or befuddle
the system in making speculative accesses [5], [6], [17] to leak
secure enclave’s data.

Recent academic secure processor, MI6 [11] considers the
Intel’s SGX enclave execution model and provides protection
against all microarchitecture state attack vectors by enabling
strong isolation [18]. The idea of strong isolation across the
secure enclave and ordinary processes ensures that secure
process’s data does not leak through the shared hardware
resources. MI6 ensures strong isolation by (1) statically
distributing last-level caches and main memory region(s) across
secure and insecure processes, and (2) flushing or purging
the state of temporally shared per-core private resources
(e.g., private caches and TLBs) on every secure enclave
entry and exit. Certainly, as the frequency of interactions
across processes increases in an interactive application, the
purging overheads stack up since each interaction invokes the
enclave’s entry/exit protocol. Figure 1:(a) shows that the MI6
architecture experiences ~2.25x performance loss relative
to the insecure system. It is clear that strong security in
enclave-based architectures comes at the cost of significant
performance degradation. Hence, there is a need to re-think
secure processor designs that provide strong isolation, yet
enable high performance.

All prior secure processor works [9], [11], [12], [13]
consider the processor as a single monolithic entity, where
secure and insecure processes temporally execute. This work
proposes to take a step further in the context of multicore
architectures that incorporate tens or even hundreds of cores
on a chip [19]. Unlike traditional secure processors where
applications temporally execute on all cores, multicores allow
spatial sharing of cores as well. Figure 1:(b) shows the
envisioned IRONHIDE architecture, where two clusters of
cores are formed to enable strong isolation between the secure
and insecure processes. When an interactive application is
executed, its mutually trusting secure process(es) are pinned to
the secure cluster. These secure process(es) interact with the
insecure process(es) using a secure communication protocol,
and do not require enclave context switches. Thus, purging
overheads to mitigate microarchitecture state attacks are not
accumulated in TRONHIDE.

MI6 [11] is considered as the baseline secure processor
architecture, since it is built on top of recent secure processor
works [12], [13]. To model MI6 on a multicore processor,
all strong isolation mechanisms are adopted, where (1) time-
multiplexed private resources are flushed/purged on every
secure enclave entry and exit, and (2) per-core shared cache
slices (and TLBs), and main memory regions are statically
distributed across the secure and insecure processes. To attest
and authenticate secure processes, a secure kernel (similar to

the security monitor in MI16) is implemented. Additionally, a
hardware check for mitigating speculative microarchitecture
state attacks [20] is also adopted from MI6. Lastly, interactions
across the secure enclave and insecure processes are carried out
via a shared inter-process communication (IPC) buffer, which
resides in the shared cache slices (or memory regions) of the
insecure process(es) [11], [15]. However, frequent interactions
across processes lead to intermittent flushing/purging overheads
in the MI6 baseline, leading to degraded performance.

IRONHIDE forms two strongly isolated secure and insecure
clusters of cores, where each cluster is provided with spatially
partitioned private—shared caches and TLBs, and DRAM
regions (on-chip memory controllers are spatially distributed).
The deterministic on-chip network is isolated across clusters
ensuring network packets originated by and destined to a given
cluster do not drift to the other cluster (c.f. Figure 1:(b)-@).
A key insight here is that the secure process (attested by a
trusted light-weight secure kernel) is pinned to the secure
cluster, where it spatially interacts with insecure processes
via the shared IPC buffer (c.f. Figure 1:(b)-®2). Hence, no
secure process entry/exits are necessary for an application’s
execution, thus avoiding the need for microarchitecture state
flushes without violating strong isolation.

IRONHIDE implements dynamic hardware isolation, where
the clusters of cores are allowed to be reconfigured to ensure
load balanced execution for performance, while guaranteeing
strong isolation (c.f. Figure 1:(b)-®). The secure kernel
employs a core re-allocation predictor, and orchestrates the
process of re-configuring core-level resources among the two
clusters. To ensure strong isolation for each reconfiguration
event, the system is stalled and the private resources of the
reallocated cores are flushed-and-invalidated, followed by the
re-allocation of memory pages (data structures) mapped to
the shared cache slices (and TLBs) of the respective cores.
Prior works [21], [22] have shown that an adversary can
infer secret-information based on timing and termination
channels introduced due to resource scheduling. However, this
information leakage can be bounded by limiting the number of
unique scheduling events. Thus, TRONHIDE takes a security-
centric approach and bounds the leakage to a small constant
factor by limiting the cluster reconfiguration to once for each
interactive application invocation.

This paper highlights the performance and security pitfalls of
enclave-based secure processors. State-of-the-art MI6 considers
the Intel’s SGX enclave execution model and deals with its secu-
rity limitations by ensuring strong isolation against microarchi-
tecture state attacks. However, strong isolation leads to degraded
performance for MI6 due to frequent microarchitecture state
purging in interactive applications. To mitigate the performance
limitations, IRONHIDE forms spatially isolated secure and inse-
cure clusters of cores, where the secure process(es) are pinned
to execute in the secure cluster. Consequently, TRONHIDE
minimizes microarchitecture state purging overheads compared
to SGX-like and MI6 baselines, while ensuring strong isolation
guarantees for robust security. IRONHIDE is prototyped on
a real Tilera®Tile-Gx72™ multicore, and evaluated using a

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

set of user-interactive and OS-interactive parallel applications.
IRONHIDE is shown to improve performance by an average
of ~2.1x over the multicore MI6 baseline (c.f. Figure 1:(a)).
Moreover, ITRONHIDE improves performance by ~20% in
comparison to the SGX-like baseline architecture.

II. THREAT MODEL

The threat model is adopted from MI6 [11], where both
speculative and non-speculative microarchitecture state attacks
that rely on covert/side channels are considered. Similar to
MI6, it is assumed that the operating system (OS) and user
applications are untrusted. However, the processor hardware,
main memory (DRAM), and a security monitor (or secure
kernel) are trusted. The threat model considers that an ad-
versarial process can co-locate with a victim process on the
processor’s shared microarchitecture structures, e.g., the per-
core pipeline buffers, private and shared caches and TLBs, the
on-chip networks, and the shared memory controllers. With its
co-location, the adversarial process can conduct various non-
speculative state attacks, such as cache timing/access based
attacks [1], [2], [4], [16], and/or on-chip network exploits [23].
Moreover, the adversary has the capability to manipulate/train
the hardware resources dedicated for speculative execution,
such as branch predictor, to launch attacks that rely on leaking
the speculative microarchitecture state in the shared hardware
resources [5], [6], [17]. Additionally, the adversary is capable
of monitoring the timing and termination channels to leak
information [21], [22]. The key objective of TRONHIDE is to
deliver high performance for secure multicore processors that
mitigate microarchitecture state attacks using strong isolation.

The threat model exclusively focuses on software-based
microarchitecture state attacks, and assumes the absence of
any adversary with physical access. Thus, physical channels
dependent on power, thermal imaging, and electromagnetics
are considered as orthogonal attack vectors. This also in-
cludes physical attacks on memory that can be efficiently
mitigated by incorporating mechanisms, such as memory
integrity checking [24] and oblivious-RAM [25]. Moreover,
attacks by compromised system software, e.g., OS refusing to
allocate secure application resources are not possible within
the proposed threat model. Lastly, hardware attacks outside the
microarchitecture state, such as exploiting hardware bugs to
conduct fault-inject attacks, and employing trojan applications
to leak information are all orthogonal attack vectors.

