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ABSTRACT

Our simulation-based experiments are aimed to demon-
strate a use case on the feasibility of fulfillment of global
energy demand by primarily relying on solar energy
through the integration of a longitudinally-distributed
grid. These experiments demonstrate the availability of
simulation technologies, good approximation models of
grid components, and data for simulation. We also exper-
imented with integrating different tools to create realistic
simulations as we are currently developing a detailed tool-
chain for experimentation. These experiments consist of
a network of model houses at different locations in the
world, each producing and consuming only solar energy.
The model includes houses, various appliances, appliance
usage schedules, regional weather information, floor area,
HVAC systems, population, number of houses in the region,
and other parameters to imitate a real-world scenario.
Data gathered from the power system simulation is used
to develop optimization models to find the optimal solar
panel area required at the different locations to satisfy
energy demands in different scenarios.
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I. INTRODUCTION

Solar power generation from photo-voltaic (PV) cells has
been rapidly growing, with global PV capacity steadily in-
creasing over past years. Ongoing decreases in the cost of solar
panel production, as well as increases in solar panel efficiency,
provide additional incentives for energy producers to shift
toward PV technologies [1]. It seems reasonable that with a
growing global population, depleting non-renewable resources,
and availability of solar energy (104 times of current global
energy needs), future generations will rely heavily on solar
energy [2] [3]. While solar power systems offer a compelling
renewable source of energy, they suffer from reliability issues
stemming from the intermittent availability of solar resources.
In particular, solar production is limited to daylight hours, and
local meteorological and geographic factors affect production.
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Users of such a system rely on energy storage technologies
or existing grid infrastructure to meet part of their demand.
Transitioning to solar energy requires a reliable solar system
that continuously balances energy production with consump-
tion. High voltage DC (HVDC) and Ultra-High voltage DC
(UHVDC) transmission systems can enable transcontinental
exchange of power between distributed participant regions [4].
Extending PV systems to a global, longitudinally-distributed
(LD) scale stabilizes solar energy availability and reduces the
need for energy storage and non-renewable energy production.
An optimized solar power grid system ensures that energy
production closely matches consumption, thereby minimizing
solar installation area, maintenance, and operational costs,
while maintaining reliability. Modeling, simulation, and opti-
mization of longitudinally-distributed solar system can provide
insights into the effects of weather, human consumption pat-
terns, solar panel area requirements, grid integration models,
and integrated systems’ characteristics.

Global power models are trending toward grid integration.
For example, energy providers in Europe and North Africa aim
to integrate a super grid that can harvest wind energy from the
North and Baltic Seas and solar energy from the North African
region. In Asia, China, South Korea, and Japan are considering
a super grid to encourage more renewable energy production.
Such grid integration and other small networks provide the
groundwork for implementing a global super grid [5]. How-
ever, many questions must first be answered, such as ”Can
renewable production adequately match energy demands?”,
”How should renewable resources be integrated?”,”How do
user consumption patterns affect the grid?” and ”How can
weather fluctuations be accounted for to ensure production
stability?”

This paper presents a tripartite experimental procedure for
the modeling, simulation, and optimization of an LD solar
system. The approach entails gathering the scattered solar
energy distributed across locations (assuming availability of
power transportation facilities), modeling realistic houses, so-
lar panels, and usage schedules of appliances, as well as using
weather data to derive consumption and production patterns.
The rest of the paper is organized as follows: Section II
provides an overview of related literature. Section III provides
a description of the tools, models, and methods used for
experiments. Section IV presents simulation and optimiza-
tion results. Section V discusses the experiment’s limitations,
technical considerations, and other observations. Section VI
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concludes the paper and suggests directions for future work.

II. RELATED WORK

An interconnected global energy grid, with power gener-
ation localized in remote solar and wind plants, has been
suggested as a viable option to reduce storage requirements
[6]. A control technique for switching between primary and
secondary energy sources was described using a hybrid energy
network which primarily relies on wind and solar sources, with
a hydrogen fuel cell as an auxiliary source [7]. Optimization
of the capacity of distributed energy resources in a renewable
energy-based grid has been presented using a sizing model to
determine optimal battery size for grid stabilization [8]. An
international grid which satisfied base load power demands
using distributed wind farm generation was described in
[9], where the problem of intermittent availability of wind
resources was considered, and an interconnected, distributed
production scheme was offered as a viable solution to the
grid stability problem. A very large-scale PV system, where
production is centralized around a desert area with high solar
irradiance, was evaluated for economic costs, and technologies
were proposed that could increase production and distribution
efficiency [10]. Optimization of both solar and wind produc-
tion using meteorological data was presented by developing a
linear optimization model for a mostly renewable energy grid
at both the European and global scales [11]. Integration of
standalone hybrid renewable resources and their optimization
was also studied in [12].

