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Abstract—Recent advances in machine learning enable wider
applications of prediction models in cyber-physical systems.
Smart grids are increasingly using distributed sensor settings
for distributed sensor fusion and information processing. Load
forecasting systems use these sensors to predict future loads to
incorporate into dynamic pricing of power and grid maintenance.
However, these inference predictors are highly complex and
thus vulnerable to adversarial attacks. Moreover, the adversarial
attacks are synthetic norm-bounded modifications to a limited
number of sensors that can greatly affect the accuracy of the
overall predictor. It can be much cheaper and effective to
incorporate elements of security and resilience at the earliest
stages of design. In this paper, we demonstrate how to analyze
the security and resilience of learning-based prediction models in
power distribution networks by utilizing a domain-specific deep-
learning and testing framework. This framework is developed
using DeepForge and enables rapid design and analysis of
attack scenarios against distributed smart meters in a power
distribution network. It runs the attack simulations in the
cloud backend. In addition to the predictor model, we have
integrated an anomaly detector to detect adversarial attacks
targeting the predictor. We formulate the stealthy adversarial
attacks as an optimization problem to maximize prediction loss
while minimizing the required perturbations. Under the worst-
case setting, where the attacker has full knowledge of both
the predictor and the detector, an iterative attack method has
been developed to solve for the adversarial perturbation. We
demonstrate the framework capabilities using a GridLAB-D
based power distribution network model and show how stealthy
adversarial attacks can affect smart grid prediction systems even
with a partial control of network.

Index Terms—power systems, adversarial attacks, load fore-
casting, model-based design, testbed

I. INTRODUCTION

For electricity markets, the profit and safety is based on a
dynamic balance between supply and demand. As a result, an
accurate demand prediction system is essential for the pricing
strategy to maintain infrastructures as well as to maximize the
profit. For smart grids, service providers may try to reduce the
uncertainties by forecasting the demand of their customers. In
particular, the accuracy of the forecasts improves aggregating
the demand of large groups of customers [1].

With recent developments of machine learning techniques
especially deep learning, neural network prediction models
can be constructed to gain good results. Time-series network
models from distributed meter readings of different areas in
the smart grid is useful in predicting the future load demands.

However, the complexity of current inference systems leads
to vulnerabilities that can be exploited by adversarial attacks. In
particular, deep neural networks are susceptible to adversarial
examples, which poses a great risk in current machine learning
systems. Adversarial examples are synthetic modifications
added to original samples in a way that can misguide the neural
network prediction systems. These are inputs to machine learn-
ing models that an attacker has intentionally intercepted and
disguised to cause the prediction model to make mistakes [2].

Even though the field of adversarial machine learning has
been active for more than a decade [3], most work has been
conducted on classification problems. Adversarial regression,
which is widely seen in cyber-physical system (CPS) settings,
is still a relatively new topic. Moreover, since the discovery
of adversarial examples in current deep neural networks in
2013 [4], security and robustness in state-of-art deep machine
learning models has become a hot topic [5] and aroused
significant concern. Consequently, even though a power load
prediction model can be built easily using state-of-art deep
learning techniques, a more cautious view still needs to be
taken due to security issues that affect cyber-physical systems
with integrated learning-based components [6].

In a nutshell, accurate load forecasting in smart grids is
critical for managing infrastructure through targeted pricing
and for maximizing profit. However, the hierarchical topology
of power networks could lead to partial compromise of the
network. Testing and realizing these kinds of security risks
becomes difficult due to reliance on domain-specific knowledge
for customizing the state-of-art machine learning techniques.
To address these issues in the power system CPS domain
we followed a model-based design approach [7] [8] [9]
and developed our forecasting method and security testing
framework using DeepForge [10].

In the following sections we attempt to put attention on the
following objectives:
• Develop a model-based and cloud supported platform for

rapidly designing and evaluating resilient learning/testing
settings for sensor network architectures.

• Present a general step-by-step framework that can formal-
ize the security and resilience testing in distributed sensor
networks under adversarial settings.

• Design a generic procedure that can be utilized to
implement stealthy adversarial attacks on machine learning
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predictors with the presence of self-checking detectors in
sensor networks.