III. MULTICORE ARCHITECTURE WITH STRONG ISOLATION

The baseline multicore architecture builds on an Intel’s
SGX-like enclave model, where the ordinary (potentially
insecure) processes temporally co-execute with security-critical
processes. For every secure enclave entry and exit, data is
encrypted/decrypted and the core pipeline queues are flushed to
clear secure process’s memory footprint, essentially forming a
pristine execution environment [26]. However, flushing the core
pipeline buffers and adopting strong cryptography primitives
falls short of ensuring robust security, since the on-chip cache
hierarchy, on-chip networks, and main memory still remain

Strong Isolation in MI6

Application

Core Pipeline

~ Private resources flushed
Secure on every enclave entry/exit

Process

Private Cache

SharedlCache

~_ Statically distributed shared

Memory Controller (& 7 cache and DRAM regions

»®
| | | | ‘ DRAM REGIONS

Strong isolation in state-of-the-art MI6 secure processor.

Insecure
Processes

Fig. 2.

shared across the temporally co-executing processes. Conse-
quently, an attacker (insecure) process can monitor accesses
made by the enclave [16], [17] to leak secure data through
these temporally shared hardware resources. To enable a secure
architecture baseline, strong isolation mechanisms proposed by
MI6 [11] are first adopted in the context of multicore processors.
Next, the proposed IRONHIDE architecture and its formulation
of spatially isolated clusters of cores is described.

A. The Multicore MI6 Architecture

Figure 2 shows the strong isolation based enclave execution
model of MI6 [11] processor, where it is ensured that no
insecure process is allowed to infer secure process’s data via
the shared hardware resources. The security monitor in MI6
attests and authenticates secure processes before allowing them
to execute in the secure enclave. It runs in the machine mode,
managing its own memory and hardware resources. For strong
isolation, the security monitor verifies all decisions made by
the untrusted OS, e.g., resource management decisions that
no memory regions assigned across processes overlap. Upon
failure, the security monitor raises an exception and disallows
execution of the secure process on the system. A secure boot
protocol is also enabled to ensure that the security monitor has
not been compromised. Furthermore, in case of page faults
and interrupts, the security monitor is expected to intervene
for preserving strong isolation. The multicore MI6 setup also
time multiplexes core-level resources of the system across
the secure and insecure processes of an application. Thus,
the strong isolation capabilities of the MI6 architecture are
implemented for all shared hardware resources in the multicore.

1) Protecting the Non-Speculative Microarchitecture State:
The temporally shared per-core private resources, such as
private caches, TLBs, and core pipeline buffers are purged
(flushed) on every secure enclave (process) entry and exit. The
purge operation performs flush-and-invalidate routine on each
core concurrently to clean up per-core private microarchitecture
state. Moreover, each temporally executing process on the
multicore MI6 is provided with spatially partitioned large
stateful resources, i.e., shared cache slices and TLBs, and
DRAM memory regions.

Multicores deploy a last-level cache that is logically shared,
but physically distributed as cache slices across all cores.
By default, an entire memory page is hashed across all
shared caches at cache line granularity. However, hashing data
among all shared cache slices violates strong isolation as the
data for one process may be mapped to the shared cache
slices of another process, essentially forming an information

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

leakage channel. To avoid leakage through such a channel,
it is important to keep each process’s data within its own
set of shared cache slices (clustered together). Therefore, a
local homing policy is adopted, where an entire memory
page (or data structure) is mapped to a single shared cache
slice. Data replication in last-level cache is disabled to ensure
that a memory access to each shared cache slice is made
by a single process. This limits an insecure process from
accessing secure process’s shared cache slices. Similar static
partitioning schemes have recently been proposed in Intel’s
Cache Allocation Technology (CAT) [27], and DAWG [12].

MI6 partitions the main memory into multiple physically
isolated DRAM regions, where these regions are statically
distributed across secure and insecure processes. The last-level
cache misses of a process are routed to the memory con-
troller(s) that map the respective DRAM region(s). Multicores
deploy multiple memory controllers, and DRAM regions are
interleaved across all memory controllers to optimize memory
bandwidth. However, shared buffers/queues in the memory
controllers are vulnerable to microarchitecture state attacks.
MI6 ensures strong isolation by assuming constant latency
memory controllers, and leaves the exploration of variable
latency controllers as future work. Since commercial multicores
deploy variable latency memory controllers, the multicore MI6
implements a purge of all memory controller queues/buffers
at each enclave entry and exit. This approach ensures strong
isolation for the off-chip memory accesses.

2) Protecting the Speculative Microarchitecture State:
Speculative state attacks (e.g., Spectre [5], [20]) have shown
that a victim (insecure) process can be tricked by an attacker
(insecure) process to speculatively access secret data by
manipulating hardware structures, such as branch predictor and
return stack buffer. Later, the victim process performs a second
memory request with an address based on the secret data. This
evicts attacker’s primed data from a shared hardware resource.
Hence, the attacker infers (leaks) secret data by observing the
timing difference in accessing primed entries.

To mitigate such speculative microarchitecture state attacks,
a solution proposed by MI6 is adopted, where the physical
address range of the secure process is checked in hardware
for each access made by the insecure process. In multicore
MI6, a hardware check is employed in the core pipeline that
tracks memory accesses destined to data mapped in the secure
cluster’s DRAM region(s). This is done by checking whether
the home location of the data is physically mapped to the given
memory region. If an insecure process initiates a request to
access the DRAM region of a secure process, the progress of
such a request is stalled until it is resolved. Consequently, the
request is discarded if it is resolved to be on the speculative
path, thus incurring no performance overhead. However, if
resolved as non-speculative, the exception handler detects such
a request due to protection check enabled under MI6 strong
isolation. In this situation, the memory request is discarded
without performance impact.

3) Communication Across Interactive Processes: Similar
to MI6 and HotCalls [11], [15], the multicore MI6 adopts

shared memory inter-process communication across secure and
insecure processes. This allows processes to exchange their
respective output states, and the secure enclave to communicate
with the insecure OS. This is achieved using a shared memory
region (referred to as shared IPC buffer) that is granted access
to both processes. Strong isolation for the shared IPC buffer is
assured by allocating it to the dedicated DRAM region(s) of the
insecure process. This disallows insecure processes to access
secure process’s data. However, the secure process (enclave) is
allowed to access the shared IPC buffer, which does not violate
strong isolation because, (1) the shared data is considered
insecure, and (2) no secure data crosses DRAM regions
dedicated to secure processes. Indeed, a microarchitecture state
attack never commences without the insecure process accessing
secure data.

B. The IRONHIDE Architecture

Under the multicore MI6 architecture, the microarchitecture
state of time-shared private resources is purged on every secure
enclave entry and exit that further escalates the state reload
latency when the same process is temporally switched back later.
Alongside purging, static partitioning of the shared cache slices
disallows processes to exploit locality in shared cache resources.
Indeed, these factors contribute to degrade the performance of
co-executing processes, and these overheads stack up as the
interactivity across the secure and insecure processes increases.

