This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX

OPTIMUS: A Security-Centric Dynamic Hardware Partitioning
Scheme for Processors that Prevent Microarchitecture State Attacks

Hamza Omar, Brandon D’Agostino, and Omer Khan

Abstract—Hardware virtualization allows multiple security-critical and ordinary (insecure) processes to co-execute on a processor. These
processes temporally share hardware resources and endure numerous security threats on the microarchitecture state. State-of-the-art
secure processor architectures, such as MI6 and IRONHIDE enable capabilities to execute security-critical processes in hardware isolated
enclaves utilizing the strong isolation security primitive. The MI6 processor purges small state resources on each enclave entry/exit
and statically partitions the last-level cache and DRAM regions to ensure strong isolation. IRONHIDE takes a spatial approach and
creates two isolated clusters of cores in a multicore processor to ensure strong isolation for processes executing in the enclave cluster.
Both architectures observe performance degradation due to static partitioning of shared hardware resources. OPTIMUS proposes a
security-centric dynamic hardware resource partitioning scheme that operates entirely at runtime and ensures strong isolation. It enables
deterministic resource allocations at the application level granularity, and limits the number of hardware reconfigurations to ensure
bounded information leakage via the timing and termination channels. The dynamic hardware resource partitioning capability of OPTIMUS
is shown to co-optimize performance and security for the MI6 and IRONHIDE architectures.

Index Terms—Secure Processor, Multicore, Strong Isolation, Dynamic Hardware Partitioning, Performance

1 INTRODUCTION

odern microprocessors enable hardware virtualization

by means of which multiple security-critical and ordi-
nary processes temporally co-execute on the processor and
share hardware resources, such as caches, translation look-
aside buffers (TLBs), on-chip networks, and even memory
controllers. This hardware sharing results in timing access
variations due to interference that can by exploited by an
attacker process to infer secret data value(s) [1], [2], [3], [4].
To guarantee non-interference, various software and hardware
based solutions have been proposed. At the software level,
process-level isolation (e.g., Intel’s SMAP and KASLR) is
traditionally adopted across co-executing processes to guar-
antee memory isolation. However, it falls short as hardware
resources still remain shared across temporally executing
processes [1]. On the other hand, hardware based solutions
broadly fall into two categories: The first category comprises
of non-enclave based mitigation schemes, where secure and in-
secure processes temporally co-execute on the processor. The
microarchitecture state is protected via scrambled (randomly
mapped) address accesses [5], [6], or intrusive hardware
extensions are introduced to mitigate unauthorized access to
secure data [7], [8], [9]. The second category involves enclave-
based architectural mechanisms [10], [11], [12], [13], [14],
where secure processes execute in containers that are isolated
at the hardware-level from temporally executing ordinary
processes. Given their continuing commercial integration
and strong security guarantees, this paper primarily focuses
on enclave-based secure processors.

Intel’s Software Guard Extensions (SGX) [10] and ARM’s
TrustZone [12] introduce processor extensions that allow
security-critical processes to execute in isolated enclaves,
while the ordinary (insecure) processes co-execute temporally

e H. Omar, B. D’Agostino, and O. Khan are with the Department of Electrical
and Computer Engineering, University of Connecticut, Storrs, CT USA
06269. E-mail: {hamza.omar, brandon.d’agostino, khan}@uconn.edu.
(Corresponding Author: Omer Khan)

This research was supported by the National Science Foundation under Grant
No. CNS-1929261. The Research Experiences for Undergraduates (REU)
supplement award supported Brandon D’ Agostino.

in the clear. However, SGX and TrustZone fall short of
mitigating microarchitecture state attacks [15], [16]. This is
primarily due to the absence of strong isolation across the
secure enclave and ordinary (insecure) processes, which is
essential to ensure that secure enclave’s data does not leak
through the temporally shared hardware resources [17].

To ensure strong isolation, secure processor works [13],
[14] have proposed partitioning-based mechanisms to protect
against microarchitecture state attacks. Indeed, the perfor-
mance of these works is expected to suffer if the system
resources are not partitioned (distributed) proportionally
based on the demands of the underlying secure and insecure
processes. For instance, the secure MI6 processor [13] adopts
the traditional temporal execution model and enables strong
isolation by statically partitioning the large state structures,
such as last-level caches and off-chip memory (DRAM)
region(s) across processes. Static partitioning of the shared
cache resources adversely impacts performance, as the cache
capacity requirements vary based on the demands of a
process. Another recently proposed secure processor archi-
tecture, IRONHIDE [14] proposes a spatio-temporal execution
model and enables strong isolation by spatially partitioning
the core-level resources of a multicore to construct secure
and insecure clusters of cores. It attempts to address the
M1I6 performance degradation due to static partitioning by
dynamically reconfiguring clusters” core-level resources for
load balanced execution using a core reallocation heuristic.
It uses an offline performance monitoring metric, shared
cache misses per kilo-instructions (MPKI) as a function
of core counts to decide how many core-level resources
allocate to the respective clusters. However, it requires offline
pre-computation of the MPKI trends for all processes that
compose an application, which burdens the underlying
security monitor/kernel. Thus, it is imperative to devise an
online security-centric scheduler that ensures strong isolation
for security, while also dynamically partition resources to
guarantee high performance.

To dynamically partition hardware resources in an
enclave-based secure processor, the resource demands of the
processes belonging to an application are continuously moni-

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

2

tored. However, continuous resource scheduling allows an
adversary to infer secret information through the timing and
termination channels. In essence, employing a continuous
resource reconfiguration mechanism violates strong isolation.
Prior works [18], [19] have shown that this leakage can be
bounded by limiting the number of unique reconfiguration
events. This paper proposes OPTIMUS, an online security-
centric resource distribution framework for secure processor
architectures that dynamically distribute hardware resources
across the underlying processes of an application. It bounds
the timing and termination channel leakage by limiting the
number of reconfiguration events to two for each application
invocation.

First, the system is reconfigured to a state where all
hardware resources are allocated to the secure kernel (or
security monitor of MI6). OPTIMUS samples the MPKI for
each process as a function of the resource configurations.
Later, these MPKI trends (or profiles) of the secure and
insecure processes are utilized to find configurations that
balance the hardware resource utilization for performance.
The system then undergoes the second reconfiguration with
the new computed resource allocations, and the application is
allowed to continue execution. Moreover, OPTIMUS always
provides the same resource distribution binding for any
given application whenever it is scheduled on the system,
assuring determinism. During the resource reconfiguration
events, OPTIMUS ensures strong isolation, while maximizing
hardware resource utilization and system performance. In
this work, we show that two state-of-the-art secure processor
architectures benefit from OPTIMUS. For MI6, OPTIMUS
assures near-optimal distribution of shared cache resources
for performance, while keeping strong isolation guarantees
intact. It shows performance improvements of 16% compared
to MI6 for a set of user and OS level interactive applications.
Moreover, OPTIMUS enables a completely online mechanism
for dynamic resource distribution of core-level resources
across the secure and insecure clusters in IRONHIDE. Com-
pared to IRONHIDE without dynamic hardware isolation,
OPTIMUS is shown to improve performance by 24%.

2 ENCLAVE-BASED SECURE PROCESSORS

The threat model assumptions are adopted from state-of-
the-art enclave-based MI6 [13] and IRONHIDE [14] secure
processor architectures. All microarchitecture state attacks
that rely on covert and side information leakage channels
are considered. The operating system (OS) and user level
processes are untrusted. However, the processor package
(including the main DRAM memory) and a security monitor
(or kernel) are trusted. An adversarial process is assumed to
be capable of co-locating with a victim process on the shared
microarchitecture structures, such as the pipeline buffers,
private and shared caches and TLBs, on-chip networks,
and memory controller buffers. The adversarial process
conducts various state exploits, such as cache timing or
access based attacks [1], [2], [5], [15], [20], as well as on-
chip network attacks [21]. The adversary is also capable
of training hardware speculative execution units, such as
branch predictors and store-to-load forwarding logic that is
used to leak speculative microarchitecture state of the victim
process [3], [4], [9], [16]. Finally, the adversary can monitor

IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX

resource scheduling events to infer secret information via the
timing and termination channels [18], [19].

OPTIMUS caters for the above threats by adopting a
novel security-centric dynamic hardware resource partition-
ing framework. It exclusively focuses on software-based
microarchitecture state attacks, and excludes adversaries
with physical access to the processor. Thus, physical thermal
imaging, electromagnetic, and power based channels are
not considered in this work. Moreover, physical attacks on
memory are prevented using orthogonal mechanisms, such
as memory integrity checking [22] and ORAM [23]. Attacks
by compromised system software, e.g., OS refusing to allocate
process resources are not considered. Lastly, hardware attacks
outside the microarchitecture state are orthogonal vectors,
such as hardware trojans and DRAM row-hammer attacks.