• Develop a case study for distributed power network load
forecasting and demonstrate potential risks even with
prediction procedures that incorporate anomaly detection
algorithms.

The rest of the paper is organized as follows. Section II
provides the motivation for evaluating security risks in the
power system. Section III illustrates the theoretical background
of our adversarial attack evaluation platform. Section IV
presents a case study to demonstrate the capabilities of
our platform by utilizing a power distribution network and
simulating it with GridLAB-D. Finally, Section V concludes
the paper and draws remarks for future directions.

II. MOTIVATION

A cyber-physical system (CPS) is an intersection of com-
puters and the physical world [11]. The two domains are
connected with a multitude of sensors and/or actuators with
dynamic system characteristics. In general, sensor networks are
tightly integrated and utilized in a CPS for dynamic control and
decision making. On the other hand, potential security risks in
sensor networks can often be easily generalized and transferred
to specific application scenarios. In particular, for critical large-
scale infrastructures like smart grids, a large network of sensors
are required to work together to support high-level decisions.

Machine learning techniques are required for smart CPSs
to make decisions automatically and more adaptive to the
environment. For a smart grid power network, load forecasting
models are learned and applied to make predictions on future
loads for efficient and profitable power system operations [12].
Research on load forecasting have been conducted over thirty
years [13] and the critical role of load forecasting in smart
grids have been demonstrated from various aspects [14].

In this paper, we attempt to explore the vulnerability of
machine learning models in distributed sensor network settings.
We consider how smart meter readings from different sources in
a power distribution system are used for forecasting load using
a pre-trained machine learning model. For a more realistic
setting, we also use an anomaly detector (trained from the
same dataset as the prediction model) to see whether input
data deviates significantly from the nominal values.

In order to negatively impact the power system, the attacker
can manipulate input data [15] to mislead the predictor. We set
reasonable flexible constraint settings on the attacker due to the
physical extent of the network and the cost of compromising
individual sensors. In particular, we allow the attacker to modify
a limited number of meter readings with an upper bound on
the modification ratio of each meter value. These kinds of
constraints enable the attack against the predictor to be stealthy
enough to remain hidden from the anomaly detector that is
used along with the predictor. In the following sections, we
present an architecture for inference model learning and testing
for sensor network settings, and demonstrate sensor network
level adversarial attacks using a power distribution network
load forecasting case.

III. METHODOLOGY

In this section we provide more details on the underlying
methodologies of our framework. We use state-of-art tools
of TensorFlow/Keras to build generic executable pipelines to
show the prediction and attack tests under flexible settings.
This approach enables easier collaboration and potentially more
effective dissemination of testing results.

A. Model-Based Framework

To bridge the gap between domain specific application data
and machine learning, our framework builds on DeepForge [10].
DeepForge is a model-based and cloud-based collaborative
development environment with deeply integrated domain
specific modeling features created using WebGME [16]. It
combines model integrated computing with rapid prototypical
development of machine learning models.

DeepForge presents machine learning models with four
hierarchical concepts: Pipelines, Operations, Executions and
Jobs. Operations are atomic functions which accept inputs and
return outputs. A Pipeline refers to a stack of tasks, such as data
pre-processing, training or testing. Executing pipelines results
in the creation of Executions. A Job corresponds to the selected
operation along with its run status and metadata associated with
its execution. DeepForge provides built-in extensions to the
state-of-art Keras/TensorFlow machine learning framework. It
enables real-time collaboration between modelers and analysts
and uses strict version control for reproducible experiments.

To unify the data representation,we use a generalized input
and processing data format for networked sensor data. Each
data input is a two-dimensional matrix consisting of data from
n sensors involving T time steps. As this is a simple notation,
there may be optional pre-processing steps required to transform
raw input data into this format. For the grid load forecast case,
the data of power meter sensor readings are numerical values
and our testbed allows normalization on input data to ease
sequential processing steps.

To support the power domain we developed several reusable
atomic operations such as data gathering using GridLAB-D
simulator, pre-processing data, model training, and testing. We
developed hybrid adversarial attack methods ranging from
single-step FGSM [5] to more complex adversarial attack
settings. Figure 1 shows the key atomic operations (operation
screenshot truncated) provided by our framework and a sample
adversarial attack pipeline constructed using these components.
For testing purposes, we also embed a pre-trained prediction
model as well as a detection model for the load forecasting
case study.