IRONHIDE architecture overcomes the performance limita-
tions of multicore MI6 while keeping strong isolation intact.
It creates two strongly isolated clusters of cores, where secure
and insecure processes are temporally executed within their
respective clusters. IRONHIDE adopts spatial partitioning for
shared cache slices and DRAM regions from multicore MI6.
However, instead of time multiplexing per-core resources
(private caches and TLBs) across secure and insecure processes,
it proposes to spatially distribute these per-core resources across
the secure and insecure clusters. Moreover, to enable load
balanced execution of clusters, dynamic hardware isolation
is implemented to securely reconfigure core-level resources,
including the shared cache slices. The on-chip network is
isolated across clusters to ensure that no such packets that are
originated by one cluster and destined to the same cluster, drift
outside the cluster boundary. Only network packets intended
for application interaction purposes are allowed to drift from
one cluster to the other. Lastly, the memory controllers are
statically partitioned across secure and insecure clusters to
enable strong isolation. The secure process(es) are pinned to
the secure cluster where they execute and interact with the
processes executing in the insecure cluster. By pinning secure
processes, these interactions happen without incurring enclave
entry/exit purging overheads.

1) The Spatio-temporal Execution Model: Similar to mul-
ticore MI6, TRONHIDE enables temporal execution of mul-
tiple secure and insecure processes on the multicore system.
However, the temporally executing processes do not require
microarchitecture state flush/purge operations since the secure
processes of an application are strongly isolated from the

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

MC, e 1|

\ TS

CORE \ 1
[PrCACHE | *\ Secure /
Sh.CACHE AN ,
_ || /'
N

State of all cores in

the Secure cluster State of all cores in

Insecure 7 the Insecure cluster
¥ { N { O O -
M CZ M CS
Strongly Isolated
Balanced Clusters

Fig. 3. IRONHIDE with strongly isolated clusters of cores.

insecure processes due to their respective execution in spatially
allocated clusters of cores. If an application comprises of
no secure process(es), IRONHIDE (using dynamic hardware
isolation) reconfigures the system to a single cluster utilizing
all available core-level resources. In such a scenario, the data
for the secure cluster resides in its dedicated off-chip memory
regions that are never accessed by the insecure cluster.

IRONHIDE differentiates execution of secure processes
within and across interactive applications. Multiple secure
processes are considered mutually distrusting when they
belong to different interactive applications. IRONHIDE time
multiplexes the core-level resources of the secure cluster across
these mutually distrusting secure processes from different
applications. When applications context switch, the per-core
shared hardware resources are purged. However, IRONHIDE
considers multiple secure processes mutually trusting if they
belong to the same interactive application. In this scenario, it
co-executes the secure processes in the secure cluster without
purging the microarchitecture state.

2) Strong Isolation using Clusters of Cores: TRONHIDE
forms two clusters of cores that temporally execute their
respective secure and insecure processes. Each cluster is
assigned a set of non-overlapping cores, and their corresponding
cache and TLB resources. The respective process threads are
pinned to their assigned cluster cores.

For each cluster, the network traffic must be routed such that
all requests and data packets remain within the boundary of the
cluster. Thus, a deterministic network routing protocol (such
as X-Y routing) is envisioned in the target multicore, since
it enables isolation of on-chip network traffic. For example,
X-Y routing with 2-D mesh network topology recognizes each
router by its coordinates (X, Y), and transmits packets first in
X direction followed by Y direction. In a square floor plan,
rows of cores are assigned to each cluster with their respective
memory controller(s) on the outside edges, such that X-Y
routing never drifts across the clusters. However, with just X-Y
routing in place, an entire row of cores must be allocated to any
given cluster. If cores within a row are allocated among the two
clusters, it is possible for the X-Y routing to drift packets across

cores allocated to different clusters, violating strong isolation.

Employing Y-X routing mitigates this scenario, since packets
are routed in Y direction first to ensure they safely traverse to
their respective row of cores. Hence, the deterministic routing
algorithm supports bidirectional routing [28] (allows both X-Y

115

and Y-X routing) of packets in the on-chip network.

For each cluster, the memory controllers must be strongly
isolated such that the respective DRAM region(s) of the
process being executed in that cluster are accessible. Unlike the
multicore MI6 baseline, the memory controllers are statically
partitioned among the two clusters'. The respective DRAM
region(s) are mapped in such a way that they are accessible
from their dedicated memory controller(s). For strong isolation
guarantees, memory controller(s) assigned to clusters must
never overlap each other. Specifically, the secure cluster
dedicates the DRAM region(s) of all secure processes to the
memory controller(s) that allow any given secure process to
access its respective physical memory channels, banks, and
rows. At each secure process context switch, the queues/buffers
of memory controller(s) assigned to the secure cluster are
purged to ensure strong isolation. The insecure cluster has its
dedicated memory controllers and it is free to context switch
without any purging overheads.

3) Dynamic Hardware Isolation: As shown in Figure 3,
the formation of spatially isolated secure and insecure clusters
enables each cluster to temporally execute respective processes,
while utilizing its dedicated hardware resources i.e., private
caches and TLBs, shared cache slices and TLBs, and memory
controllers/channels. However, statically partitioning core-level
hardware resources across secure and insecure clusters leads
to under-utilization of hardware core and cache resources.

To tackle this challenge and adapt the performance varia-
tions among the processes of a given interactive application,
IRONHIDE implements dynamic hardware isolation that en-
ables a mechanism where the secure cluster is allowed to give
up or gain cores [30], yet guarantee strong isolation. Similar
to the security monitor in MI6, TRONHIDE implements a
secure kernel that deploys signature checking and attestation
mechanisms to ensure that only secure processes temporally
execute in the secure cluster. The secure kernel executes
alongside the secure processes in the secure cluster. However,
to ensure load-balanced system performance, the secure kernel
further deploys a core re-allocation predictor that re-configures
the number of core-level resources to the secure and insecure
clusters at the application granularity. Prior works [21], [22]
have shown that an adversary can infer secret-information
based on timing and termination channels introduced due
to resource scheduling, and this leakage can be bounded by
limiting the number of unique scheduling (reconfiguration)
events. Although, processes of an interactive application may
exhibit sensitivity to varying core-level resource allocations
during their execution, IRONHIDE adopts a security-centric
approach and limits the cluster reconfiguration to once per every
interactive application invocation. Thus, when an interactive
application comprising of secure and insecure processes is
scheduled on the system, IRONHIDE computes and sets a
single core-level resource binding (distribution) for each cluster.

4) Heuristic for Cluster Reconfiguration: The heuristic for
re-allocating the number of cores per cluster is deployed

! An alternative is to statically partition memory bandwidth [29]. However,
the on-chip network must still guarantee strong isolation between clusters.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

(a) ALEXNET

I\ i __linear Region; T T
nl of Iqtere:st) :

Norm. Shared Cache MPKI

Increasing Core Counts Increasing Core Counts

Fig. 4. An illustrative example of an interactive application. Per-process
MPXKI trends as a function of core counts are shown.

in the secure kernel. This heuristic computes the resource
distribution for each cluster by analyzing the individual shared
cache misses per kilo-instruction (MPKI) as a function of
core counts. The MPKI trends highly correlate with the
performance scaling variations as the core counts are varied
for a process. Therefore, these trends are used to approximate
the number of core allocations per cluster. The interactive
applications are repetitive in nature, and are composed of
processes that are available for the secure kernel to characterize
using representative inputs. Thus, the individual MPKI trends
for the secure and insecure processes are computed offfine
using hardware performance counters. As the MPKI trends do
not reveal any secret information, they are stored anywhere
in the system memory. The re-configuration decision heuristic
for adjusting the number of cores per-cluster adopts a security-
centric approach by analyzing the pre-computed MPKI trends.
For each interactive application invocation, it finds a single
distribution of cores-per-cluster at runtime. Since the resource
allocation decision is deterministic and bounded, it does not
violate strong isolation guarantees.