2.1 Commercial Secure Processor Extensions

Intel’s SGX [10] is a recent secure processor extension that
allows processes to execute in isolated containers, called
enclaves. These enclaves are used to execute security-critical
processes that temporally co-execute with ordinary (insecure)
processes, such as an untrusted OS. For each enclave entry,
the processor is switched to enclave mode, where the secure
process is first attested and authenticated using crypto-
graphic primitives [24]. Upon gaining access, the secure
process’s data is decrypted for processing in the enclave.
On the contrary, for every secure enclave exit, the processor
encrypts all enclave related data and flushes the core pipeline.
Lastly, the processor is switched to the normal mode to execute
ordinary processes. Due to temporal execution of the secure
enclave with insecure processes, an attacker process can
either directly monitor accesses made by the enclave [15],
or befuddle the system in making speculative accesses [16]
to leak secure enclave’s data. Intel’s SGX is vulnerable to
microarchitecture state attacks as it falls short in providing
strong isolation guarantees, which is essential to ensure
that secure process’s data does not leak through temporally
shared hardware resources [17].

2.2 The MI6 Secure Processor Architecture

The MI6 architecture [13] adopts the SGX enclave execu-
tion model, and enables strong isolation to protect against
microarchitecture state attacks. A security monitor is deployed
that attests and authenticates processes to be executed in an
enclave. Similar to SGX, all processes time-share hardware
resources. To mitigate sharing across large stateful resources,
such as shared last-level cache and DRAM memory, MI6
statically partitions these resources across the secure and
insecure processes. Moreover, small stateful hardware struc-
tures, such as core pipeline buffers, private caches and TLBs,
and memory controller queues are purged on each secure
enclave entry and exit.

Figures 1: (a)—(c) shows an illustrative example of pro-
cessing the secure enclave entry and exit on MI6. Assuming
the execution starts with the secure process, the enclave
data (after decryption) is read into the time-shared hardware
resources and dedicated shared last-level cache sets/slices
(c.f. Figure 1:(a)). When finished with its execution, the en-
clave exit procedure is initiated to switch the secure enclave
out of the system. However, to ensure strong isolation, the
private pipeline buffers, caches, TLBs, and memory controller

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

H. OMAR et al.: OPTIMUS: A SECURITY-CENTRIC RESOURCE PARTITIONING SCHEME 3

(a) Enclave Mode

| Core | | Core | |

Application

|Private Cachel |Private Cachel

=

Secure

Enclave

| Core | | Core | |

|Private Cachel |Private Cachel

Process

(b) Microarchitecture State Purging (c) Normal Mode
Core | | Core | | Core | | Core |
|Private Cachel |Private Cachel |Private Cachel |Private Cachel
Core | | Core | | Core | | Core |
|Private Cachel |Private Cachel |Private Cachel |Private Cachel

Interactions

|Shared Last-Level |Cache (LLc SIicesﬂ

|Shared Last-Level |Cache (LLc Slicesﬂ

|Shared Last-Level |Cache (LLC Slicesﬂ

Insecure IiMem. Cntlr IJT‘Mem. Cntlr

IijMem. Cntlr

[:IMem. Cntir liMem.CntIr [';IMem.CntIr

Processe!

Main Memory (DRAM) Regions

Main Memory (DRAM) Regions

Main Memory (DRAM) Regions

Fig. 1. The execution cycle of an interaction across secure and insecure processes on MI6. For strong isolation, the shared cache and DRAM regions
are statically partitioned, and the private resources are purged on every transition between enclave and normal modes.

queues are purged (c.f. Figure 1:(b)) before the processor
enters the normal mode to execute the ordinary process.
Similar to the secure enclave, the ordinary process utilizes
its dedicated shared last-level cache sets and DRAM regions
along with the pristine (already purged) private resources
(c.f. Figure 1:(c)). Lastly, when the ordinary process finishes
its execution, the time-shared resources are purged again
(similar to Figure 1:(b)) before initiating the enclave entry
procedure to execute the secure process.

In M1I6, each secure enclave entry/exit requires purging
of the private microarchitecture state, leading to performance
overheads. The purged state also needs to be brought back
into the hardware caches/TLBs, which further exacerbates
performance. The static partitioning of last-level cache also
impacts performance. Since each application is allocated
fixed shared cache set(s)/slice(s), any process in need of
more cache capacity experiences degraded data locality.

2.2.1 Security-Centric Dynamic Cache Partitioning

OPTIMUS enables dynamic partitioning of shared cache
resources across temporally executing secure and insecure
processes of an interactive application. It allows a process
to give away or gain shared cache resources to/from the
co-located process(es). This essentially caters for the varying
shared cache requirements of processes, and overcomes the
performance bottlenecks due to imbalance in resource utiliza-
tion. However, when shared cache resources are reconfigured
across processes, the on-chip network routers get shared.
Thus, the insecure process can infer secure enclave’s secret
data by contending on these shared routers.

To regain MI6 strong isolation, OPTIMUS re-allocates the
process’s data structures (memory pages) for all dynamically
reallocated shared cache slices. This mechanism unmaps the
data structures from their current home (cache slice), by
which all dirty data is propagated to the off-chip memory.
Lastly, the data structures are re-mapped to the dynamically
reconfigured shared cache slice(s). This procedure is per-
formed for every interactive application invocation as a part
of the security-centric design to ensure bounded leakage [18],
[19] (details in Section 3). Moreover, for any given application,
the same deterministic shared cache distribution is employed
when it is scheduled for execution.

2.3 The IRONHIDE Secure Processor Architecture

IRONHIDE [14] adopts a spatio-temporal enclave execution
model by spatially isolating core-level resources of a mul-
ticore processor to form secure and insecure clusters of

ially Distributed ~ |————— — —q—m —— — — — —
Spatially Distributed o I Secure Cluster InsecureCIuster-i
Core-level Resources ® | ————— I
\
licati A: | Core | | Core | |
Application
: |Private Cachel |PrivateCache| :
Secure | I
Enclave I | Core | | Core | :
|
| |Private Cachel |PrivateCache| |
Process | I
_______________ -

Interactions 7
|Shared Last-Level Cache (LlI_C S||ces)|

Ii!Mem. Cntir I;IMem. Cntlr

Secure DRAM Regions Insecure DRAM Regions

Fig. 2. IRONHIDE architecture and its core-level strong isolation of shared
hardware resources. Resources are spatially distributed across clusters.

cores. The application processes temporally execute within
their respective clusters, such that the secure process(es)
are pinned to the secure cluster where they execute and
interact with the processes executing in the insecure cluster.
The process interactions across clusters take place without
incurring enclave entry/exit purging overheads, thus giving
IRONHIDE a significant performance advantage over MIé.

IRONHIDE spatially partitions the shared cache slices
and DRAM regions across secure and insecure clusters.
Moreover, the per-core private resources, such as pipeline
buffers and private caches and TLBs also get spatially
distributed across the two clusters. The on-chip networks
support a deterministic routing protocol to ensure no packets
that originate in one cluster drift to the other cluster. Only
network packets intended for application process interactions
are allowed to drift from one cluster to the other. Figure 2
shows secure and insecure clusters, where respective secure
and insecure processes execute and utilize their dedicated
spatially partitioned core-level resources.

Static allocation of core-level resources in IRONHIDE
adversely impacts performance, as the resource requirements
for any given process vary dynamically [25]. Thus, IRON-
HIDE implements a core-reallocation heuristic to reconfigure
core-level resources across clusters for load-balanced ap-
plication performance. For each interactive application, it
computes the core-level resource distribution by analyzing
the per-process last-level cache misses per kilo-instruction
(MPKI) trends as a function of varying core counts. However,
the heuristic adopts an offline approach that requires the
MPKI trends to be pre-computed for all secure and inse-
cure processes of an interactive application. This requires
IRONHIDE to possess a priori knowledge and storage for

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

Initiate Dynamic Reallocation at]

IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX

MPKI Region Characterization

Insecure

1
ﬁ Application Invocation Granularity
’ Allocate All Shared
Secure

Hardware Resources
/\Processes/\ to Secure Enclave/Cluster

Secure kernel Collects
Per Process MPKI
Statistics for Varying
Resource Mappings

4

3
Process

Process

———————— 1
______ [l

= T
/ N\ AN i Resource
E - 1 Allocation
Insecure s Seao i 7
bk YEDUSENES| Heuristic
Processes,
_- | Varying Resources] .
T >
Applications Sampling Phase Estimation Phase t

Fig. 3. OPTIMUS security-centric procedure for load-balanced dynamic reallocation of shared hardware resources at application granularity.

the per-process MPKI trends, which burdens the capabilities
needed for the security monitor.

