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Abstract

We present a new formulation for the computation of solutions of a class of Hamilton Jacobi
Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of
equations considered in this paper, the viscosity solution of the HIB equation is equivalent to
the value function of a corresponding optimal control problem. In this work, we extend the
optimal control problem given on the surface to an equivalent one defined in a sufficiently thin
narrow band of the co-dimensional one surface. The extension is done appropriately so that
the corresponding HIB equation, in the narrow band, has a unique viscosity solution which is
identical to the constant normal extension of the value function of the original optimal control
problem. With this framework, one can easily use existing (high order) numerical methods
developed on Cartesian grids to solve HIB equations on surfaces, with a computational cost
that scales with the dimension of the surfaces. This framework also provides a systematic
way for solving HJB equations on the unstructured point clouds that are sampled from the
surface.
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equations on surfaces - Optimal control
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1 Introduction

Hamilton—Jacobi—Bellman equations have many applications in optimal control, seismology,
geometrical optics, etc. From the solutions of HJB equations on surfaces, the corresponding
characteristics curves can be extracted and used in many applications. Some examples include
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mesh generation [15], path planning [19,37], and brain mapping [4,21]. The equations are
fully nonlinear and classical solutions typically do not exist. The unique viscosity solution
[10] is often sought after. Sophisticated algorithms have been developed for computing the
viscosity solution of HIB equations defined in Euclidean space.

Let @ C R" where n = 2 or 3 be a bounded and connected open set with smooth closed
boundary I' = 9€2. Our goal is to compute solutions of the following HIB equation defined
on smooth surfaces, with given Dirichlet boundary conditions:

min {r(x,a) + Vru(x) - f(x,a)a} =0, xel'\T (1)

acAyx

ux) =g(kx), xe7. 2)

Theset Ay := S"!NTyTisa compact set where S§7~1isthe (n—1)-dimensional unit sphere in
R” and T is the tangent space of I at the pointx € I". We define A := §"~! N T M(T") to be
the unit tangent bundle of I' where 7 M (I") is the tangent bundle of I'. Here r, f : ' x A — R,
7 is a closed subset of I', and Vru is the surface gradient on I" [11].

For € > 0, define the narrow band of I" by

T. :={z € R" : min||x — z||) < €}.
xel’

In this paper, we shall derive a Hamiltonian, H, and extensions 7 and g of 7 and g, respec-
tively, such that the viscosity solution to

H(z,Vv(@) =0, zeT\T 3)
v(z)=2@), zeT 4)

is the constant normal extension of the solution to (1)—(2), for any positive and sufficiently
small €.

Our contribution includes a theory for how optional control problems on surfaces can
be extended into “equivalent” ones defined in a narrow band of the surface. Depending
on whether the problem is isotropic or anisotropic, we must take careful consideration of
extending the control space. We show for the anisotropic or most general case, the same
control space used in the surface problem must be used in defining the extended problem.
However, in the isotropic case the extension is equivalent even when we appropriately extend
the control space. After defining the extension of optimal control problems, we then extend the
corresponding HJB equation defined on the narrow band of the surface. The main advantage
of this approach is that to compute solutions of HIB equations on surfaces, we are able to
use Cartesian grids and existing methods (including high order methods) which solve HIB
equations in Euclidean space. This allows us to avoid unnecessary patching and triangulation
for solving the surface HIB equation. We show that in fact the narrow band can be very thin,
i.e., it’s thickness is of order &, where £ is the grid size.

Before proceeding, we will first define the closest point mapping that is used in the
extensions. Define the closest point mapping, Pr : Tc — I', by

Pr(z) := argmin ||z — y||.
yel'

Here, € must be chosen so that the closest point mapping is unique. Then we define the signed
distance functionto I', dr : Te — R, by

llz— Pr(z)|| ifzeQ".

dr(@) = { —|lz— Pr(@)|| ifzeQ
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For |n| < €, we will define the parallel surface, I';, by
Iy :={zeTe|dr(z) =n}

Closest point mappings are easily derived in the context of level set methods [30], and there
are a variety of fast and high order methods available to compute them from the distance
function to I" [8,33,36,37,39], i.e.,

Pr(z) =z — dr(z)Vdr(z).

Finally, we define the constant normal extension of function on I', u : ' — R, to be
u: T, — R given by

u(z) == u(Pr(z)).

Again, our goal is to define an extended HIB equation on 7¢ so that the solution is the constant
normal extension to the solution of the HIB equation on the surface.