Ten step-by-step pipelines ranging from simple train/test
workflows to more complex attack/detection evaluations are
incorporated. All of these pipelines can be utilized and
modified easily. This effectively provides a highly user-friendly
abstraction for domain-specific deep-learning applications.

We formalize the application and security testing procedure
pipelines for sensor networks commonly used in CPS and
divide them into the following five major parts and provide
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Figure 1: Creating Attack Pipelines using Generic Atomic
Operations

targeted executable pipelines using Tensorflow and Keras to
generalize them for different scenarios:

• Basic predictor training/testing: This is the overall goal
and a crucial step in the machine learning model for the
sensor network data implementation. A predictor training
and evaluation pipeline is provided for generic use.

• Adversarial attack on the prediction model: This
involves a worst white-box attack setting that allows users
to test the robustness of the predictor. A few different ad-
versarial settings are pre-built as basic pipelines targeting
maximizing prediction deviations from original predictions
or simply maximizing or minimizing prediction results.

• Anomaly detector for the system: In practical uses, the
user also holds an auto-encoder model to detect anomalous
sensors or to denoise the noisy sensor data. For the sensor
network, we propose an LSTM auto-encoder concerning
the general requirement for multiple sensors involving
multiple time steps.

• Stealthy adversarial attacks: Considering the existence
of an anomaly detector, the attacker can currently conduct
stealthy adversarial attacks to deviate the predictor as well
as evading the anomaly detector. Stealthy attacks need
to consider both maximizing prediction loss as well as
evading the detector.

• Evaluation of attacks and defenses: Allow the user
to test different system settings to explore the robust-
ness of the detection and prediction system. A general
randomization-based exploration tool is provided to ex-
periment on potential strategies.

B. Predictor Model

Predicting the total demand of the distribution system is
essentially a multi-variate time-series regression task. We solve
the prediction problem using state-of-art methods based on
Recurrent Neural Networks (RNNs). In particular, we use
a Long-Short-Term Memory (LSTM) network [17], which
accepts data sequences as inputs and returns a sequence of
predictions. There is no universal standard for a good prediction
model in realistic tasks. However, for regression problems,

typically the statistical metric of mean squared error (MSE) is
used. We use MSE for evaluating our models.

C. Anomaly Detector

In our literature survey, we did not find a detailed explanation
for the origin of adversarial examples. However, we could
gather approximate reasoning of adversarial examples from
’unexplored spaces’ or ’over-explored spaces’ from higher di-
mensions [18]. This enabled us to determine key characteristics
of adversarial examples from a statistical point of view.

In this way, we can view adversarial examples as some
kind of anomaly that needs to be detected. Previous research
conducted in detecting adversarial examples [19] [20] mostly
focused on image classification tasks, such as MNIST digit
recognition or Cifar-10 object classification. A recent trend
of detection seeks to make this detector construction process
more automatic via generative models [21] [22]. The basic
intuition behind these detection techniques is to judge whether
the input sample is likely to be from the normal distribution
of the sample data [23].

Using machine learning models for anomaly detection in CPS
has become more popular recently due to improvements in both
deep-learning techniques and computation power. Researchers
have experimented with auto-encoders [24] [25] [26] and
generative adversarial networks [27]. It is worth pointing
out that in CPS, the input data formats vary significantly,
which limits creation of a universal detection framework.
Therefore, we can only seek domain-specific or even case-
specific solutions [26]. Here, for numerical data coming from
distributed sensors, we use an auto-encoder to build an anomaly
detector.

Auto-encoder models learn internal representations with the
objective f(x) = x mapping to the input itself. In order to
detect anomaly using an auto-encoder, a common procedure is
to set statistical thresholds for the residual between the original
input and the reconstructed input. Most detection cases only
need to give binary outputs for the whole input sample. For
the sensor network in our case study, we expect the detector
to find whether specific sensors in the network are likely to
be compromised [28].