2.3.1 Security-Centric Dynamic Hardware Isolation

OPTIMUS enables an online capability for IRONHIDE to
reconfigure its core-level resources across the clusters at
application granularity. However, when core-level resources
are dynamically reconfigured across clusters, all re-allocated
cores get temporally shared across both clusters. Thus, the
insecure process(es) can contend and monitor these hardware
resources to leak the state of the secure process(es). To regain
strong isolation, IRONHIDE flushes-and-invalidates the core
pipeline buffers, as well as the private and shared caches
(and TLBs) of all re-allocated cores. Moreover, the shared
cache/TLB resources are re-allocated (remapped) for the
cores given up or gained by the secure cluster (c.f Figure 2).

These core-level resource re-allocations are invoked on
every reconfiguration event per interactive application invo-
cation. Similar to MI6, OPTIMUS limits the dynamic core-
level resource reconfiguration events to a small bounded
factor per each scheduled application (details in Section 3).
This method bounds leakage via the timing and terminal
channels due to limited number of unique reconfiguration
events [18], [19]. Furthermore, OPTIMUS employs a fixed
resource binding whenever the same application is scheduled
to ensure determinism.

3 SECURITY-CENTRIC RESOURCE PARTITIONING

The objective of this work is to ensure load-balanced dis-
tribution of shared hardware resources at runtime without
violating strong isolation guarantees. Ideally, the resource
demands of processes must be continuously monitored to
decide optimal resource allocations. However, this strategy
results in sharing of hardware resources between the secure
and insecure processes, resulting in timing and termination
channels [18], [19]. An adversary can also perform replay
attacks due to non-deterministic resource distribution de-
cisions [26]. The proposed OPTIMUS framework takes a
security-centric approach by limiting the number of hardware
resource reconfigurations to bound the information leakage
channels. It executes under the trusted secure kernel/mon-
itor, and computes the load-balanced hardware resource
allocations at the application invocation granularity. The
resource distribution decisions are ensured to be deterministic
across application invocations, essentially disallowing an

adversary to gain useful information by conducting replay
attacks. The shared cache misses per-kilo instruction (MPKI)
as a function of varying hardware resources is shown to
highly correlate with the performance scaling trends of the
underlying processes. Therefore, OPTIMUS utilizes runtime
classification and characterization of the per-process MPKI
information to derive its security-centric hardware resource
partitioning.

The overall OPTIMUS framework is shown in Figure 3.
Applications executing under a secure processor comprise
of secure and insecure processes that frequently interact
with each other to assure application progress. Since applica-
tions are considered mutually distrusting (see Section 3.1),
OPTIMUS computes a bounded and deterministic set of
hardware resource allocations on each application invo-
cation (Figure 3:). The sampling phase first reconfigures
all hardware resources to the secure kernel (Figure 3:Q).
The secure kernel varies the hardware resource mappings
to obtain an MPKI curve at discrete sampling points for
each application process (Figure 3:®®). The estimation phase
performs a resource allocation heuristic using the per-process
MPKI information, and computes a deterministic allocation
of hardware resources (Figure 3:@). The resource mappings
and sampling inputs for each process in an application are
kept consistent, ensuring no change in resource allocations
across multiple application invocations. OPTIMUS reconfig-
ures the hardware resources with the computed resource
bindings, and allows the application to execute on the secure
processor (Figure 3:(®). The hardware reconfigurations are
bounded since they are performed once before the sampling,
and once at the end of the estimation phase. The deterministic
and bounded nature of OPTIMUS disallows an adversary
to gain useful information, since the resource distribution
decisions are invariant of how an application’s requirements
vary during its execution.

3.1 Application Execution Model under OPTIMUS

The MI6 secure processor implements a time-multiplexed ex-
ecution model that can be seamlessly adopted for traditional
OS and hypervisor systems. In MI6, multiple secure and
insecure processes of an interactive application temporally
execute on the processor. When multiple applications are
scheduled for execution, they are also considered mutually
distrusting. MI6 performs a private resource purge operation
to ensure strong isolation across each enclave entry/exit.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

H. OMAR et al.: OPTIMUS: A SECURITY-CENTRIC RESOURCE PARTITIONING SCHEME 5

Moreover, to ensure strong isolation, MI6 statically partitions
the shared last-level cache and off-chip memory resources
across all application processes. The static partitioning of
shared cache resources leads to degraded performance (c.f.
Section 2.2). OPTIMUS addresses this performance challenge
by enabling a security-centric dynamic partitioning of shared
cache resources across the mutually distrusting applications.

Contrarily, IRONHIDE adopts a spatio-temporal execution
model that is more suitable for secure processors with high
core count. It forms two spatially isolated clusters of cores.
All mutually trusting secure processes of an application
temporally execute in the secure cluster, while the insecure
processes execute in the insecure cluster. The core-level
resources are spatially distributed among the two clusters
to ensure strong isolation. However, each cluster must
proportionally allocate core-level resources to ensure load-
balanced application performance. IRONHIDE also considers
multiple secure processes as mutually distrusting when they
belong to different interactive applications. Thus, the core-
level resources are purged on each application context
switch. OPTIMUS addresses the performance challenge of
load-balanced execution of clusters by enabling a security-
centric dynamic partitioning of core-level resources across
the mutually distrusting application invocations.

3.2 OPTIMUS Sampling Phase

OPTIMUS first captures the MPKI trends for the application’s
secure and insecure processes using representative inputs, as
shown in Figure 3, steps @ and ®. In MI6, the MPKI trends
are computed as a function of allocating different number
of shared last-level cache slices (or sets) to the process being
profiled. However, in IRONHIDE these trends are computed
as a function of sampled core counts. The sampling granular-
ity offers a tradeoff. Fine granularity sampling implies more
accurate capture of the MPKI trends, however each sampling
point implies additional computation overheads.

For the MI6 architecture, OPTIMUS first reconfigures
the processor to a state where all shared cache resources are
dedicated to the security monitor (or secure kernel), as shown
in Figure 3:. The security kernel collects the MPKI at this
sample point using hardware counters [27] and representa-
tive (sample) inputs. It periodically takes away shared cache
resources and remaps its data structures (memory pages) to
the remaining shared cache slices (Figure 3:(3). For all sam-
pled shared cache mappings, OPTIMUS captures the MPKI
data points. These sampling steps are repeated for every
secure and insecure process of the interactive application.
To ensure a bound on resource reconfigurations, OPTIMUS
disallows the secure kernel to context switch during the
sampling phase. This enables a single reconfiguration of all
processor resources to the security kernel before the sampling
phase commences.

Consider the 64-point MPKI trend. OPTIMUS first allo-
cates all shared cache slices to the secure kernel, which maps
all process’s pages to the 64 cache slices and collects the
MPKI data point by executing the sample inputs. Next, one
of the cache slices is selected to remap all its mapped pages
to be re-mapped to the remaining 63 cache slices. However,
all threads of the process remain mapped to the 64 cores.
This MPKI data point is captured by executing the sample
inputs again. These steps are repeated until the secure kernel

z 1 - - — === 64-Point Trend |
= | | | | =A = 4-Point Trend

2 0.8 N\~~~ —1—| =—0=—6-Point Trend |-
S I I T T T T
806 1+ AN A4t b
- I I I I

904 - J 1L
© I I | I

& 0.2 B B e A
€ ALEXNET| | | ||

5 0 T T T T T T T

z 0 8 16 24 32 40 48 56 64

Number of Shared Cache Slices

Fig. 4. MPKI trends of the ALEXNET process for various sampling data
points under OPTIMUS.

collects the last MPKI data point at one mapped shared cache
slice. Note, upon switching from one process to the other
for capturing their respective MPKI trends, the processor
resources are purged. Figure 4 shows the normalized MPKI
trend (64-point) of a security-critical machine learning process,
ALEXNET. Two other variants of the sampled MPKI trends,
4-point and 6-point are also shown. The 4-point trend profiles
the process at 64, 48, 16, and 1 shared cache slices, while
6-point trend is captured at 64, 52, 40, 24, 8, and 1 cache
slices. Increasing the number of MPKI data points results in
high correlation (accuracy) with 64-point. However, obtaining
more MPKI data points results in higher sampling overheads.
For the IRONHIDE architecture, all discussed operations
for MI6 are performed for the sampling phase. However, the
MPKI data points are captured by first reconfiguring all
available core-level resources (core pipeline, private-shared
caches and TLBs, and on-chip network routers) to the secure
kernel. This implies that all processor core-level resources
are allocated to the secure cluster, and the secure kernel
executes the sampling phase. For each process, the core-level
resources are periodically taken away to collect subsequent
MPKI data points. These sampling points not only involve
remapping of the process’s pages, but the process threads
are also re-spawned to map to the newly available cluster’s
core-level resources. These steps are repeated until the last
MPKI data point at one core-level resource is captured.