The rest of the paper is organized as follows: In Sect. 2, we present the optimal control
problem which models controlled motion on a surface and define the related class of HIB
equations. We then extend the control problem and HJB equations on the narrow band, 7.
In Sect. 3, we present a special case of the problem when the HIB equation reduces to the
Eikonal equation and the distance function on the surface is desired. Finally, we give some
numerical simulations in Sect. 4.

1.1 Previous Work: Solving HJB Equations in Euclidean Space

There is extensive work on developing numerical methods to compute solutions to (1) where
the domain is a bounded open set in R”. In the view of a optimal control problem, one can
obtain a semi-Lagrangian discretization for HIB equations which gives a large system of
coupled nonlinear equations. Extensive studies of semi-Lagrangian techniques are found in
[3,12—-14]. Solving the discretized system using fixed-point iterations is expensive, thus fast
marching methods (FMMs) and fast sweeping methods (FSMs) were developed.

FMMs are a variant of Djikstra’s method and use a heapsort algorithm to determine the
order in which the grid nodes are updated. The algorithm was first developed on Cartesian
grids [33,37] to solve Eikonal equations which are a special case of (1) when the functions
r and f are isotropic, i.e., r(x,a) = r(x) and f(x,a) = f(x). The solution to the Eikonal
equation is well known to be the distance function to the set 7. FMMs have complexity
O(Nlog N), where N is the total number of unknowns [31,37]. Based on the Godunov
upwind numerical scheme developed to solve Eikonal equations on triangulated domains
in [5], FMMs were extended to acute triangulated meshes in [17] . However, FMMs do
not directly apply to the anisotropic case. FMMs were applied to compute solutions of a
class of “axis-aligned” anisotropic HJ equations in [1] on orthogonal grids, and ordered
upwind methods (OUMs) were developed to solve a class of general HIB equations on any
triangulated surface [34]. In [6,7], related PDEs are solved using similar fast methods.

FSMs were developed in [36,40] to compute solutions of a class of strictly convex HJ
equations, including Eikonal equation, on Cartesian grids. The FSM is an iterative method
that relies on an upwind discretization of the PDE and Gauss-Seidel style updates with dif-
ferent orderings of grid nodes. The idea is to avoid using heapsort and, instead, update the
grid nodes in different orderings (sweeps). In each sweep, characteristics that go in similar
directions are propagated automatically. In [22], a FSM was developed for Eikonal equa-
tions using a discontinuous Galerkin (DG) local solver for computing the distance function.
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For more general Hamilton—Jacobi equations, one may use a Lax-Friedrichs type numeri-
cal Hamiltonian [16] on Cartesian grids. The resulting Lax-Friedrichs sweeping scheme is
typically more diffusive and requires more iterations. FSMs have complexity O(N) with the
caveat that the constant hidden in the notation may be large depending on the characteristics
of the PDE.

1.2 Previous Work: Solving HJB Equations on Surfaces

Several versions of FMMs and FSMs can be applied to computing the distance function on
surfaces. As already mentioned, the FMM in [17] only works for solving Eikonal equations
on acute triangulated surfaces. In [35], FMMs equation were extended to solve Eikonal
equations on parametric surfaces where the discretization is done on a Cartesian grid in the
parametric plane. The FSM in [36] and the FMM in [29] can compute the distance function on
surfaces that are defined as the graph of a smooth function. Another approach to computing
the distance function on surfaces is to solve a corresponding evolutionary HJ equation where
the distance function is the steady state solution [8]. However, with the addition of the time
variable this method is not computationally optimal.

OUMs are applicable to more general anisotropic HIB equations on triangulated surfaces.
However, if the surface is given in implicit form, triangulation may be unnecessary. We want
to avoid triangulation and have the ability to handle general surface representations. Our
motivation is to derive equivalent extended HJB equations on a narrow band of the surface
such that a variety of meshes and methods can be used to solve the equivalent equations in the
narrow band. In particular, the methods developed for Cartesian grids (surveyed in Sect. 1.1)
can then be used.