We set individual detection thresholds for each sensor meter
in the network using a simple procedure. After training the
auto-encoder using the training data, we use the training data
to compute the fitting error (MSE) for all sensors and using
maximum MSE of each sensor as the error threshold for
anomaly detection. During the prediction phase, the auto-
encoder takes inputs and compares output residuals with the
pre-computed thresholds and generates a list of sensors with
potential for adversarial attacks.

D. Stealthy Adversarial Attack

There are two important premises for a successful adversarial
attack. First, the attack should not be detected by the machine
learning system it is attacking. Secondly, the attack should
cause worse performance of the machine learning prediction
system. Based on these two general requirements, an adversarial
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attack can be formulated as an optimization problem which
attempts to find the best synthetic perturbations that maximize
the prediction loss while keeping the modification magnitude
at a small enough level so as to go undetected.

1) l0-FGSM Attack: Among the various attack methods
developed so far, one of the most well-known and popular is
the FGSM (Fast Gradient Sign Method) [5] which formulates
the optimization using only a single equation:

η = ε · sign(∇xJ(θ, x, y))

Here θ represents the parameters of the model, x represents
inputs to the model, y refers to the targets associated with
x (for tasks with targets) and J(θ, x, y) is the cost function
used to train the neural network. The magnitude constraint
added to the original sample is represented by ε. This method
is quite simple and intuitive. The attacker makes modifications
to maximize the loss function, meanwhile as the modification
is small enough it actually preserves the original information
structure. It is worth pointing out this attack method regard
the requirement of being stealthy as self-evident under the
magnitude constraint of ε.

We adapt our algorithm to CPS, which are highly complex
with a data input space that is potentially bigger than a fixed
range. Algorithm 1 shows a single attack step to deviate this
predictor. Note that each meter (value in our input vector) has
its unique regression case because the input range may not be
in a fixed area. Therefore, the deviation is denoted as a ratio
rather than a fixed value. And the number of meters allowed
to be modified is also limited.

Algorithm 1 l0-FGSM Attack

Require: x0: original observation; f : predictor; J(f, x): cost
function of predictor f according to input data x; D: l∞
max deviation ratio; N : set of meters can be modified;
allowModN : data selector to get values from a set of
meters.

1: ∆x← 0, i← 0
2: grad← ∇J(f,x0)
3: grad← allowModN(grad,N)
4: ∆x← D ∗ x ∗ sign(grad)
5: return x + ∆x

2) Stealthy l0-IGSM Attack: Algorithm 1 generates simple
single-step attacks, which suffer from two limitations. First, the
non-linearity of the predictor itself makes it almost impossible
for a single-step to reach the optimal loss increase. On the
other hand, an out-of-distribution detector can detect those
sensors which are modified large enough and thus nullify the
adversarial effects. For certain cases with detectors, the attacker
can reformulate the optimization problem into a joint form [29]
to solve for the joint adversarial perturbation. However, the
detector we are using provides thresholds for individual sensors.
which makes it difficult for such piecewise functions to be
formed together.

To address these two limitations, we apply an iterative
approach to reach for a more optimal adversarial perturbation.
In practice, for each x0, our approach performs NumIter
number of iterations with maximum deviation ratio D, takes
steps of step length ratio (1 +D)(1/NumIter), and computes
∆x using the gradient sign method starting from the result of
previous iteration. With the existence of a detector, intermediate
results are first checked with the detector to remove exposed
parts and then sent into the next iteration for further exploration.
Algorithm 2 shows how we generate the stealthy attack.

Algorithm 2 Iterative Stealthy Attack

Require: x0: original observation; f : predictor; d: detector;
J(f, x): cost function of predictor f according to input data
x; D: max. deviation ratio; N : number of sensors allowed
modifying; allowModN : data selector to get values from
a set of meters; NumIter: number of iterations.