III. MODELING AND EXPERIMENT FLOW

The overall experimental workflow, shown in Figure 1,
consists of three major sections: modeling, simulation, and
optimization. Other aspects of the workflow included data
pre- and post-processing. The experiment was modeled in two
stages. First, the grid equipment (e.g., house, solar panels,
and appliances for each location) and distribution grid were
modeled. The model was simulated using a power system
simulator and energy consumed by households. Solar energy
produced by panels based on weather data at each time-step
was logged. Second, the optimization model was designed
based on the model of grid integration. In the optimization
step, data produced by the power system simulation was
utilized. The experiment assumed the availability of a trans-
mission grid and that its losses were negligible.

Fig. 1. Experimental workflow

A. Longitudinally-Distributed Global Network

Ten locations, shown in Figure 2, were selected for ex-
perimentation of a longitudinal global grid. Availability of
grid connectivity at these locations was assumed. Selection of
these locations was based on constraints that the sun should
always shine at some location in network, thereby fulfilling
all participants’ energy needs. Selected locations were offset
by approximately two time zones.

Fig. 2. Map of experimental locations

B. Grid Model

Modeling of each location was generalized and represented
by a model house with appliances. These houses were con-
nected to form a small grid, but still used weather data from
different locations and schedules. Each location also had a
unitized solar panel attached to it. The model house had
residential heating, ventilating, and air-conditioning (HVAC)
systems, where temperatures could be specified as a sched-
ule for any day. The HVAC system operated based on the
thermostat schedule and weather of that location. Thermal
performance of house was configured by the glazing effect,
heat loss coefficient, interior mass surface conductance, and
other factors. Heat gains from solar radiation and appliances
were combined with those from the heating/cooling system to
form the heat gains to the air. Houses also had a water heating
system and a ZIP load. The ZIP load model, which consisted
of constant impedance, constant current, and constant power
components, represented the total appliance load. We defined
the size of the water heater unit and ZIP-equivalent loads of
all other appliances. Power consumed by the HVAC systems,
water heaters, and ZIP loads depended on appliance schedules
given as an input for 24 hours. House power consumption
also depended on the weather (e.g., air conditioners take more
time and energy to cool the house in the summer than in
the winter). Each location also had solar panels that produced
power based on weather (e.g., solar radiation incident on solar
panel and ambient temperature) and solar panel configurations
(e.g., solar panel efficiency, material type, and tilt angle). We
approximated these to real-world equipment parameters.

The grid was modeled using a distribution system modeling
tool called the GridLAB-D Design studio, which is a web-
based graphical modeling environment built using WebGME
(Web-based Generic Modeling Environment) [13] [14] [15].
WebGME is a web-based meta-modeling environment that
enables creation of Domain-Specific Modeling Languages
(DSMLs) and provides flexibility through its support for
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plugins that interpret the models and synthesize application
artifacts, as well as through its programmable graphical user
interface. The modeling environment utilizes Pacific North-
west National Laboratory’s GridLAB-D simulator in the back-
end [16]. A section of the model in GridLAB-D design studio
environment is shown in Figure 3.

Fig. 3. Partial grid model showing three residential modules

C. Weather Data and Schedules

Weather data for each location were obtained from an open-
source repository [17], and then converted to the appropriate
Typical Meteorological Year (TMY3) file format [18] using
a custom python script. A schedule consisted of values of
associated variable parameters such as heating set point and
water usage pattern, load on-off timing were created for each
residential module to reflect real-life usage patterns.

D. Model Transformation and Simulation

The designed model was transformed by a model trans-
formation tool in the GridLAB-D design studio, generating
a script compatible with GridLAB-D [13]. A recorder object
logged (as .CSV files) the relevant production and consump-
tion data during a 24-hour simulation with a time-step of 1
hour, from 01/02/2009, 0:00 hours to 01/02/2009, 24:00 hours.
Power consumption between simulation steps was assumed to
be constant.