Figure 4 shows the example MPKI trends of a security-
critical machine learning model, ALEXNET that periodically
classifies images provided by an insecure off-the-shelf VISION
pipeline for real-time perception. The normalized individual
MPKI values for both processes are shown in Figures 4:(a)
and 4:(b) as a function of core counts. The heuristic’s goal
is to find core allocation for each cluster, such that the total
cores in the system are fully utilized, while the aggregate
MPKI is minimized (maximum performance). An exhaustive
search method provides an optimal allocation of cores across
clusters by scanning all points (N) in one MPKI trend for
every point of the other MPKI trends. This essentially results
in YCy ~ NM computations, where M represents the number
of interactive application’s processes. Instead of adopting this
compute intensive search, TRONHIDE proposes a gradient-
based heuristic search.

As shown in Figure 4, the MPKI trends of a process
comprise of three regions, namely; (1) non-linear region,
(2) linear region, and (3) saturation region. For maximum
performance benefits, each cluster must operate in the saturation
region, i.e., point B and onward in Figure 4. At the minimum,
it is imperative for each process to operate in the linear
region for near-optimal performance, making it the region of
interest. IRONHIDE’s gradient or slope-based search heuristic
maximizes for all processes to operate in their linear region,
and as close as possible to the saturation region. The heuristic

first captures the saturation point B from the MPKI values by
scanning from end of the trend to the point where the absolute
slope value becomes greater than 0.1. It also captures point A
by checking for points from the start of the trend to the point
where the slope becomes lesser than 0.5. This procedure is
done for all processes that compose the interactive application.
However, for ease of explanation, the heuristic is described
using an interactive application where a single secure process
interacts with an insecure process.

The heuristic computes the ideally desired core-level re-
sources, Rj.sireq by accumulating the core counts for each
process at point B. However, the desired number of cores per
cluster must satisfy the constraint of total available cores in
the multicore (N). Adjusting for this constraint yields three
different scenarios. In the first scenario, the total desired core-
level resources are equivalent to the available system resources
(Rgesirea = N). Thus, no resource adjustment is needed, and the
heuristic terminates by forwarding the computed core counts
for each process at point B to the secure kernel. However,
resource adjustment is needed if Rgegeq 1S either less than or
greater than N. When R < N, near-optimal performance is
already achieved since both clusters are allocated with enough
cores to operate at the MPKI saturation points. The heuristic
calculates the number of unoccupied resources (Anomaly) by
computing the difference between desired and available core-
level resources.

Anomaly = |N_Rdesired| (1)

These surplus cores are equally distributed across both clusters,
and the updated core-level resource binding is forwarded to
the secure kernel. Contrarily, when Rggireq > N, the resource
adjustment must keep the total allocation of cores within
N. Removal of core-level resources from the desired set of
resources implies that the processes now operate in the linear
region of their MPKI trends. The cores must be removed
from the clusters such that a given process executing in the
cluster operates in its region of interest. Thus, the cores are
proportionally adjusted (removed) by the heuristic based on
the slope values of each MPKI trend’s linear region. The linear
region’s slope for each process is computed by calculating the
rate of change between points A and B. To find the relative
difference between the linear regions, the heuristic computes
the ratio (SR) between the slopes of each trend’s linear region,
such that the process with smaller slope value is divided by
the process with larger slope value.

SR= szopesmaller/szopelarger 2)

Computing this ratio allows the heuristic to distribute (remove)
the extra cores (obtained from Equation 1) across clusters by
computing the proportionate adjusting factor.

Ad justFactor = [Anomaly X SR] 3)

The AdjustFactor is applied to the process that is more
sensitive to the cluster reconfiguration procedure, i.e., larger
slope. This ensures that proportionally less cores are adjusted
(removed) from the process with higher rate of MPKI change

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

MC McC
jSecure

CORE _UJ

i Pr.CACHE
Sh.CACHE
S ROUTER

State of all cores
re-allocated to the
9 Insecure cluster

J
,lnsecure|=

II 0 "i@ T .

—=|Secure,

MC,)
=7

State of all cores
re-allocated to the
Secure cluster

/1y
P7.CACHE .

} Csh.CACHE .
ROUTER -

:: Violation of e {Imsecurel= .
Strong Isolation z -

Fig. 5. IRONHIDE with dynamic hardware isolation, where cores are re-
allocated between secure to insecure clusters.

in the linear region as compared to the one with smaller slope.
Note that keeping SR < 1 biases the Ad justFactor towards a
smaller value that essentially removes lesser number of cores
from the process with higher linear region’s absolute slope
value. The distribution computed in Equation 4 is consequently
forwarded to the secure kernel for reconfiguration of clusters.

_ pB . .
Rlarger_slope - Rlarger_slope Ad]ustFactor

4
R (1 —AdjustFactor) ®

_ RB —
smaller_slope — smaller_slope

The gradient-based heuristic incurs a negligible overhead
of <0.01% of the total completion time of an interactive
application. However, the core reallocation heuristic requires
the secure kernel to obtain the MPKI trends at different core
counts for the underlying processes. Computing and storing
these MPKI trends offline burdens the security kernel. This can
be mitigated by profiling the MPKI trends for an application
processes at runtime. The online mechanism requires an
additional cluster re-configuration to enable the security kernel
to profile the MPKI trends by allocating all cores to the secure
cluster. This additional cluster reconfiguration must ensure
bounded information leakage. Moreover, the computations
for generating the MPKI trends must not add significant
performance overheads. Exploring the online evaluation of
the MPKI trends is left as part of future work.

5) Non-interference under Dynamic Hardware Isolation:
Figure 5:(a) depicts a scenario where the secure cluster gives
away a set of shaded cores to the insecure cluster. The
color codings are shown to differentiate secure from insecure
processes, while the shaded colors represent hardware sharing
vulnerabilities. Each core given up by the secure cluster
temporally shares the core pipeline, and private caches and
TLBs. The insecure process can monitor the private resources
of these reallocated cores to leak the microarchitecture state
of the secure process [1]. Moreover, the secure cluster’s data
remains pinned to the shared cache slice of each re-allocated
core. The data accesses from both secure and insecure clusters
contend on the shared network routers, leading to potential
information leakage of secure data. Figure 5:(b) shows a
scenario where the secure cluster gains a set of cores from the
insecure cluster. The insecure process’s data remains pinned to

shared cache slices of cores gained by the secure cluster. The
insecure cluster can contend the associated network routers
and create covert timing channels to leak information. Clearly,
dynamic hardware isolation exposes the core pipeline, cache,
and network resources of re-allocated cores between the clusters.
To ensure strong isolation, following mechanisms are adopted
in IRONHIDE.

To protect the exposed private microarchitecture resources
from leaking secure cluster’s data, TRONHIDE flushes-and-
invalidates the core pipeline buffers, and private caches (and
TLBs) of all re-allocated cores. This is done in the same
way as the multicore MI6 baseline, but it is only applied
once per interactive application invocation. The shared cache
(and TLB) resources of the re-allocated cores are indirectly
exposed due to sharing of network routers. To enforce strong
isolation, IRONHIDE re-allocates the process’s data structures
(memory pages) for all shared cache slices of the dynamically
re-allocated cores. This mechanism unmaps the data structure
from its current home (cache slice), by which all dirty data is
propagated to the off-chip memory. Lastly, the data structure
is re-mapped to the reconfigured secure cluster’s shared cache
slice(s). Consequently, strong isolation for the on-chip network
is ensured, as the network routers do not get shared across
clusters anymore.