In [27], the idea of extending the surface by a small offset, €, to a narrow band is used to
compute distance functions on surface. On the narrow band, an extended distance function is
computed, but it is not the constant normal extension of the distance function on the surface.
Therefore, the formulation introduces an analytical error. It is proven that the error between
the two distance functions is controlled by €, the width of the narrow band. In order for the
method to converge as the grid size goes to zero, it is required that ¢ = Ch? where A is the
grid size and y € (0, 1). The advantage of our framework is that there no analytical error
introduced. Our formulation is convergent with respect to the grid size, &, and for narrow
bands of order 4. We are also able to perform high order computations for the distance
function on surfaces.

The idea of extending functions or differential operators defined on surfaces, via closest
point mapping, to the embedding Euclidean space, is used in [9,24,32] to compute solutions
to parabolic and elliptic PDEs. Our approach is inspired by the work in [9] where variational
integrals defined originally on surfaces are extended to ones defined in the narrow band,
and the Euler-Lagrange equations of the extended problem are solved by standard numerical
methods. Due to the way the extensions are defined, the resulting solution to each equation
is automatically the constant normal extension of the solution to the variational problem on
the surface.

1.3 Computing PDEs “on point clouds”
Point clouds arise in many applications including facial recognition, manufacturing,

medicine, and geosciences and can be acquired easily through modern sensing devices such
as laser scanners and cell phones. A typical approach, particularly predominant in the com-
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puter graphics community, is to create triangular meshes from the data points and seek to
define partial derivatives in certain suitable ways. Among myriad of papers using triangular
surface meshes, we mention [5], an early paper which is the most related to the topic of
this paper. Another school of approaches aim at solving differential equations on surfaces,
using only a finite set of points sampled from the surfaces, without globally reconstructing
the surface.

In [28], the algorithm developed in [27] is extended to compute distance functions on
surfaces represented as point clouds. In [23], a framework for computing solutions to PDEs
on point clouds based on a local approximation of the manifold was presented. A local
mesh algorithm was developed in [20] that solves PDEs on point clouds where any of the
existing methods valid on triangular meshes discussed in Sect. 1.2 can be used to compute
the solutions to HIB equations once the local mesh is determined.

Our new proposed non-parametric formulation also provides a convenient way to solve
equations “on point clouds.” That is we can solve HIB equations which are defined on a
smooth closed surface, but the only available information about the surface is a finite set of
points that are reasonably distributed over the surface. The discussion of the implementation
of our method applied to point clouds is in Sect. 4.1.4. There, it is assumed that there is no
noise perturbing the point cloud in the surface normal directions, and that the point clouds are
evenly distributed over the surfaces. The generalization of the proposed algorithm to more
general point clouds is the subject of another paper.

2 Static Hamilton-Jacobi-Bellman Equations on Surfaces
2.1 Modeling Controlled Motion on a Surface

First, we define the optimal control problem from which the HIB equations can be derived.
For each x € T, let Ay be set of all unit tangent vectors of I" at x, i.e.,

Ay = S" ' N T,T.

Note each Ay is a compact set in R” for each x € T'. Define A := Uxer Ax, then A =
S"1'N T M) where TM (') is the tangent bundle of I". The set of admissible controls is
given by:

A = {measurable functions a : [0, co) — A}.

We are interested in the trajectories governed by the dynamical system:

dy
E(t) = f(y@®),a())a(), t >0 )
y(0) =x, (6)

where f : I' x A — Rrepresents the velocity and a(t) € Ay(;), which ensures that y(t) € I'
for all # > 0. Denote the solution to (5)—(6) (which exists under the assumption (A1) below)
by yx (¢, a(t)). For each x € T define the following subset of the admissible controls:

Ax :={a() € A|yx(t,a(t)) e I" forallz > 0}.

Then the requirement that a(t) € Ay, for all # > 0 in the dynamical system (5)—(6) is
equivalent to a(-) € Ax. Refer to y(-) that satisfy (5)—(6) where a(-) € Ay as an admissible
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path on I". For the rest of the paper, we will suppress writing the dependence of yx(z, a(t))
on a(-) when there is no confusion in the context.

Letr : I' x A — R denote a running cost per unit time and g : 7 — R be an exit time
penalty when the state reaches a closed target set 7 C I'. The total cost associated with initial
state x and control a(-) € Ay to reach 7 is given by

T
C(x,a(") :fo r(yx(t), a(t))dt + g(yx(T)), @)

where T = min{t | yx(t) € 7}.
We have the following assumptions on f, r, and g:

f and r are Lipschitz continuous in their first arguments.

g is lower semicontinuous and miny g < o0.