E. Integration and Optimization Model

The output of the GridLAB-D simulation was the power
consumption of the model houses at each location based on
usage schedules and solar energy generated by the unitized
panels. The consumption and production of each house was
scaled by the number of houses at each location. For locations
where information regarding quantity of houses was available,
we used those data to scale consumption/production. For other
locations, we used a house quantity equal to one-third of the
population at those locations (a factor derived from empirically
observed behavior at various locations).

The optimization problem was modeled and populated using
the total consumption and unitized scaled solar production

data. In experiment 1, we assumed that solar panels could be
located at any of the ten locations. We had the constraint that
the total area of panels across the grid should be distributed
such that the total solar energy produced by solar panels would
always meet the energy demand for all locations over the 24-
hour simulation period. The goal of the optimization was to
meet all regional energy needs while minimizing the total solar
panel area required.

Given n regions R1,. . . ,Rn with consumption
C1,1,. . . ,C24,n and unitized solar productions P1,1,. . . ,P24,n.
Let A1,. . . ,An be the corresponding solar area scale factors.
In our experiments, we used n=10. The consumption and
production is represented by 2 − D matrix where the first
subscript represents each hour of the simulation and the
second subscript represents the index of a location. An
algebraic representation of the optimization problem can be
framed as follows:


P1,1 . . . P1,n

P2,1 . . . P2,n

...
...

...
P24,1 . . . P24,n

 ∗


A1

A2

...
An

 ≥


Σ(C1,1 + · · · + C1,n)
Σ(C2,1 + · · · + C2,n)

...
Σ(C24,1 + · · · + C24,n)




Σ(P1,1 + · · · + P24,1) ∗A1

Σ(P1,2 + . . . + P24,2) ∗A2

...
Σ(P1,n + . . . + P24,n) ∗An

 ≥ 0.4∗


Σ(C1,1 + · · · + C24,1)
Σ(C1,2 + · · · + C24,2)

...
Σ(C1,n + · · · + C24,n)




Σ(P1,1 + · · · + P24,1) ∗A1

Σ(P1,2 + . . . + P24,2) ∗A2

...
Σ(P1,n + . . . + P24,n) ∗An

 ≤ 4∗


Σ(C1,1 + · · · + C24,1)
Σ(C1,2 + · · · + C24,2)

...
Σ(C1,n + · · · + C24,n)



A1

A2

...
An

 ≥ 0

This optimization model was created using the AMPL
toolkit [19]. Scaled consumption and production data from
each region at each time-step was provided to the solver, which
then generated a solution. This solution was then validated
by ensuring that the optimized production always exceeded
aggregate consumption across the simulation (Figure 4).

In other three experiments, we configured each location
to produce a minimum of 40% (experiment 2), a maximum
of 400% (experiment 3), and 40-400% (experiment 4) of its
energy consumption, respectively. Additional constraints were
added in AMPL for these cases (see Table I for results).

For all experiments, the production of solar power was
always higher than consumption by the households. This may
be unwanted, so excess power produced by the solar panel
can be either drawn from and used for another purpose, or a
control mechanism can be deployed to control the active solar
areas by aligning net production and consumption.
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Location No con-
straint > 40% < 400%

> 40%
and
< 400%

Los
Angeles 36.78 34 66.39 60.08

Brası́lia 58.10 57.63 53.32 53.45
Dakar 0 4.41 0 4.41
London 0 27.04 0 27.04
Nairobi 23.85 5.08 26.38 7.31
Muscat 0 6.59 0 6.60
Almaty 0 27.35 0 27.35
Singapore 4.19 11.99 15.06 21.57
Sydney 66.90 64.27 44.82 44.82
Auckland 0 5.44 0 5.44

TABLE I. Optimized solar area scale factors by regions
under different solar production capacity constraints

IV. EXPERIMENTAL RESULTS

The experiment outcome encompassed two results : pro-
duction and consumption data from the power simulation
and panel area scale factors from the optimization. These
data from the two experiments are discussed below.

In experiment 1, the optimization problem was to find
the minimum area at different locations to meet total energy
consumption needs at all locations through solar energy for 24
hours, sampled at a one hour time step. There was no lower
or upper limit on production capacity of each location, but the
cumulative sum of production was required to be greater than
cumulative consumption. In experiment 2, we removed this
flexibility by adding another constraint on the amount of solar
production at each location, which was required to be 40% of
its consumption. Optimization results of both experiments are
shown in Table I.