On every dynamic hardware re-allocation event, IRONHIDE
first stalls all cores in the system. The re-allocated cores are
concurrently passed through the flush-and-invalidate routines.
Consequently, the data present in private resources is flushed
to the respective shared cache slices. Then, the shared cache
re-allocation routine is invoked, followed by both clusters pro-
ceeding with execution after the new thread work distribution.

IV. METHODOLOGY

IRONHIDE is prototyped on a real multicore Tilera®Tile-
Gx72™ processor [19]. It enables several hardware capabilities
needed for the proposed temporal and spatial strong isolation
mechanisms. An API library, Tilera Multicore Components
(TMC) includes facilities that are used to form clusters of
cores, manage network traffic across clusters, regulate on-chip
and off-chip data access controls, and manage shared cache
data placement. Tile-Gx72™ is a tiled multicore architecture
comprising of 72 tiles, where each tile consists of a 64-bit multi-
issue in-order core, private level-1 (L1) data and instruction
caches of 32KB each, private instruction and data TLBs of
32 entries each, and a 256KB slice of the shared level-2 (L2)
cache (LLC capacity of 18MB). Moreover, it consists of 5
independent 2-D mesh networks with X-Y routing, one for
on-chip cache coherence traffic, one for memory controller
traffic, and others for core-to-core and 1/O traffic. The off-chip
memory is accessible using four on-chip 72-bit ECC protected
DDR memory controllers attached to independent physical
memory channels.

A. Secure Processor Modeling on Tilera®Tile-Gx72™

1) SGX—-1ike Secure Multicore: Among the 72 available
cores, 64 cores are time-shared across secure and insecure
processes, and the core pipeline buffers are flushed on every

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

enclave entry and exit (process interaction) [26]. Prior work,
HotCalls [15] quantifies the overhead of each Intel’s SGX
enclave entry (ECALL) and exit (OCALL) to be in the range
of ~2.5us to Sus. This includes the overhead associated with
data encryption and memory integrity verification. To model
the ECALL and OCALL overheads, a constant Sus latency
is added for each secure process entry/exit. All remaining
hardware resources, i.e., private—shared cache hierarchy, TLBs,
and off-chip memory remain temporally shared across secure
and insecure processes. Thus, the SGX-like setup exposes the
footprint of secure processes to an insecure process.

2) Multicore MI6: The SGX-like setup is extended with
strong isolation capabilities. Each process is provided with
statically partitioned L2 slices, and DRAM regions. For
example, in an application with an insecure and a secure
process, 32 L2 slices and half of the DRAM regions are
allocated to each process. The default hash-for-homing scheme
is overridden with the local homing scheme that maps
each process’s data structures on specific L2 slices using
tmc_alloc_set_home (&alloc, core_id) API call.
Moreover, L2-replication is disabled to allow only one process
to access any given L2 cache slice. All time-shared cores,
their L1 caches and TLBs, as well as the memory controllers
are purged/flushed on each secure process entry and exit. To
Sflush-and-invalidate the private L1, a dummy buffer of size
equal to the cache size is read into each L1 cache. Reading this
buffer removes all secure process’s data from private L1 caches.
Then, a memory fence operation (tmc_mem_fence () call)
is performed that ensures propagation of dirty data to respective
L2 slices. Similarly, the TLBs are flushed using Tilera specific
user commands. However, all L1s and TLBs are purged in par-
allel. Finally, the queues/buffers of all memory controllers are
purged using tmc_mem_fence_node (controller_id)
call that writes back all modified data to the DRAM.

3) IRONHIDE: The secure and insecure clusters of cores
are formed by pinning process’s threads to respective cores
via tmc_cpus_set_my_cpu (tid). The L2 cache slices
are allocated to their respective cluster using the local
homing scheme. A clusters’ accesses to its physically iso-
lated DRAM regions are realized by forwarding its re-
spective L2 miss traffic to dedicated memory controllers
via tmc_alloc_set_nodes_interleaved (&alloc,
pos), where pos represents the bit-mask representation
of memory controllers to be selected. For instance, pos =
0b0011 is used to dedicate MCy and MC) to the secure cluster,
whereas, pos = 0b1100 (MC, and MC3) for the insecure
cluster. Tile-Gx72™ implements X-Y routing with 2-D mesh
network topology, which isolates the network traffic by routing
each packet to/from the allocated clusters’ memory resources.

The dynamic hardware isolation capability of TRONHIDE
is also supported on the prototype. At each interactive
application invocation, the private L1 and TLB flush-and-
invalidate mechanism from the multicore MI6 baseline is
invoked for the re-allocated cores. To re-allocate data structures
(pages) in L2s, the pages are first un-mapped from their
current L2 home cache slices using tmc_alloc_unmap

(xaddr, size) APIcall, followed by setting the new home
for each page using tmc_alloc_set_home (&alloc,
core_id). Finally, each page is mapped to the new
L2 home using tmc_alloc_remap (&alloc, size,
new_size) call. Note, the prototype only contains private
TLBs, thus only shared L2 cache slices are re-allocated.

B. Benchmark Interactive Applications

1) User-Level Interactive Applications: Three different
classes of user-level interactive applications are evaluated.

o Real-time Graph Processing: This application uses an
insecure graph generation algorithm [31] (GRAPH) that reads
values at various time intervals from distributed sensors, and
generates temporal graph updates for an underlying static graph.
The safety-critical graph algorithm consequently performs
decision analytics on the spatio-temporally updated graph.
Three secure graph algorithms [32] are considered, i.e., Single
Source Shortest Path (SSSP), PageRank (PR), and Triangle
Counting (TC). The insecure GRAPH generation process
generates temporal graph inputs for the California road network
graph [33], and each of the three secure graph algorithms
combine with it to form a user-level interactive application.

o Real-Time Perception and Mission Planning: This appli-
cation builds on an insecure vision pipeline [34] (VISION)
that performs image processing kernels on RAW images. The
VISION pipeline consequently feeds input images to several
secure perception and mission planning secure algorithms.
The mission planning Artificial Bee Colony [35] (ABC)
algorithm is adopted from advanced driver-assistance system
with inputs from a real-world road scenario. The perception
neural network algorithms [36], ALEXNET and SqueezeNet
(SQZ-NET) process inputs that are communicated from the
VISION pipeline.

o Query Encryption: This application uses an insecure query
generation algorithm [37] (QUERY) that periodically generates
database queries for systems (e.g., ATM) to process. These
queries are then communicated to a secure encryption algorithm
from Advanced Encryption Standard (AES) to encrypt data
using a 256-bit key.

Each user-level interactive application is executed with 500,
1K, 5K, 10K, and 50K inputs, and the reported completion
time is the average across these runs.

2) OS-Level Interactive Applications: A set of interactive
applications are considered that require frequent support from
an untrusted OS process for generating and processing requests,
such as fread, fentl, close, and writev [15]. The database
application, MEMCACHED [38] (version 1.4.31) computes
2 million requests via the memtier benchmark [39]. The web
server application, LIGHTTPD [40] (version 1.4.41) fetches
1 million pages (each of 20KB size) through 100 concurrent
client connections via the http_load [41] tool.