3.3 OPTIMUS Estimation Phase

After the sampling phase, OPTIMUS analyzes the per-process
MPKI trends to find a single, deterministic mapping of shared
hardware resources, as shown in Figure 3, steps @ and
®. In M6, this results in the re-allocation of shared cache
slices at the per-process granularity of the application being
scheduled. However, in IRONHIDE the proportional re-
allocation of core-level resources is determined for the
respective clusters. The goal of the estimation phase is to find
a resource allocation binding, such that all shared hardware
resources are utilized while the aggregate MPKI is mini-
mum (maximum performance). For a given application, the
MPKI trends are expected to remain consistent since all the
processes are sampled using pre-determined representative
inputs. Furthermore, these MPKI trends are evaluated using
a heuristic [14] that leads to deterministic resource bindings
across multiple invocations of a given application.

The heuristic is first described for the MI6 architecture us-
ing an example of the 6-point MPKI trends for the ALEXNET
and VISION processes. As shown in Figure 5, a given MPKI
trend comprises of three regions, (1) non-linear region (from
left to point A), (2) linear region (between points A and B),

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

6

£ 1

s

=08 =

5 5§ <

© 0.6 B0

§ g8

3 2

%04 2 ! L

] o Saturation Region

< | | |

% 02 B s s e S
£ | A N

2 0 8 16 24 32 40 48 56 640 8 16 24 32 40 48 56 64

Number of Shared Cache Slices Number of Shared Cache Slices

Fig. 5. Classification of MPKI trends for the estimation phase of OPTIMUS.
6-point MPKI trends for the ALEXNET and VISION processes are shown.

and (3) saturation region (from point B to the right). For
maximum shared cache utilization (and performance), each
application process must operate on the edge of linear and
saturation regions, or beyond. At the minimum, each process
must operate in the linear region, closer to the saturation
point B, making the linear region as the region of interest. To
retrieve the linear region of an MPKI trend, OPTIMUS first
captures the saturation point B by scanning from end of the
trend to the point where the absolute slope value becomes
greater than 0.1. Then, it captures point A by checking for
points from the start of the trend to the point where the slope
becomes lesser than 0.5. The linear region for an MPKI trend
is determined by selecting a linear line between points A
and B.

The heuristic computes the ideally required shared cache
slices by adding the cache slices acquired for each process
at point B. Certainly, the required shared cache slices must
not exceed the total available cache slices in the processor.
Therefore, a thresholding mechanism is adopted to satisfy
the aforementioned constraint. If the required cache slices
are equivalent to the total available cache slices, then no
resource adjustment is needed and the heuristic terminates
by forwarding the computed shared cache distribution for
each process at point B. However, if the required cache slices
are either less or greater than the total available shared cache
slices, then there is a need to perform resource adjustment.
In the former case, near-optimal performance is already
achieved since all processes are allocated enough resources
to operate at their MPKI saturation points. However, to max-
imize shared cache utilization, OPTIMUS equally distributes
the remaining unoccupied cache slices among both processes.
Contrarily, when the required shared cache slice count
exceeds the total available cache slices, a fixed number of
cache slices must be removed from one process and assigned
to the other. OPTIMUS proportionally reconfigures (removes
or adds) cache slices across processes based on the relative
difference between the slope values of each MPKI trend’s
linear region. This is done while ensuring that fewer cache
slices are removed from the process with higher rate of MPKI
change (slope value) in the linear region, compared to the
process with a smaller slope value. Lastly, the adjusted shared
cache distribution is forwarded to the security monitor of MI6,
where each process’s data is remapped before allowing the
application to execute.

The slope-based estimation heuristic is applicable to the
IRONHIDE architecture in a similar fashion. The MPKI
trends obtained from the sampling phase are a function of
core-level resources for IRONHIDE. Therefore, the resource
adjustments are done across the core-level resources for
the secure and insecure clusters. The heuristic finds the

IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX

resource distribution, such that all core-level resources are
utilized while assuring minimal aggregate MPKI. The core-
level resource binding is forwarded to the secure kernel
of IRONHIDE, which performs the cluster reconfiguration
before allowing the application to execute.

4 METHODOLOGY

A real multicore processor, Tilera®Tile-Gx72™ [27] is utilized
to prototype the MI6 and IRONHIDE architectures, as well
their OPTIMUS security-centric hardware resource scheduler
implementations. Tile-Gx72™ offers hardware support to
enable strong isolation, i.e., form clusters of cores, manage
network traffic across clusters, regulate on-chip and off-
chip data access controls, and manage shared cache data
placement. It is a tiled multicore architecture comprising of
72 tiles, where each tile consists of a 64-bit multi-issue in-
order core, private level-1 (L1) data and instruction caches of
32K B each, private instruction and data TLBs of 32 entries
each, and a 256 K B slice of the shared level-2 (L2) cache (LLC
capacity of 18 M B). The off-chip memory is accessible using
four on-chip 72-bit ECC protected DDR memory controllers
attached to independent physical memory channels.

4.1 Secure Processor Modeling on Tile-Gx72™
4.1.1 Modeling MI6 and OPTIMUS

The MI6 secure processor is modeled on Tilera®Tile-Gx72™
using 64 out of 72 available cores, which are time-shared
across the secure enclave and insecure processes. All time-
shared cores and their respective L1 caches (and TLBs)
are purged on every secure enclave entry and exit. To
purge the private L1 cache, a flush-and-invalidate procedure
reads a dummy buffer of size equal to the cache size
into each L1 cache. This essentially removes all secure
process’s data from the private L1 cache. Then, a memory
fence operation (tmc_mem_fence () call) is performed to
ensure propagation of dirty data to L2 slices. Similarly,
the TLBs are flushed using Tilera specific user commands.
Each process of the application is provided with statically
partitioned L2 slices by overriding the default caching
scheme with the local homing that maps each process’s data
on specific L2 slices using tmc_alloc_set_home (&alloc,
core_id) API call. Moreover, L2-replication is disabled
to allow only one process to access any given L2 cache
slice. For instance, each application comprising of an in-
secure and a secure process, 32 L2 slices are allocated to
each process alongside half of the (statically partitioned)
DRAM regions. The memory controllers are also purged
on every secure enclave entry/exit, which is done using
tmc_mem_fence_node (controller_id) call that writes
back all modified data to the DRAM.

When an application is deployed on the system, OPTI-
MUS halts the application and initiates its sampling phase,
where all processor resources (including the shared L2
slices) are first re-allocated to the secure kernel. To con-
struct the MPKI trend, the secure kernel systematically
allocates L2 cache slices to each process being profiled. To
re-map data structures (pages) to certain L2 cache slices,
the pages are first un-mapped from their current L2 home
cache slices using tmc_alloc_unmap (xaddr, size)
API call, followed by setting the new home for each page

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

H. OMAR et al.: OPTIMUS: A SECURITY-CENTRIC RESOURCE PARTITIONING SCHEME 7

using tmc_alloc_set_home (&alloc, core_id). Fi-
nally, each page is mapped to the new L2 home cache slice
using tmc_alloc_remap (&alloc, size, new_size)
call. This re-map procedure is performed by varying the L2
cache allocations to construct the desired MPKI trends of each
application process. Note, the prototype only contains private
TLBs, thus only shared L2 cache slices are re-mapped. Once
the sampling phase completes, the secure kernel performs the
estimation phase, where it executes the resource allocation
heuristic and deploys the computed allocation of L2 cache
slices for the application processes. Although the MPKI data
points can be sampled at any arbitrary granularity of shared
cache partitions, the Tile-Gx72™ limits this capability to a
per-core L2 cache slice granularity. Once these deterministic,
bounded reconfigurations are performed, OPTIMUS allows
the application to continue its execution.

4.1.2 Modeling IRONHIDE and OPTIMUS

To model IRONHIDE on Tilera®Tile-Gx72™, the se-
cure and insecure clusters of cores are formed by
pinning process’s threads to respective cores via
tmc_cpus_set_my_cpu (tid) call. The L2 cache slices
are allocated to their respective cluster using the local
homing scheme. The clusters’ accesses to their respec-
tive DRAM regions are realized by forwarding their
respective L2 cache miss traffic to dedicated memory
controllers via tmc_alloc_set_nodes_interleaved
(¢salloc, pos). Here, pos represents the bit-mask rep-
resentation of memory controllers to be selected, e.g., pos
= 0b0011 is used to dedicate M Cy and M (] to the secure
cluster, whereas pos = 0b1100 (MC5 and M (}3) for the
insecure cluster. Tile-Gx72™ implements deterministic X-Y
routing with 2-D mesh network topology, which is used to
isolate the network traffic by routing each packet to/from
the allocated clusters” memory resources.