1: ∆x← 0, i← 0
2: x← x0

3: α← (1 +D)(1/NumIter)

4: while i < NumIter do
5: grad0← ∇J(f,x)
6: grad← allowModN(grad0, N)
7: ∆x← α ∗ x ∗ sign(grad)
8: ∆N ← d(x + ∆x)
9: grad← allowModN(grad0, N −∆N)

10: ∆x← α ∗ x ∗ sign(grad)
11: x← x + ∆x
12: end while
13: return x

Essentially, Algorithm 2 is a hybrid attack combining L0

and L∞ constraints and the detection threshold constraints.
In practice, an attacker is allowed to modify Num meter
readings with a maximum deviation ratio D. For each input
x0, we choose the most sensitive, but undetected, meters using
their gradient values for each iteration. Figure 2 shows a
high-level execution pipeline as an example for a stealthy
attack we have implemented. In Figure 2, input artifacts
like data and pre-trained models are shown in light blue
and operations in dark blue. An attacker fetches the pre-
trained prediction models and data to attack and uses the
’IGSM stealth’ operation to generate adversarial perturbations.
A generic prediction evaluation operation of ’ScoreModel’ is
used on both original and adversarial samples. The adversarial
impact can be computed later based on the deviation from these
two metric results shown as the overall output. The integrity
of model-based tools provides a simple framework combining
different types of practical constraints and a low computation
complexity for fast prototypical tests.

IV. EXPERIMENT RESULTS

For demonstration purposes, we utilize a case study based
on a medium-scale power distribution network over time. It is
worth noting that the prediction and attack evaluation strategies
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Figure 2: Stealthy Adversarial Attack Pipeline

can also be generalized to other distributed sensor network
settings with no barrier.

A. Power System Setting

For this case study, we make a detailed simulation of
an electric distribution system using GridLAB-D and the
prototypical distribution feeder model provided by the Pacific
Northwest National Laboratory (PNNL) [30]. The distribution
model captures the fundamental characteristics of distribution
utilities in the US. Figure 3 shows the topological structure
of the power distribution network. The figure shows the load
data collection mechanism for the distributed smart meter
setting. Meters are connected to the user households and their
usage data reports are transmitted to the control center in
a hierarchical manner. In this case, we use the prototypical
feeder R1-12.47-3, which represents a moderately populated
area. Furthermore, we added representative residential loads to
the distribution model using the script in [31]. In summary, our
distribution model has 109 commercial and residential loads,
which in-turn include appliances such as heating, ventilation,
and air conditioning (HVAC) systems, water heaters, and pool
pumps. GridLAB-D allows us to model the response of the
loads to weather and market’s prices, giving realism to the
simulations.

For each hourly time step, the predictor takes loads from
meter readings in the past 24 hours and also takes into account
the temperature data during the same period of time. After
absorbing and formatting these inputs, the predictor gives out
the future total network load for the next hour. This prediction is
conducted iteratively to provide references for dynamic pricing
or facility maintenance.

B. Results

We use DeepForge to build a load forecasting model for
this power distribution network using techniques of LSTM and
deep neural networks. We use the historical data from 109
loads (both commercial and residential) and the temperature
during summer time (June to August) as inputs. In this case, we

Figure 3: Part of the Power Distribution Network
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Figure 4: Load Prediction Illustration

use the measurements of the past 24 hours to predict the total
load during the next hour. We make predictions every hour.
Owing to the large-scale dataset generated for our problem,
we chose a relatively large-scale neural network that includes
three LSTM layers (with 150 units) and two fully connected
layers (with 500 units). Figure 4 shows an example of the load
prediction. The predictor is trained from 90% of the total data
and leads to a mean squared error (MSE) of 0.1255 (units:
Mega Volt-Amp) on the test dataset.

Along with the predictor, the power management system
also holds an anomaly detector to detect whether sensors are
working normally. We use a hard-decision detector which
only outputs the binary classification results for sensors. The
output for this detector is a vector with binary values indicating
whether each meter reading in the network is likely to be an
anomaly. Figure 6 shows the confusion matrix for the anomaly
detector when 30% of meters in this network are added with a
20% level of Gaussian noise. The detector in our experiments
shows an overall detection accuracy of 98.1 under random
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Gaussian noise. However, as we show later, this detector is
still vulnerable to carefully designed adversarial attacks.

In our attack scenario, the sensor data is manipulated under
constraints. At every time step, the attacker can manipulate
a fixed number of meters in the network (30% in our
experiments). Moreover, for each meter, the attacker is allowed
to deviate the meter reading by a constraint level of 20%. This
is a modification setting that is equivalent to the noise level in
the original detection test.