For all considered applications, the interactions across secure
and insecure processes are carried out via the shared inter-
process communication buffer. In case of user-level interactive
applications, the secure process interacts with the insecure
process for an average of 13.3K inputs executed under MI6

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

200 e 64 LEGENDS I—
3 175 User-Level 0S-Level 3 56 w INTEL-SGX:
o Interactions Interactions E o =
£ 150 E 48 5 Compute
E s _ 40 ; B Flushing Overheads
2 100 E 32 @ | MI6BASELINE:
ENE E 24 3 Compute
g 50 £ 16 1”6 B Purging Overheads
O 25 E 8 == | IRONHIDE:
0 E 0 Pipelined Execution
M Flushing Overheads (L1/TLB)
Re-Allocation Overheads (L2)
&> Number of Secure CL Cores
e%
S
X
1’?‘

Fig. 6. Completion times of TRONHIDE against SGX and MI6 baselines for various interactive applications. Geometric mean completion times for user-level,

OS-level, and all appliations are also reported.

for 70 seconds, leading to an interactivity rate of ~400 secure
process entry/exit events per second. However, the average
interactivity rate for OS interactive applications is measured
~220K secure process entry/exit events per second. The OS
interactivity is similar to the rate observed in HotCalls [15].

V. EVALUATION

The SGX-like and MI6 baselines, as well as the proposed
IRONHIDE architecture are evaluated for the user-level and
OS-level interactive applications. Each setup is first warmed up
with sample inputs to obtain steady-state, and then completion
time is measured for a fixed number of inputs specified in
Section IV-B. For TRONHIDE, each process of an interactive
application is started with an initial cluster configuration of
32 cores per cluster. The system is then reconfigured to the
load-balanced core-level resource binding after executing the
gradient-based heuristic search. The overheads of re-allocating
cores among the clusters are measured and added to the
completion time. The purge overheads of each enclave entry and
exit for the MI6 architecture and SGX-like model (baselines)
are also added to their respective completion times.

A. Comparison of Intel’s SGX with M16 and IRONHIDE

Figure 6 shows the completion time comparison of the
SGX-like baseline against MI6, and the proposed TRONHIDE
architecture. The reported numbers show the completion time
(left y-axis) for each interactive application (x-axis). The SGX-
like architecture does not enable strong isolation. Consequently,
it does not partition the shared cache and DRAM regions, and
avoids purging the cache and memory controller resources.
However, it incurs memory integrity checking and core pipeline
flushing overheads on every secure enclave entry/exit. The SGX
completion time results are broken down in process execution
time and the secure enclave entry/exit overheads. These
overheads account for increasing proportion of the completion
time for applications that incur high interactivity. All user-level
interactive applications exhibit negligible overheads, while
both OS-level interactive applications incur significant flushing
overheads.

To enable a secure execution environment, the multicore
MI6 baseline provides strong isolation support. However, this

holistic security comes at the cost of performance, due to (1)
frequent state purging of the private resources and memory
controller queues, and (2) static partitioning of shared cache
and DRAM memory resources. The MI6 setup observes an
average performance degradation of ~71% compared to SGX.
In addition to purging overheads, the compute component
of MI6 also increases over SGX. This is attributed to the
overheads from statically partitioning the shared cache and
DRAM memory resources, as well as the data locality impact
of re-installing the purged microarchitecture state.

The TRONHIDE architecture also enables strong isolation.
However, it spatially pins the secure and insecure processes
on their respective clusters of cores, and significantly limit the
frequent purging overheads. It experiences a negligible one-
time cluster reconfiguration overhead of ~15ms. Moreover,
similar to MI6, the spatial isolation of the two clusters also
partitions the shared cache and DRAM memory resources.
IRONHIDE experiences an ~8.7% performance degradation
compared to SGX for user-interactive applications. This is
attributed to the limitations imposed by partitioning of the
shared cache and DRAM memory resources. For applications
that are not sensitive to the large state partitions, such as
<TC, GRAPH>, IRONHIDE observes minimal performance
degradation compared to SGX. The performance of TRONHIDE
is observed to significantly improve over SGX for both OS-
level interactive applications. As these applications exhibit
high interactivity rates, the core pipeline flushing overheads
stack up significantly under SGX. However, IRONHIDE pays
a one-time purging and re-allocation overhead, resulting in
performance gains. Overall, TRONHIDE delivers geometric
mean performance improvement of ~20% compared to SGX,
while also ensuring strong isolation guarantees.

B. Comparison of MI16 Baseline with IRONHIDE

The key insight of IRONHIDE is its capability to pin
the secure process(es) to strongly isolated cluster of cores
without incurring purging overheads of repetitive enclave entries
and exits. Moreover, the number of cores per clusters are
adjusted for improved core-level resource utilization, while
the MI6 baseline statically distributes all shared cache and
DRAM resources. MI6 purges per-core private resources and

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

MI6 BASELINE

S IRONHIDE |

50
40
30
20
10

L1 Miss Rate

50
40
30
20
10
0 T T T

SER %7@27@27@27{8?0‘?0‘7

SRS

© € K KK S

NN Ry <<z°
S

L2 Miss Rate

NE

A\
) Vo R R (O

SRR -2 AR NS SN

\,+ ¥ Lok & &
Pl N

Fig. 7. Private L1 and shared L2 cache miss rates for each interactive
application. Geometric mean miss rates are shown for all process interactions.

memory controller queues on each secure process interaction.

This overhead is measured as ~0.19ms per interaction event,
resulting in the total purging overhead of ~47% of the average
completion time for MI6. On the contrary, IRONHIDE incurs
a ~15ms one-time overhead of private cache/TLB purging
and shared cache re-allocation overheads at each interactive
application invocation. The marker on top of each interactive
application bar (right y-axis of Figure 6) shows the number of
cores allocated to the secure cluster under TRONHIDE. The
geometric mean results from Figure 6 indicate that TRONHIDE
improves completion time component of purging by 706x
over the MI6 baseline. However, when accounting for the
total completion times including the execution times of the
interactive processes, IRONHIDE improves the geometric
completion time by 2.1x over MI6.

Figure 6 also shows that the compute time component of
processes improve from IRONHIDE relative to MI6. Purging
the private microarchitecture state under MI6 limits each
process from exploiting private cache locality, essentially
thrashing the L1 cache and TLBs on each purge event. This
overhead is not present in IRONHIDE, since it enables each
secure and insecure process to exploit its private resources
better. Moreover, statically partitioned L2 cache slices impact
the shared cache usage of processes, as a process may demand
larger shared cache capacity for improved performance. The
MI6 baseline operates with a fixed static partition, while
IRONHIDE implements dynamic hardware isolation to improve
the load-balancing of core-level resources, including the L2
cache slices per cluster.

The performance benefits of IRONHIDE over MI6 are more
prominent for highly interactive OS-level applications (~3.1x)
as compared to the user-level applications (~32%). The main
reason for performance benefits in OS-level applications arise

from the elimination of purging overheads under IRONHIDE.

However, for user-interactive applications that are sensitive
to cache behaviors, performance advantages also arise from

improved data locality and core-level resource utilization. To
further investigate these performance benefits, the L1 and L2
cache miss rate behaviors are evaluated next.