The procedure similar to MI6 is followed when OPTIMUS
is integrated with IRONHIDE. However, the allocation of
core-level resources during the sampling phase involves not
only L2 cache re-mappings but also re-spawning of the
process threads and mapping them to the varying number
of cores to construct the MPKI trends. Moreover, OPTIMUS
performs the private L1 cache and TLB flush-and-invalidate
mechanism for the re-allocated cores at the end of the
estimation phase to ensure strong isolation.

4.2 Benchmarks & Execution Settings

Three different classes of user-level interactive applications
and two different classes of OS-level interactive applications
are evaluated in this work.

4.2.1 User-Level Interactive Applications

¢ Real-time Graph Processing: This interactive application
uses safety-critical graph algorithms to perform decision
analytics on the graph input generated by an insecure graph
generation algorithm [28] (GRAPH). The insecure GRAPH
generation process reads values at various time intervals
from distributed sensors, and generates temporal graph
inputs for California road network [29]. Three secure graph
algorithms [30] are considered, i.e., Single Source Shortest
Path (SSSP), PageRank (PR), and Triangle Counting (TC).

¢ Real-Time Perception and Mission Planning: This interac-
tive application deploys an insecure vision pipeline [31] (VI-
SION) that processes RAW images, and consequently feeds
them to several secure perception and mission planning algo-
rithms. The mission planning Artificial Bee Colony [32] (ABC)
algorithm is adopted from advanced driver-assistance system
with inputs from a real-world road scenario. Moreover, two
perception algorithms [33], ALEXNET and SqueezeNet (SQZ-
NET) process inputs communicated via the VISION pipeline.
e Query Encryption: This interactive application uses a
secure encryption algorithm from Advanced Encryption
Standard (AES) to encrypt database queries periodically
generated by an insecure QUERY generation algorithm [34].

Each user-level interactive application is executed with
500, 1K, 5K, 10K, and 50K inputs, and the reported
completion time is the average across these runs.

4.2.2 OS-Level Interactive Applications

A set of interactive applications are considered that require
frequent support from an untrusted OS for generating and
processing requests, such as fread, fcntl, close, and writev [35].

e Web Servers: Three web server applications:
LIGHTTPD [36] (version 1.4.41), NGINX [37], and
APACHE [38] (version 2.4.18) are considered. LIGHTTPD
fetches 1 million pages (each of 20K B size) through
100 concurrent client connections via the http_load tool,
whereas, the remaining two web server applications use the
ApacheBench tool to download 2 million web pages.

o Databases: MEMCACHED [39] (version 1.4.31) processes
2 million requests generated via the memtier benchmark. A
SET:GET ratio of 1:1 is employed.

Each user and OS level interactive application is first
invoked under the OPTIMUS security-centric resource par-
titioning sampling and estimation phases, followed by their
execution. For all considered applications, the interactions
across secure and insecure processes are carried out via the
shared inter-process communication buffer. In case of user-
level interactive applications, the secure process interacts
with the insecure process at an interactivity rate of ~400
secure process entry/exit events per second. However, the
average interactivity rate for OS interactive applications is
measured as ~220K secure process entry/exit events per
second, similar to the rate observed in HotCalls [35]. The
purging overheads for MI6 at every enclave entry/exit are
included in the completion time. The overheads associated
with sampling and estimation phases of OPTIMUS are also
added to the application’s completion time breakdown.

5 EVALUATION
5.1 OPTIMUS and the MI6 Architecture

Figure 6:(a) shows the completion time comparison of MI6
and OPTIMUS. The online OPTIMUS is evaluated using the
64-point MPKI trend generated in the sampling phase. The
prototype processor exposes 64 shared L2 cache slices for
reconfiguration. Hence 64-point MPKI trend represents a
fine grain configuration that enables highest accuracy, while
incurring the largest sampling overhead. This exposes an
overhead and accuracy tradeoff that is empirically evaluated
to reveal the 64-point MPKI trend as default (c.f. Figure 7).
An offline OPTIMUS scheme is also evaluated, where the

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX
= MI6 Secure Processor |l M6 + OPTIMUS (Offline) ## MI6 + OPTIMUS (64-point) 4 MI6 Secure Processor
Il Ssampling Overheads B Estimation Overheads A MI6 + OPTIMUS (Offline, Online)
—_ gy | 317 310 310 " [l
2 o T o B RS ")
£ 150 A H =i ElPaw|| 25 28 14 AT
=] H | =02 Gl | 2403 2 A
§ 100 3 .] (-1 (- PR - 2 0=t 00
AN - SR - | (- - K N -
350:“55”;52:55“?:,52555”:5;5255 281 \ AL
g 0 =07 =She S5 = ': =l” E”f H| ': Hl P EE | P f s s 0 @/
o]
A AR AR AR A A A= BRS. S. J & & W W X N g g g g
&S & & L 0‘33 SRR & RIS @Q\Q@ Sy +‘0¢, @O"
P FEFFP S S o £ L & S S FFF S S N &
\ \ \ \ o) \ \ \ \ N 1 A A \
SR P I A RGN ST S EFEE SR
R 2 S N & & S N
Pl N Pl N
Fig. 6. (a) Per-application completion time for MI6 and various OPTIMUS configurations. (b) Dynamic allocation of shared cache resources for MI16
and OPTIMUS.
= 140 B w [p=0.973 p=0.969_» p=0.948 p=0.939 »
2 120 el !/r/-r » 7 g o~ e . P
£100 w5 B-F-FE-FEAY 54 g o by y &
c 80 ////5.‘;.‘;::/ ' Lo % o Y 4 P
2 60 ve22 2222\ 230009 c | & & 3
] R RRE ;5 Y ;ﬁ 7z s ALEXNET| Lo® PR| [e”®" sQz-NET ABC
E' 40 % % 7 Z g g ? Z B AAL GGG B
20 A c
8 0 |4|5|é|/“./"./"./z.4 ¥# MI6 + OPTIMUS E p =0.962 p =0.904 e p=0.796 4 p=0.743 e
d & & L & L & i © ‘e ® H
c;\\A%Q»\io\er\éQO\éQO\éq o\eq \éq S :an.mlmlg Ozjerh:adz o e . /:,{ —‘."‘:.:. A
ng Y AR SN [l Estimation Overheads gég .’,, ..,. - - /: .o
& T ¥ sssP| Le# AES LGHTTPD| |, & ¢ TC
wv
Fig. 7. Completion time analysis of various online and offline configura- s ~ m| — — r
tions for MI6 with OPTIMUS. § p=0.841 ; p=0772 , | |P=0861 § | |p=0875 ¢
Faz S z':. ,’.':. e /: :
50 | = MI6 % OPTIMUS T e e e 5
e Pl] ’ °
.3 40 in & [g-7® viSON| 4,-° ' NGINX e-’® GRAPH| le® QUERY
; 30 E? ;r/ --Trendline Inverse MPKI as a Function of Shared Cache Slices
s 20 = =/
E 10 E? Eg Fig. 9. The scatter plot represents the Pearson’s correlation (p) between
= Ef E,j inverse shared cache MPKI and performance scaling at a given cache
0 == = slice and core count tuple. Higher the coefficient, higher is the correlation.
OL’7 O(—’7 O(—’7
\ \ \ 0 A .
R <\<§> e\é* o not overwhelm OPTIMUS. However, pre-computations for
*§<, 1;& S Lé?v the MPKI trends result in storage burden for the security
y& & monitor, which is undesirable. Overall, from Figure 6:(a),

Fig. 8. Per-application shared L2 cache miss rates for MI6 and 64-point
OPTIMUS.

MPKI trends for all application processes are pre-computed.
Therefore, no sampling phase is performed for offline OP-
TIMUS. The 64-point OPTIMUS improves the geometric
completion time by ~16% over the baseline MI6 secure
processor. On one hand, it incurs an average performance
overhead of <2% for performing the dynamic L2 cache
reconfiguration using the sampling and estimation phases.
On the other hand, dynamic L2 cache allocations match
the demands of the underlying application processes and
result in significant data access improvements. Overall, the
performance gains from improved data locality significantly
outweigh the overheads of OPTIMUS. The offline OPTIMUS
scheme filters the sampling phase from the overall OPTIMUS
overheads. It is shown to improve performance by ~17%
over the MI6 baseline, which is 1% better compared to the
64-point OPTIMUS. This shows that the contributions of the
sampling phase using fine grain 64-point MPKI trends do

it is clear that static partitioning of the shared L2 cache in
the baseline MI6 adversely impacts the cache utilization
across application processes. To visualize the distribution
of shared cache resources, Figure 6:(b) shows the number
of L2 cache slices that are given up (below 32), or gained
(above 32) by the security monitor for both baseline MI6 and
OPTIMUS optimized MI6. Note, a single marker is shown
for OPTIMUS offline and online schemes as they both result
in exactly similar resource distribution decisions. OPTIMUS
improves performance by load-balancing the shared L2 cache
capacity across application processes by re-allocating L2
cache slices at the application level granularity.