The output of the optimization was the scale factor. The
scale factor was multiplied by the unitized area of a solar
panel to obtain the solar panel area required at each location.
The optimization result of experiment 1 indicates that some
of the locations in the model required zero solar area. This is
due to the overlapping of solar energy production at different
locations. In experiment 2, solar installation at each location
for producing 40% of that location’s total consumption was
required. Figure 4 shows the energy consumption and pro-
duction pattern during the 24-hour period for experiment 1
(refer to table II for data). The total energy produced in the
network for this duration was always greater than the total
energy consumption. During some parts of the day, production
was significantly greater than consumption.

Fig. 4. Total consumption and production (Experiment 1)

Hrs Consumption
(In MW)

Production(In
MW)

Production-
Consumption

1 49813 66449 16636
2 29990 53683 23693
3 43568 47961 4393
4 45010 45010 0
5 32106 32110 4
6 25547 38166 12618
7 36009 51664 15655
8 37574 47928 10354
9 57347 58913 1566
10 46638 46661 23
11 45316 49624 4309
12 38726 52790 14063
13 31021 57217 26196
14 35586 50006 14420
15 26953 44652 17699
16 48428 48431 3
17 50240 53595 3355
18 66904 66928 24
19 43897 77572 33675
20 49891 91494 41604
21 42928 93238 50309
22 46343 87249 40906
23 51142 90339 39197
24 43344 72324 28981

TABLE II. Total consumption and production at each
simulation hour (Experiment 1)

Location Consumption (24
hrs) (In GWh) Storage(In GWh)

Los Angeles 99.9 62.20
Brası́lia 87.54 25.82
Dakar 28.10 14.83
London 240.27 169.11
Nairobi 77.75 37.72
Muscat 52.70 30.75
Almaty 79.37 59.98
Singapore 187.24 70.21
Sydney 115.23 23.22
Auckland 56.17 11.77

TABLE III. Total energy consumption and storage in absence
of grid (Experiment 1)

In experiment 2, we needed more solar area than in ex-
periment 1 due to stricter constraints. Thus resulted in more
unbalanced production. The production-consumption pattern
for experiment 2 is shown in Figure 5. Considering the 24 hour
consumption for each location (Table III), the simulation data
seem reasonable and closer to real data. Although city-level
energy consumption data are not readily available, data for
Los Angeles and Auckland were compared with available data
and scaled by population. Los Angeles County’s population
is almost double that of Los Angeles City [20]. Energy
consumption by Los Angeles County for 2017 was 68800
GW [21]. Scaled down to the LA city population (division by
2) and to a one day average consumption (division by 365),
this value becomes 94 GW, which is close to the 99 GW
from the experimental data. We performed such comparisons
to validate the approximation and accuracy of the models.
Energy storage capacity required at each location was also
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Fig. 5. 40% of consumption and production (Experiment 2)

estimated in the absence of grid connectivity. Table III presents
the minimum amount of energy storage required at each
location. The estimation was performed by assuming that there
is no power source other than solar, so total power required
at night must be compensated by energy storage. The amount
of storage required is higher than any existing installation in
world [22].

Land availability is critical for solar panel installation.
However, the average solar area per household (1898 ft2) was
approximately the average floor area of the household (1735
ft2). This average assumed fixed-axis and 15% single crystal
silicon solar panel types, as well as high population density
across all locations. Average solar area per household can be
further improved with efficient solar panels and integration of
sparser grid locations.

V. DISCUSSION

A. GridLAB-D Design Studio

The GridLAB-D Design Studio (DS) [13] utilizes GridLAB-
D simulator in the backend for modeling and simulation of
the power grid. The DS provides a comprehensive web-based
platform for analyzing distribution grids through simulations
and evaluation of its resilience against network attacks.

B. Optimization using Linear Programming

Simulation output from the GridLAB-D DS was the total
power produced by a unitized solar panel and power consump-
tion by each house. This depended on the date of simulation,
as weather data is based on a typical meteorological year. A
single day simulation data was captured, then scaled to the
number of houses to frame the optimization problem. The
optimization problem minimized the area required for solar
panels at different locations, while meeting energy needs at
all locations. This was formulated as a linear programming
(LP) problem. The LP problem was modeled in AMPL [19] - a
mathematical programming language. The optimization model
and simulation data were given to a solver called MINOS,
which uses the Primal Simplex algorithm for solving the LPs.
The solver output was the solar panel area scale factor required
at different locations. These panel area scale factors were
multiplied by the unitized solar panel area to obtain actual
required solar panel areas.