C. Cache Miss Behavior of MI16 and IRONHIDE

Figure 7:(a) depicts the private L1 cache miss rates for
each interactive application under the MI6 and TRONHIDE
architectures. As compared to MI6, the private L1 cache miss
rates dramatically reduce for IRONHIDE by up to 5.9x. MI6
experiences L1 cache thrashing as a consequence of frequent
L1 cache purging. However, the spatial execution of processes
under TRONHIDE pins respective threads on each cluster’s
cores, and dramatically improve private cache utilization. The
<TC, GRAPH> application does not exhibit much L1 cache
locality for the TC process, while the GRAPH process has a
small private working set. Therefore, the MI6 purge operation
does not impact the L1 cache miss behavior significantly. On
the other hand, TC is executed in a secure cluster configured
with only two cores, while GRAPH executes with the remaining
62 cores allocated to the insecure cluster (c.f. Figure 6). The
TC process incurs significant thread synchronization overheads,
thus it is allocated a small number of cores, while the GRAPH
process benefits primarily from core-level parallelism. As both
processes in this application are not primarily sensitive to L1
caches, IRONHIDE only shows slight improvements over MI6.

Figure 7:(b) depicts the shared L2 cache miss rates for
each interactive application under the MI6 and TRONHIDE
architectures. The L2 miss rates are improved by up to 2x,
with the exception of <TC, GRAPH> and <LIGHTTPD,
OS> applications. However, unlike L1 cache, the benefits
from IRONHIDE primarily arise due to its dynamic hardware
isolation capability that enables the processor to load-balance
the allocation of L2 cache slices. On the other hand, MI6
configures the last-level cache with a static allocation of
L2 cache slices per secure and insecure processes. Due to
better utilization of the available last-level cache resources,
IRONHIDE delivers improved L2 cache miss rates. For <TC,
GRAPH>, MI6 slightly improves L2 cache miss rate compared
to IRONHIDE. The TC process does not show much L2 cache
locality as it only traverses the input graph once. Thus, it is
allocated only two L2 cache slices (c.f. Figure 6). However, the
input graph being large, does not fit in these two allocated cache
slices, resulting in a higher L2 miss rate. The remaining 62 L2
cache slices are allocated to the GRAPH process, but it brings
insignificant improvements in the miss rate due to its small
working set. Similarly, the LIGHTTPD process does not exhibit
much L2 cache locality due to its random request generation.
Thus, it is provided with only one L2 cache slice (c.f. Figure 6),
whereas the OS process utilizes the remaining cores. Again,
due to the asymmetric L2 cache allocation, IRONHIDE shows
slightly worse L2 miss rate compared to MIG6.

D. Cluster Reconfiguration Heuristic

IRONHIDE performance depends on the number of cores
(and the associated compute and cache resources) allocated to
each cluster for load balanced execution. This resource binding
is computed by the proposed security-centric heuristic discussed

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

Heuristic

—_ 2.5% > +2.5%
» 140 g t }
1% T R (g |
i 100 3 2 ax 2y 2018 MI6 BASELINE:
c 80 3 / 2.23x 2.1x 77 [E Compute
o 3 7 7
S 60 3 % 7 ? é M Purging
% 40 % é é é Overheads
g 20 é % % é IRONHIDE:
O 0 T T T T T T T T T T Compute
e oo oo oo e A L Lol o do oo M Flushing
AN ;f,’g\ 5\90\ :@0\ f’J\ ,-Q(("b ;\\9‘0 5\ x'\,Q\ x’\,e\ ;f?\ Overheads
‘b’z’s R Q?/\) Re-Allocation
NS . ae .. . Overheads
< % Heuristic Decision Variance
Fig. 8. Impact of the variations in decisions made by the core-reallocation

predictor on the performance of IRONHIDE.

in Section III-B3. The geometric mean completion time across
all interactive applications is reported in Figure 8 for the MI6
baseline, and the Heuristic for IRONHIDE. The Heuristic
delivers a geometric mean ~2.1 X reduction in completion time.
To analyze the efficacy of the heuristic, IRONHIDE is evaluated
for a variety of fixed decision variations, as well as Optimal that
exhaustively computes the best resource binding without any
overheads. The fixed decision variations are measured by taking
a percentage of cores away from the secure cluster, or allocate
cores to the secure cluster. The +x variation represents that
the secure cluster is provided with x% more cores compared
to Optimal. Conversely, the -x variation represents that x%
cores are taken away from the secure cluster and re-allocated
to the insecure cluster. The x is varied between +5% and +25%
to evaluate the impact of cluster reconfiguration accuracy on
performance. The Optimal delivers ~2.3x, while the Heuristic
delivers ~2.1x improvement in geometric mean completion
time over the MI6 baseline. Figure 8 also shows that Heuristic
performs well within the +5% decision variations.

VI. RELATED WORK
A. Secure Processor Architectures

Academic works, such as Aegis [42] reduce the trusted
computing base (TCB) to a secure processor chip. The TCB
assumes a program running on the processor to be trusted such
that the memory accesses do not leak sensitive information.
Industry developed AMD-SEV [10], Trustzone [43], and TPM
[44] as a fixed-function unit with limited set of capabilities.
To secure arbitrary computation, TPM was extended with TXT
[45] to implement an integrity checking boot process that
attests to the software stack. Intel’s SGX [9] maintains on-
chip enclaves that isolate processes from the untrusted OS.
HotCalls [15] makes an effort to quantify the overheads of SGX,
and report ~2.5 to Sus for each ECALL/OCALL. Performance
degradation of ~40% is reported for a database application
generating 200K requests per second to the untrusted OS.
Moreover, various microarchitecture state leakage channels in
SGX have led to security vulnerabilities [16], [17].

Recent secure processor works [11], [12], [13] extend the
idea of enclaves to alleviate microarchitecture state attacks.
MIG6 [11] introduces strong isolation that requires purging the
microarchitecture state of time-shared hardware resources at
each enclave entry/exit. MI6 reports an average purge overhead

121

of ~5.4% of the total completion time of an application.
IRONHIDE re-thinks secure processor design in the context of
multicores, where spatially isolated secure and insecure clusters
are formed. The secure process(es) are pinned to the secure
cluster to limit the purge overheads for interactive applications.

B. Protecting Non-Speculative Microarchitecture State

Cache side-channel attacks [1], [4] have been studied
extensively, such as Prime+Probe [1], where the attacker’s
goal is to determine which cache sets have been accessed
by the victim application by observing the latency difference
between a cache hit or a miss. Page translation caches have also
been attacked [46] using similar schemes under Intel’s SGX.
Various works on cache partitioning either isolate caches [12],
[47], or scramble addresses [2], [3] to diminish information
leakage. Research has also shown that routers in the on-chip
networks expose application traffic traces [23] that leads to
information leakage. Furthermore, information can also be
leaked via off-chip memory-based timing channels, where the
adversary monitors memory latencies of the victim applica-
tion [48], [49]. Prior works have explored various mitigation
mechanisms, such as employing time-multiplexed memory
bandwidth reservation [29], or adopting a non-interference
memory controller [50]. The aforementioned works focus on
certain covert channels, while TRONHIDE takes a holistic
approach to protect all microarchitecture state attacks.