To further investigate the online OPTIMUS capabilities
and tradeoffs, Figure 7 shows the performance comparisons
of different estimation phase heuristic variants, i.e., exhaustive
search, and OPTIMUS with offline and online. Moreover, the
sampling phase tradeoffs are evaluated by comparing online
MPKI trends from 64-point to a coarse-grain 3-point sampling
granularity. The exhaustive search reports the best shared L2
cache allocations at the application granularity, and also
excludes the computation overheads of the search. Thus, it

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

H. OMAR et al.: OPTIMUS: A SECURITY-CENTRIC RESOURCE PARTITIONING SCHEME 9
= IRONHIDE without dynamic hardware isolation Illl IRONHIDE + OPTIMUS (Offline) 4 IRONHIDE w/o dynamic hardware isolation
7/ IRONHIDE + OPTIMUS (64-point) M Sampling Overheads [l Estimation Overheads| | A IRONHIDE + OPTIMUS (Offline, Online)

=120 v v 864 2 (b)
o = - - % 9 £ 56 -
g 100 = £ - = = e%|| B3 AN A
- 80 = E E = | | E_ & S 9 40 N \
c = =g7 = = | - =7 = o9 N 'S *_ /
o 60 E § E g E ;‘ E E H e o 32 0—0=—0—0——¢ \'0——10'—\0——0'—'01\
£ 40 =N 207 S 5. ENF ElF Ele BN Gds Glln 3 S 24 v \ SN
- E =lly Ellx = g =llz)2 = =y | o 9 16 oy A4’
g 20 =2 =2 ElNe NS 212 2l =H2 242 2l SN vy \ -k
E E B B E =N = B =z =l e Q /
o 0 = = = = = = = = = = o o 0 A
o #* O
g a A I & & oI I oI o & I I
%\oé %\oe qoé & & < 0@ “—) p"’ +‘o°’ ‘06’ {36 qoe %\Oé G}oé vQ\x \§~2~ \;@ o‘§ 99 ‘O‘—) ‘0‘9 %‘o"’
RPN QG‘“ Q~<§‘ & o (J<<9 L S & s RPN Q&%e‘* &0 && &S &
FFe S LS SR C SO TSR
N s s > N L S
X5 N Pl N

Fig. 10. (a) Per-application completion time for IRONHIDE and various OPTIMUS configurations. (b) Dynamic allocation of clusters’ core-level

resources for IRONHIDE and OPTIMUS.

serves as a baseline to understand the efficacy of various over-
heads from the sampling and estimation phases of OPTIMUS.
The offline OPTIMUS configuration performs ~2% worse in
terms of completion time when compared to the exhaustive
scheme. Relatively, the default 64-point online OPTIMUS
scheme is shown to degrade performance by ~1% compared
to the offline scheme. However, it does not require any pre-
computations, and computes the load-balanced shared L2
cache distributions with negligible runtime overheads.

Figure 7 also compares the completion time breakdowns
for various MPKI sampling points. As the sampling phase
captures lesser number of MPKI data points, its overheads
reduce. However, the overall completion time increases as
sampling granularity is varied from 64-point to 3-point. In fact,
the performance degrades from ~3% to ~16% when the 3-
point variant is considered rather than deploying the 64-point
variant compared to the exhaustive scheme. As the accuracy
of capturing the MPKI trends reduces, the estimation heuristic
end up making sub-optimal shared L2 cache allocation
decisions. OPTIMUS favors accurate sampling of MPKI
trends by utilizing the 64-point as its default scheme to
optimize the performance and accuracy tradeoft.

The data locality improvements from OPTIMUS are
evaluated by investigating the shared L2 cache miss rate
behaviors in Figure 8. MI6 with OPTIMUS advocates in
reducing the L2 cache miss rates by up to 2x compared
to the baseline MI6. The <TC, GRAPH> application acts
as an outlier, where the MI6 static allocation of equally
distributing L2 cache slices results in a slightly better L2
miss rates compared to OPTIMUS. The TC process does
not show much L2 cache locality as it traverses the graph
once to compute the number of triangles passing through
each vertex. Thus, it allocates only two L2 cache slices under
OPTIMUS, as shown in Figure 6:(b). The remaining L2 cache
slices are allocated to the GRAPH process, which brings
insignificant improvements in miss rates due to its small
working set. Even with slightly worse L2 cache miss rates, the
<TC, GRAPH> application ends up with similar completion
times for both MI6 and OPTIMUS, as seen in Figure 6:(a).

Why utilize the MPKI trends as a metric to capture
the performance trends of an application? Figure 9 shows
the pearson’s correlation coefficient (p) [40] between the
normalized shared cache MPKI and performance scaling
trends of various application processes. These performance

scaling trends are obtained as a function of core counts;
whereas, the MPKI trends are obtained as a function of
shared L2 cache slices for MI6. A geometric mean correlation
value of p = 0.901 is observed across all considered secure
and insecure processes. This high correlation shows that
MPKI is indeed a strong metric for computing load-balanced
shared cache allocations under OPTIMUS. Certain processes
either have a small working set (i.e., VISION, GRAPH,
and QUERY), or do not exhibit significant shared L2 cache
locality (i.e., TC, LIGHTTPD, and NIGINX). For these six
processes, the inverse shared cache MPKI trends are observed
to decrease as more L2 cache slices are allocated to them.
However, their performance continues to scale due to high
core-level parallelism. The performance scaling exceptions
are LIGHTTPD and NGINX that do not scale beyond 16
and 24 threads respectively. For these reasons, the pearson’s
correlation coefficient is relatively lower for these six pro-
cesses compared to other processes that exhibit near perfect
correlations.

5.2 OPTIMUS and the IRONHIDE Architecture

Figure 10:(a) shows the completion time comparison of
IRONHIDE against OPTIMUS. The baseline IRONHIDE
is configured without the support for dynamic hardware
isolation, where core-level resources (core pipeline, caches,
TLBs and network routers) are statically distributed propor-
tionally among the secure and insecure clusters. However,
the offline OPTIMUS implements the default IRONHIDE
scheme [14] that enables dynamic reconfiguration. Here,
OPTIMUS avoids the sampling phase by pre-computing the
MPKI trends of all application processes. The estimation
phase heuristic computations incur runtime overheads to
determine the allocation of core-level cluster resources. The
online OPTIMUS is evaluated using the 64-point MPKI trends
generated in the sampling phase. The 64-point MPKI trend
represents a fine grain configuration that enables highest
accuracy, while incurring the largest sampling overhead. It
improves the geometric mean completion time by ~24%
over the baseline IRONHIDE that is constrained by its static
allocation of cluster resources. On one hand, it incurs an
average performance overhead of <2% for performing the
dynamic core-level resource configuration using the sampling
and estimation phases. On the other hand, dynamic core-level

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

10
- 100
3 p— i
E 60 -7 -E B-F-B B ! AN
5 5T TN el
S 40 AN VR AR AN
S Wil 2 %727 777 4| \anenee
3 1245224742
S 0 o 7/ IRONHIDE + OPTIMUS
,\\&(’ sto\é& O\é& O\é\ O\é& O\é\ O\é& O\é\ B sampling Overheads
Y 0<<<(AR S S S W R B Estimation Overheads
‘\g\v A AR OIS A A
<

Fig. 11. Completion time analysis of various online and offline configura-
tions for IRONHIDE with OPTIMUS.

allocations match the demands of the underlying applica-
tion processes and result in improved parallelism. Overall,
these performance gains from dynamic resource allocations
outweigh the overheads of OPTIMUS. The offline OPTIMUS
scheme burdens the security kernel to pre-compute and store
the MPKI trends of all processes. However, it benefits from
avoiding the overheads of the sampling phase. It is shown to
improve performance by ~26% over the baseline IRONHIDE,
which is 2% better compared to the 64-point OPTIMUS.
This shows that the contributions of the sampling phase
using fine grain 64-point MPKI trends do not overwhelm
OPTIMUS. Overall, from Figure 10:(a), it is clear that static
partitioning of the core-level resources across the IRONHIDE
clusters of cores adversely impacts core-level parallelism
across application processes. To visualize the distribution of
core-level resources, Figure 10:(b) shows the number of cores
given up (below 32), or gained (above 32) by the security
monitor. OPTIMUS improves performance by load-balancing
the allocation of core-level resources to the two IRONHIDE
clusters at the application level granularity.