Figure 5 shows the modification ratio of one sample for the
IterativeGSM attack. The horizontal axis denotes the meter
index and vertical index indicates multiple data for one meter
sample. We can see that in a total of 109 meters, 32 (rate =
30%) meters can be modified by a ratio no more than 20%.

Figure 5: Modification Ratio for IGSM

Under same level of constraints, we explore four different
adversarial attack settings (with and without detector):
• FGSM. Single step attack to maximize the deviation from

the prediction
• IGSM. Iterative attack to maximize the deviation from

the prediction
• DirectedGSM (reverse = 1). Iterative attack to minimize

the predicted values
• DirectedGSM (reverse = −1). Iterative attack to maxi-

mize the predicted values
Figure 7 shows the confusion matrix for the anomaly detector

when 30% of meters in this network are added with a level of
20% adversarial perturbation. The most critical metric here is
the false positive (FP) part of the detection under adversarial
perturbation. In contrast to the original detection results (see
Figure 6), the ratio of undetected adversarial meters shows an

Figure 6: Detector Results
using 30% Meters with 20%
Level Gaussian Noise

Figure 7: Detector Results
using 30% Meters with 20%
Level adversarial perturbation

increase from 2% to 98%. This clearly demonstrates that the
generic stealthy attack procedure described above can evade
static anomaly detectors with a very high success rate.

To better evaluate the impact of adversarial attacks under
detection settings, we updated the prediction step using a
straightforward anomaly removal strategy. After the anomaly
detection step, the sensor detected as abnormal from the input
data space would be set as zero values. Thus, for the prediction,
the input data is only relied on the remaining (most likely
normal) sensors. In this way, the attacker only puts attention
on the undetected part and tries to maximize the adversarial
impact while keep the perturbation stealthy.

Table I shows experiment results under different attack and
defense settings. The detection and anomaly removal strategy
itself only brings in negligible deviations from the original
predictions on normal data. Unfortunately, adversarial attacks
with full knowledge of the detectors can find out the worst
case for the predictor while still evading the detector. Our
experiments show that the static detection and prediction
mechanism remains vulnerable under adversarial settings even
when only a small portion of sensors in the network are
intentionally modified. A previous research [6] also explores
the vulnerability of load forecast system under adversarial
attack on weather data, where the significance of the single
variable for weather is shown for the forecast design.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to evaluate security and
resilience of load forecasting predictors for a power distribution
network. To enable rapid prototyping and evaluation, we intro-
duced domain-specific abstractions in the model-based platform
of DeepForge to construct a testing framework. To illustrate the
capabilities of this framework, we used GridLAB-D for power
network simulation, and provided various configurable and
flexible security test settings in different forms. Our experiments
showed that CPS that use machine learning techniques for load
predictions can suffer from a worst-case attack even under a
partial network compromise.

Our future work is focused on the following two aspects.
First, our current investigation of the resilience of the power
distribution network uses a static dataset generated from
GridLAB-D. We plan to incorporate GridLAB-D as a more
flexible DeepForge extension. This will enable GridLAB-D
to work in a simulation-in-the-loop manner with simultaneous
learning. This means users will be able to define simulations
in a more flexible way that incorporates more kinds of user-
defined uncertainties such as weather anomalies and dynamic
network changes. Secondly, we also plan to explore the origins
of the vulnerabilities in the prediction system under test and
propose potential solutions for practical adversarial settings.
We plan to integrate a randomization-based defense strategy
exploration tool that can help generate resilient detection or
mitigation defense mechanisms for various scenarios.
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Table I: Prediction Results (MSE) with Different Prediction Deployment Settings

Attack/Detection Settings Original/NoAttack Adversarial/NoDetect Original/StaticDetect Adversarial/StaticDetect
Fast-GSM (rate=0.3,step len=0.2) 0.1255 0.5375 0.1287 0.5322
Iterative-GSM (rate=0.3, step
len=0.01,step num=20) 0.1255 0.7801 0.1287 0.7606

DirectedGSM (rate=0.3, step len=0.01
,step num=20, reverse=1) 0.1255 0.4785 0.1287 0.4913

DirectedGSM (rate=0.3, step len=0.01
,step num=20, reverse=-1) 0.1255 1.025 0.1287 0.9899
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