C. Model of Integration and Power Exchange

The chosen model of integration for a global grid and power
exchange framed our optimization problems. In experiment 1,

we assumed that any location could have any amount of solar
area. Our goal was to find the required solar area, irrespective
of panel distribution at each location. This assumption led
to some locations with large area requirements, and other
locations with zero solar panel area requirements (see Table I).
Experiments considering different models, backed by real
power simulation data for long-term simulation, can give better
insights into finalizing the model of integration for power
exchange and solar panel installation.

D. Energy Storage Requirements in Absence of a Global Grid

The Hornsdale Power Reserve [22], which is connected to
the Southern Australian grid, is the world’s largest lithium-ion
battery system. It contains hundreds of Tesla power packs,
each with 16 battery pods. Each battery pod provides 129
MWh and houses thousands of small lithium-ion cells. This
is significantly small compared to the amount of energy
storage needed in the absence of a longitudinally-distributed
global grid (refer Table III). Thus, grid integration provides
a sustainable path to move toward renewable energy without
significant additional storage.

E. Critical Appraisal of the Experiment

Our experiment was simplified to approximate a real world
scenario and abstracted to optimize only for household con-
sumption and solar production. Larger simulations must be
performed at different abstraction levels for more reliable
results and to better understand different facets of problem.
Integration of different partners involved in the energy sector
will give us a better perspective on the whole problem.

F. Selection of locations

These experiments were use cases to validate how we can
integrate the power distribution simulator with optimization
tools. Our long term goal is to develop a generic toolchain
through which users can select different locations and inte-
grate them for their experiments. Interwoven networks with
greater numbers of interconnected locations can give a better
optimized results in terms of uniformly distributed solar panels
in each location.

G. Where is the transmission loss?

The experiment has limitations in terms of the transmission
related losses, as we ignored such losses. This was done to
simplify the problem and focus on integrating the distribution
grid simulation with optimization tools. A richer experiment
involving transmission grids requires a co-simulation platform
such as C2WT-TE [23], where each simulation forms a com-
ponent of a larger simulation.

H. Effect of weather

Weather affects the solar production as well as users’ power
consumption patterns. We simulated our experiments over a 24
hour time period. A more stable solution to finding required
areas of solar panels at different locations can be found by
optimizing over longer time periods and integrating more loca-
tions into the grid. We have weather data from approximately
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30-40 years for most large cities in the world, and have good
models for weather prediction as well. Optimization performed
over a larger timescale considers broader variation in weather
and consumption patterns, thereby yielding a more accurate
result. Availability of GPUs and parallel computing can enable
such computationally intensive experiments.

I. Economic feasibility and Practicality

It seems reasonable that migration to renewable energy
sources cannot be achieved by relying on energy storage
devices until there is a major breakthrough in storage capac-
ity. Currently, the battery option is economically infeasible.
Presently, the only feasible path towards clean energy is global
grid integration. To achieve this integration, we need a tool
to simulate scenarios and to see how the integrated grid
will behave. Our experiments do not account for economic
feasibility and are abstracted to calculate solar production and
consumption patterns, with focus on user demand patterns at
the household level and their dependence on weather. These
global level power simulations need to be done at various
levels of abstraction. A more robust and reliable grid can be
designed by integrating various conventional and unconven-
tional energy resources in unison where the majority of power
is driven by renewable resources.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

Experiments’ result show that:
1) By connecting ten large cosmopolitan cities, the energy

needs of those cities can be met only by solar energy
production.

2) The area required for solar panels is moderate compared
to the population density of these locations.

3) The required battery capacity in absence of a global grid
is enormous and economically infeasible.

4) We approximated models to imitate grid components,
houses, appliances, and scheduling. Consumption pat-
terns produced by the household level simulation
matched real consumption data.

B. Future Work

Our experiments are use cases to understand how we should
proceed with the development of a toolchain. For a broader
discussion of reliance on renewable energy, we are working
on developing a toolchain that will allow researchers to design
various experiments at multiple fidelity levels. The toolchain
will be useful for:

1) Modeling of different power grid networks and models
of integration and power exchange.

2) Modeling different house models with different appli-
ances and configurable schedules, integrating different
locations, and analyzing results.

3) Studying the local renewable integrated grid and its
effects on the conventional power grid.

4) Enabling AI-based prediction models to predict future
needs and control strategies for renewable energy pro-
duction.
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