To further investigate the online OPTIMUS capabilities
and tradeoffs, Figure 11 shows the performance comparisons
of different estimation phase heuristic variants, i.e., exhaustive
search, and OPTIMUS with offline and online. Moreover, the
sampling phase tradeoffs are evaluated by comparing online
MPKI trends from 64-point to a coarse-grain 3-point sampling
granularity. The exhaustive search reports the best core-level
cluster resource allocations at the application granularity,
and also excludes the computation overheads of the search.
Thus, it serves as a baseline to understand the efficacy of
various overheads from the sampling and estimation phases
of OPTIMUS. When compared to the exhaustive scheme, the
offline and 64-point online OPTIMUS configurations perform
~4% and ~6% worse, respectively. The offline OPTIMUS
configuration performs ~4% worse in terms of completion
time when compared to the exhaustive scheme. Relatively,
the default 64-point online OPTIMUS scheme is shown to
degrade performance by ~6%, compared to the offline scheme.
However, the 64-point scheme does not require any pre-
computations, and computes the load-balanced core-level
resource distributions with negligible runtime overheads.

Figure 11 also compares the completion time breakdowns
for various MPKI sampling points. As the sampling phase
captures lesser number of MPKI data points, its overheads
reduce. However, the overall completion time increases as
sampling granularity is varied from 64-point to 3-point. In fact,
the performance degrades from ~6% to ~17.2% when the 3-
point variant is considered rather than deploying the 64-point

IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX

2 OPTIMUS

= IRONHIDE (w/o DHI)
:
n = E:"
'§10 = E?Eﬁggg =_/_ _,=7
o 598 = E¥ESE/EVEYEsElSn Sl E
- O |=Z|=?|=4|=£|=9‘|=4|=4|=é|=‘4|=4|=é
. 503 b
% 40 3= —
33 _ = =E = .- =
a 20:=,’/= =E =E = - = =§=?=7=2:
S 03292 SySpE,59E5 5575057
N 10484 EV SV S/ E4 S/ Ep S S0 5% EY
- 0 E=¢.=/".=£.=¢.=4.=é.=‘4.=/‘:.=2.=é.=/‘:
V¥V JF ¥V X N XY 6 &S &
QO QO Q Q Q & O7 O° O O
Ae&AsoAﬁq&l&\l&:o‘) N S
Q/‘ %\ %\ %%\ Q 3 «\ %‘ 0% L%
y%s&,% £k v&c N s
A L D

Fig. 12. Per-application (a) L1 cache and (b) L2 cache miss rates for
IRONHIDE (w/o dynamic hardware isolation) and 64-point OPTIMUS.

|— Inverse MPKI === Performance Scaling

—~ 5 . 64

¢ 1p=0.991 1p=0.946 56 2
_84; Z a8, 8
273 77 F PS fech-A
S © E 7 E P o ©

i~] E ,’ 24|: 9]
Q 1 u (]
e 21] 16 o 2
= ALEXNET 1.2 sssPE 8 £ g
o 3 1 T T T T T T 1 s :5
T -
EE . 60 8
£S5 31p=0863 1p=0.811 56 £ o
95 4] ; 48 £ 5
29] 40 o @
g =34 E 3‘21 T =
ET e LIGHTTPD g

€2 3 -4 16 & E

2,3 wsion === 2

1 16 32 48 64 1 16 32 48 64
Varying Core Counts

Fig. 13. Normalized shared cache MPKI and performance scaling trends
as a function of varying core counts.

variant compared to the exhaustive scheme. As the accuracy of
capturing the MPKI trends reduces, the estimation heuristic
results in making sub-optimal allocation of cores per cluster.
OPTIMUS favors accurate sampling of MPKI trends by
utilizing the 64-point as its default scheme to optimize the
performance and accuracy tradeoff.

The core-level locality improvements from OPTIMUS are
evaluated by investigating the private L1 and shared L2
cache miss rate behaviors in Figure 12. IRONHIDE with
OPTIMUS dynamically adjusts the core-level resources to
load-balance the cache resource utilization at the application
level granularity. These benefits are greatest when the cache
locality variations are imbalanced across the two clusters,
as seen with <ALEXNET, VISION> application. However,
when application processes have low data locality and/or
working set size (e.g., <TC, GRAPH>), the cache behaviors
do not improve over static allocation of resources.

Figure 13 shows the normalized inverse shared cache
MPKI trends (left y-axis) and normalized performance
scaling variations (right y-axis) as a function of core counts

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

H. OMAR et al.: OPTIMUS: A SECURITY-CENTRIC RESOURCE PARTITIONING SCHEME 11

(x-axis) for a set of representative processes. The individual
pearson’s correlation coefficients (p) [40] are also reported.
Similar to MI6, high correlation is observed between the
inverse MPKI trends and performance scaling variations.
However, VISION and LIGHTTPD processes show relatively
lower pearson correlation. VISION has a small working set
that easily fits in eight shared L2 cache slices. However, it
exhibits high core-level parallelism and keeps scaling beyond
8 cores. LIGHTTPD exhibits low shared cache locality due to
its random request generation. Moreover, it does not show
performance scaling beyond a small number of cores. Overall,
the geometric mean correlation coefficient value of 0.9 is
observed for all processes, which shows that MPKI trends are
a good metric to predict the allocation of core-level resources
in IRONHIDE.

6 RELATED WORK

Academic works, Bastion [41] and Iso-X [42] reduce the
trusted computing base (TCB) to a secure processor chip. Bas-
tion relies on a trusted hypervisor to ensure confidentiality
and integrity for security-critical software modules, whereas
Iso-X provides fine-grain isolation at the memory-page level
and enables flexible allocation of memory to trusted and
untrusted software modules. Industry has developed secure
processor architectures to secure arbitrary computations,
such as Intel’s SGX [10], AMD’s Secure Encrypted Virtu-
alization (SEV) [11], and ARM’s Trustzone [12]. AMD’s SEV
represents a virtualization security paradigm, where it inte-
grates main memory encryption capabilities with the existing
virtualization technologies to support encrypted virtual ma-
chines. The trusted-execution environment (TEE) of ARM’s
TrustZone, called the secure world, provides protection for
trusted hardware and software resources. Theses resources
are enforced to be inaccessible to the untrusted OS, or normal
world, via hardware-based mechanisms. Intel’s SGX enables
on-chip enclaves that isolate processes from the untrusted
OS via key management and memory address partitioning.
However, SGX has been shown to be vulnerable against
cache-timing and control flow speculation attacks [15], [16].
Sanctum [43] combines minimal hardware modifications
with a trusted software component to offer an isolated and
trusted execution environment similar to Intel’s SGX.
Recent secure processor works [13], [14], [44] extend the
idea of enclaves to alleviate microarchitecture state attacks.
For instance, DAWG [44] utilizes protection (or security)
domains to isolate secure data from malicious insecure
applications. MI6 [13] extends Sanctum by introducing the
concept of strong isolation, which requires purging of the
microarchitecture state of time-shared resources at every
secure enclave entry/exit, and static partitioning of the last-
level cache and DRAM regions across processes. IRONHIDE
architecture [14] spatially partitions system resources to
form strongly isolated secure and insecure core clusters,
where processes temporally execute within their respective
clusters. It pins the secure process(es) to the secure cluster,
and incurs no secure enclave entry/exit purging overheads.
The main contribution of the proposed OPTIMUS scheme
is to mitigate the performance overheads of the MI6 and
IRONHIDE architectures by introducing a security-centric
dynamic partitioning of shared hardware resources. OPTI-
MUS bounds information leakage by limiting the resource

reconfiguration events to a deterministic controllable factor
for each application invocation.

7 CONCLUSION

State-of-the-art MI6 secure processor architecture employs
the idea of strong isolation to prevent microarchitecture
state vulnerabilities. However, it suffers from performance
degradation due to static partitioning of shared last-level
cache across the secure enclave and insecure processes,
and microarchitecture state purging of private resources on
every secure enclave entry and exit. The IRONHIDE secure
processor addresses the performance shortcomings of MI6
by forming two spatially isolated clusters of cores, where
these clusters are load-balanced for performance via a core
reallocation heuristic. However, the heuristic requires a priori
knowledge (pre-computation) of the underlying processes
to proportionally distribute resources across clusters, which
essentially burdens the security kernel of IRONHIDE. This
paper proposes OPTIMUS, a novel security-centric resource
partitioning scheme that reconfigures hardware resources
dynamically (without requiring pre-computations), while
keeping strong isolation guarantees of MI6 and IRONHIDE
architectures intact. OPTIMUS is prototyped on a real 72-core
multicore processor. For a set of user and OS-level interac-
tive applications, it is shown to improve the performance
for both MI6 and IRONHIDE architectures. Certainly, the
performance implications of assuring strong isolation using
OPTIMUS are expected to vary with different core types,
cache-hierarchy setups, and on-chip network capabilities.
Evaluating OPTIMUS for different processor architectures
targeting specific market segments is left as part of the future
work.

REFERENCES

[1] E Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on
Security and Privacy, pp. 605-622, 2015.