C. Protecting Speculative Microarchitecture State

DAWG [12] utilizes protection (or security) domains to
isolate secure data from malicious insecure applications. Both
caches and DRAM are partitioned to ensure secure data
is physically isolated from the insecure data. Therefore,
speculative microarchitecture state attacks [5], [6], [17] do
not materialize due to strong isolation. However, since these
caches are latency sensitive to capacity and conflicts, the
performance penalties stack up with DAWG-like approaches.
InvisiSpec [7] does not assume security domains, and handles
speculative microarchitecture state in both private and shared
caches by temporarily holding unresolved data in side-buffers
invisible at each level of cache hierarchy, and only commit
non-speculative data. It also adds hardware to ensure data
consistency checks before committing loads that resolve as non-
speculative. However, this causes performance losses (reported
>15%) due to diminished benefits from speculative execution.
Unlike the redo-based solution of InvisiSpec, a recent work
CleanupSpec [8] considers the InvisiSpec model and improves
performance by undoing the changes made to the cache sub-
system through speculative instructions. Nevertheless, these
works open a security vulnerability window as a consequence of
moving speculative data across on-chip caches and side-buffers.
In TRONHIDE, the victim and attacker process pairing for
speculative state attacks is only possible in the insecure cluster.
The secure process(es) are strongly isolated from the attacker
since secure data is only allowed to map inside the secure
cluster. Similar to MI6, IRONHIDE envisions a hardware check
for each memory access that ensures the insecure cluster does
not access the secure cluster’s data.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

To enable a secure processor, Intel SGX introduces the
concept of enclaves that temporally execute alongside ordinary
processes. However, it is vulnerable across various speculative
and non-speculative microarchitecture state attacks. State-
of-the-art MI6 secure processor adopts the idea of strong
isolation to mitigate such vulnerabilities. However, it suffers
from performance degradation due to microarchitecture state
purging of the private resources on every secure enclave entry
and exit. IRONHIDE extends strong isolation capabilities
in the context of multicores, and forms spatially isolated
secure and insecure clusters of cores. For an interactive
application, TRONHIDE pins the secure process(es) to the
secure cluster, where they interact with the insecure cluster
process(es) without purging the microarchitecture state on each
enclave entry/exit. IRONHIDE implements dynamic hardware
isolation that dynamically re-allocates core-level resources
across clusters for load balanced execution. For a set of user and
OS interactive applications, IRONHIDE improves geometric
mean performance over the multicore MI6 baseline by 2.1x.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grant No. CNS-1929261. The authors wish
to acknowledge Brandon D’Agostino who ported the OS-level
interactive applications during his Research Experiences for
Undergraduates (REU) at the University of Connecticut.

REFERENCES

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” IEEE S&P, pp. 605-622, 2015.

M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
ACM ISCA 19, pp. 360-371, 2019.

F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, 2016.
J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in CHES 2006 (L. Goubin and M. Matsui, eds.).

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in /EEE S&P, 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX, 2018.
M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in the
cache hierarchy,” MICRO, 2018.

G. Saileshwar and M. K. Qureshi, “Cleanupspec: An “undo” approach
to safe speculation,” in IEEE/ACM MICRO, pp. 73-86, 2019.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.,” in HASP@ ISCA, p. 10, 2013.
AMD, “Amd secure encrypted virtualization (sev),” 2019.

T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“Mi6: Secure enclaves in a speculative out-of-order processor,” in
IEEE/ACM MICRO, pp. 42-56, 2019.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in IEEE/ACM MICRO, 2018.

V. Costan, 1. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in USENIX, 2016.

S. Kato, R. Rajkumar, and Y. Ishikawa, “Airs: Supporting interactive
real-time applications on multicore platforms,” in 2010 22nd Euromicro
Conference on Real-Time Systems, pp. 47-56, July 2010.

O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
hotcalls: A fast interface for sgx secure enclaves,” in ISCA, 2017.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre
Attacks: Stealing Intel Secrets from SGX Enclaves via Speculative
Execution,” arXiv e-prints, p. arXiv:1802.09085, Feb 2018.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller, “Cache attacks on
intel sgx,” in EuroSec, 2017.

(1]
(2]
(3]
(4]

[10]
[11]

[12]

[13]
[14]

122

[18

[19

[20]

[21]

[22]

[23]

[24

[25]
[26]

[27]

[28

[29]

[30]

[31]

[32]

[33]
[34]

[35

[36]
[37]

[38

[39]

[40

[41]
[42

[43]

[44

[45]

[46

[47]

[48

[49]

[50

P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and Seshia., “A formal
foundation for secure remote execution of enclaves,” in ACM CCS 2017.
D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. C. Miao, J. F. B. IlIl, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, 2007.
N. Abu-Ghazaleh, D. Ponomarev, and D. Evtyushkin, “How the spectre
and meltdown hacks really worked,” IEEE Spectrum.

C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious ram timing channel while making information
leakage and program efficiency trade-offs,” in IEEE HPCA, 2014.

S. K. Haider and M. van Dijk, “Revisiting definitional foundations of
oram for secure processors,” http://arxiv.org/abs/1706.03852.

Y. Wang and G. E. Suh, “Efficient timing channel protection for on-
chip networks,” in 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip, pp. 142-151, May 2012.

B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in HPCA’13.
H. Omar, S. K. Haider, L. Ren, M. van Dijk, and O. Khan, “Breaking
the oblivious-ram bandwidth wall,” in JEEE ICCD, 2018.

V. Costan and S. Devadas, “Intel sgx explained.” Cryptology ePrint
Archive, Report 2016/086, 2016. https://eprint.iacr.org/2016/086.

A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache qos: From concept to reality in the intel xeon
processor €5-2600 v3 product family,” in HPCA, 2016.

D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-optimal
worst-case throughput routing for 2-d mesh networks,” in ISCA, 2005.
A. Gundu, G. Sreekumar, A. Shafiee, S. Pugsley, H. Jain, R. Balasubra-
monian, and M. Tiwari, “Memory bandwidth reservation in the cloud to
avoid information leakage in the memory controller,” in HASP, 2014.
H. Omar, H. Dogan, B. Kahne, and O. Khan, “Multicore resource isolation
for deterministic, resilient and secure concurrent execution of safety-
critical applications,” IEEE Computer Architecture Letters 2018.

U. Demiryurek, B. Pan, F. Banaei-Kashani, and C. Shahabi, “Towards
modeling the traffic data on road networks,” in IWCTS, 2009.

M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores,”
in [ISWC, 2015.

C. Demetrescu, A. V. Goldberg, and D. S. Johnson, eds., The Shortest
Path Problem, DIMACS workshop, 2009.

M. Buckler, S. Jayasuriya, and A. Sampson, “Reconfiguring the imaging
pipeline for computer vision,” in IEEE ICCV, 2017.

Y. Xue, J. Jiang, B. Zhao, and T. Ma, “A self-adaptive artificial bee
colony algorithm for global optimization,” Soft Computing, 2018.

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in JEEE CVPR, 2009.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC’10.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” SIGMETRICS
Perform. Eval. Rev., vol. 40, pp. 53-64, June 2012.

R. Labs, “Memtier benchmark: A high-throughput benchmarking tool
for redis & memcached,” https://redislabs.com/.

Jan, “Lighttpd: An open-source web server optimized for speed-critical
environments,” https://www.lighttpd.net/.

“A multiprocessing http test client,” http://acme.com/software/http_load/.
G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “ AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing,” in
Proceedings of the 17" ICS, 2003.

T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security.”” ARM white paper, 2004.

Trusted Computing Group, “TCG Specification Architecture Overview
Revision 1.2 http://www.trustedcomputinggroup.com/home.

D. Grawrock, The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Intel Press, 2006.

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based attacks
on enclaved execution,” in USENIX, 2017.

F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in HPCA, 2016.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in ACM CCS, 2009.

T. M. John, S. K. Haider, H. Omar, and M. Van Dijk, “Connecting the
dots: Privacy leakage via write-access patterns to the main memory,”
IEEE Transactions on Dependable and Secure Computing, pp. 1-1, 2018.
Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for
a shared memory controller,” in IEEE HPCA, Feb 2014.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:20:15 UTC from IEEE Xplore. Restrictions apply.