[2]]. Bonneau and I. Mironov, “Cache-collision timing attacks against
aes,” in Proceedings of the 8th International Conference on Cryptographic
Hardware and Embedded Systems, CHES06, (Berlin, Heidelberg),
p- 201215, Springer-Verlag, 2006.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S.Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” meltdownattack.com, 2018.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
USENIX Security Symposium), pp. 973-990, Aug. 2018.

[5] M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in Proceedings of the 46th International Symposium on Computer
Architecture, ISCA 19, (New York, NY, USA), p. 360371, Association
for Computing Machinery, 2019.

[6] F Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro,
vol. 36, p. 816, Sept. 2016.

[7] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An undo approach
to safe speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 52, (New York,
NY, USA), p. 7386, Association for Computing Machinery, 2019.

[8] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible
in the cache hierarchy,” in IEEE/ACM International Symposium on
Microarchitecture, MICRO-51, p. 428441, IEEE Press, 2018.

[91 J. Yu, M. Yan, A. Khyzha, A. Morrison,]. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protec-
tion for speculatively accessed data,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 52, (New York, NY, USA), p. 954968, Association for
Computing Machinery, 2019.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2996021, IEEE

Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS 2020, VOL. XX, NO. XX, XX XXXX
[10] F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, multicores,” in 2015 IEEE International Symposium on Workload
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions Characterization, pp. 44-55, 2015.
and software model for isolated execution.,” in HASP@ ISCA, p. 10, [31] M. Buckler, S. Jayasuriya, and A. Sampson, “Reconfiguring the
2013. imaging pipeline for computer vision,” in 2017 IEEE International
[11] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption.,” Conference on Computer Vision (ICCV), pp. 975-984, 2017.
AMD white paper, 2016. [32] Y. Xue,]. Jiang, B. Zhao, and T. Ma, “A self-adaptive artificial bee
[12] “Arm security technology building a secure system using trustzone colony algorithm for global optimization,” Soft Computing, 2018.
technology.” ARM white paper, 2009. [33] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
[13] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. De- A large-scale hierarchical image database,” in 2009 IEEE Conference
vadas, “Mi6: Secure enclaves in a speculative out-of-order pro- on Computer Vision and Pattern Recognition, pp. 248-255, 2009.
cessor,” in Proceedings of the 52nd Annual IEEE/ACM International [34] B. E. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
Symposium on Microarchitecture, MICRO 52, (New York, NY, USA), “Benchmarking cloud serving systems with ycsb,” in Proceedings of
p- 4256, Association for Computing Machinery, 2019. the 1st ACM Symposium on Cloud Computing, SoCC 10, (New York,
[14] H.Omar and O. Khan, “Ironhide: A secure multicore that efficiently NY, USA), p. 143154, Association for Computing Machinery, 2010.
mitigates microarchitecture state attacks for interactive applica- [35] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
tions,” in 2020 IEEE International Symposium on High Performance hotcalls: A fast interface for sgx secure enclaves,” vol. 45, p. 8193,
Computer Architecture (HPCA), pp. 111-122, 2020. Association for Computing Machinery, June 2017.
[15] J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller, “Cache attacks ~ [36] Jan, “Lighttpd: An open-source web server optimized for speed-
on intel sgx,” in Proceedings of the 10th European Workshop on critical environments,” https://www.lighttpd.net/.
Systems Security, EuroSec17, (New York, NY, USA), Association [37] “Nginx web-server application,” https://www.nginx.com/.
for Computing Machinery, 2017. [38] “Apache http server project,” https://httpd.apache.org/.
[16] G.Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: ~ [39] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
Stealing intel secrets from sgx enclaves via speculative execution,” “Workload analysis of a large-scale key-value store,” SIGMETRICS
in 2019 IEEE European Symposium on Security and Privacy (EuroS P), Perform. Eval. Rev., vol. 40, pp. 53-64, June 2012.
pp. 142-157, 2019. [40] W. Kirch, ed., Pearson’s Correlation Coefficient, pp. 1090-1091. Dor-
[17] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow: A drecht: Springer Netherlands, 2008.
processor architecture for nonmalleable, timing-safe information [41] D. Champagne and R. B. Lee, “Scalable architectural support
flow security,” in Proceedings of the 2018 ACM SIGSAC Conference for trusted software,” in IEEE International Symposium on High-
on Computer and Communications Security, CCS 18, (New York, NY, Performance Computer Architecture, pp. 1-12, 2010.
USA), pp. 1583-1600, ACM, 2018. [42] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
[18] C.W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas, and R. Riley, “Iso-x: A flexible architecture for hardware-managed
“Suppressing the oblivious ram timing channel while making isolated execution,” in 2014 47th Annual IEEE/ACM International
information leakage and program efficiency trade-offs,” in 2014 Symposium on Microarchitecture, pp. 190-202, 2014.
IEEE 20th International Symposium on High Performance Computer [43] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
Architecture (HPCA), pp. 213224, 2014. ware extensions for strong software isolation,” in USENIX, 2016.
[19] S. K. Haider, O. Khan, and M. van Dijk, “Revisiting definitional = [44] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
foundations of oblivious RAM for secure processor implementa- “Dawg: A defense against cache timing attacks in speculative
tions,” CoRR, vol. abs/1706.03852, 2017. execution processors,” in 2018 51st Annual IEEE/ACM International
[20] T. M. John, S. K. Haider, H. Omar, and M. Van Dijk, “Connecting Symposium on Microarchitecture (MICRO), pp. 974-987, 2018.
the dots: Privacy leakage via write-access patterns to the main
memory,” IEEE Transactions on Dependable and Secure Computing, Hamza Omar is a Ph.D. student in the depart-
pp- 1-1, 2018. ment of Electrical & Computer Engineering at the
[21] Y. Wang and G. E. Suh, “Efficient timing channel protection for on- University of Connecticut (UConn). His research
chip networks,” in 2012 IEEE/ACM Sixth International Symposium interests broadly cover computer architecture and
on Networks-on-Chip, pp. 142-151, 2012. architectural support for security and resiliency
[22] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, in multicore processors. Hamza interned at NXP
“Caches and hash trees for efficient memory integrity verification,” Semiconductors during Summer 2018. Prior to
in The Ninth International Symposium on High-Performance Computer joining UConn in 2015, he did his Bachelors in
Architecture, 2003. HPCA-9 2003. Proceedings., pp. 295-306, 2003. Electrical Engineering from University of Engi-
[23] H.Omar, S. K. Haider, L. Ren, M. van Dijk, and O. Khan, “Breaking neering & Technology, Lahore, Pakistan.
the oblivious-ram bandwidth wall,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD), pp. 115-122, 2018.
[24] V. Costan and S. Devadas, “Intel sgx explained.” Cryptology ePrint Brandon D’Agostino is a senior undergraduate
Archive, Report 2016/086, 2016. https:/ /eprint.iacr.org/2016/086. student in the department of Electrical & Com-
[25] H. Omar, H. Dogan, B. Kahne, and O. Khan, “Multicore resource puter Engineering at the University of Connecti-
isolation for deterministic, resilient and secure concurrent execution cut. He worked on this project as a National Sci-
of safety-critical applications,” IEEE Computer Architecture Letters, ence Foundation Research Experiences for Un-
vol. 17, pp. 230-234, July 2018. dergraduates student. His research interests in-
[26] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and clude computer security, reconfigurable hardware,
C. W. Fletcher, “Microscope: Enabling microarchitectural replay and artificial intelligence. He develops high-end
attacks,” in Proceedings of the 46th International Symposium on audio products in his father's company, and offers
Computer Architecture, ISCA 19, (New York, NY, USA), p. 318331, contract-based embedded system services.
Association for Computing Machinery, 2019.
[27] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On- Omer Khan is the Castleman Associate Profes-
chip interconnection architecture of the tile processor,” IEEE Micro, sor in the Department of Electrical & Computer
vol. 27, p. 1531, Sept. 2007. Engineering at the University of Connecticut.
[28] U. Demiryurek, B. Pan, F. Banaei-Kashani, and C. Shahabi, “To- Prior to joining UConn, he was a Postdoctoral
wards modeling the traffic data on road networks,” in Proceedings Research Scientist at the Massachusetts Institute
of the Second International Workshop on Computational Transportation of Technology. His research interests include
Science, INCTS 09, (New York, NY, USA), p. 1318, Association for developing cross-layer methods to improve the
Computing Machinery, 2009. performance scalability and security of multicore
[29] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, eds., The Shortest processor architectures. Khan received a PhD
Path Problem, DIMACS workshop, 2009. in Electrical and Computer Engineering from the
[30] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark University of Massachusetts Amherst. He is a

suite for multithreaded graph algorithms executing on futuristic genjor member of IEEE and a member of ACM.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 20,2020 at 12:11:48 UTC from IEEE Xplore. Restrictions apply.