There exists constants Ry, R», F, and F> such that: (A1)
0< Ry <r(x,a) <Ry, forallxeI"anda € A,

0< F1 < f(x,a) < F,, forallxe"'anda € A.

The value function u : I' — R is defined to be the minimal total cost to 7 starting at x and
is given by
u(x) = inf C(x,a()). ®)
a()eAx

Under the assumption (A1), an optimal control does not necessarily exist. If for the given
f and r, we have that the set V (x) = {f(x,a)a/r(x, a) | a € Ay} is strictly convex for each
x € I, then an optimal control is guaranteed [2]. This property is trivially satisfied in the
case of isotropic f and r. Regardless of whether an optimal control exists, we can still derive
the corresponding HIB equation.

The dynamic programming principle [2] for the value function states that for sufficiently
small T > 0,

T
v = inf, | [T ron0.a0ar o | ©)
a()eAx | Jo
The corresponding Hamilton—Jacobi—Bellman equation on I" is
mi‘n =r(x, a) + Vru(x) - f(x, a)a} =0, xeI'\7. (10)
acAyx

The boundary condition is
ux) =gx), xe7. (11

Note that in (10) we can take the minimum since Ay is compact.

In general, classical solutions of (10)—(11) do not exist, and the unique viscosity solution is
sought after [10]. A detailed discussion of viscosity solutions of Hamilton—Jacobi equations
on manifolds can be found in [25]. Under the assumption (A1), it is a classic result that the
value function u coincides with the unique viscosity solution of (10)—(11) [2]. In the case of
isotropic running cost and speed, then (10) reduces to the Eikonal equation on the surface:

r(x)
fx)

We will expand more on the Eikonal equation in the next section.

IVru)|| =

12)
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2.2 Extensionto T,

We derive a Hamiltonian, H, on 7, such thatif v : 7. — R is the unique viscosity solution
of

H(z,Vv(z)) =0
with boundary conditions defined appropriately, then

v(z) = u(z) == u(Pr(z)),

where u is the viscosity solution to (10)—(11).

First, we extend the optimal control problem on the surface to one in the narrow band,
T.. We start by defining a tensor that will be essential in formulating an equivalent optimal
control problem on 7.

Definition 2.1 Let t;(z) and t;(z) be two orthonormal tangent vectors corresponding to the
directions that yield the principle curvatures of I';, at a point z. Let n(z) be the unit normal
vector to the tangent plane at z. Let o1(z) and 02(z) be the singular values of Pf (z), the
Jacobian matrix of Pr at z. Then for any real number u, define the tensor B by

B(z, ) = Bo(z) + B (2), 13)

where

Bo(z) = o7 ' (0)t1(2) @ t1(2) + 0, ' (D)t (2) ® tr(2),
Bi(z) =n(z) ® n(z).

In the above definition, By corresponds to a weighted orthogonal projection onto the tangent
plane of I';, at z, and B is the projection along the normal of I';, passing through z. In [18],
it is proven that

oi =1 —dr(@)k;(z)

where «1(z) and k3 (z) are the principal curvatures of the parallel surface I';,. Note that when
z € I', 01 = op = 1. For the sake of notation, we will suppress the dependence of the tangent
vectors, normal vectors, and singular values on the point z € T.

Assuming € small enough, we have that the tangent planes coincide forz € T and x € I'
if Pr(z) = x. Thus, for the extended optimal control problem, the set of compact control
values ateach z € T¢ is A p.(z). Then A and A are as in Sect. 2.1. Now, consider the following
extended dynamical system in 7:

d _
d%](t) = f(y(),a@)B(y(), wa(), t >0 (14)
y0) =1z, zeT. (15)

Here f : T. x A — Ris given by f(z,a) = f(Pr(z), a), and we have that a(t) € Ay () for
all # > 0. This last requirement ensures that the trajectory remains in I';, for all # > 0 where
n = dr(z). The inclusion of the tensor B(y(¢), 1) in the dynamical system above adjusts the
velocity according to the curvature of the surface. This has the implication that equivalent
paths will have the same total cost.

@ Springer



43 Page8o0of29 Journal of Scientific Computing (2020) 84:43

Denote the solution to (14)—(15) (which exists under the assumption (B1) below) by
yz(t, a(t)). For each z € T, with dr(z) = 7, we have the following subset of admissible
controls:

A, :={aec Aly,(t,a@)) € ')}

Then the requirement that a(t) € Ay, () for all # > 0 in the dynamical system (14)—(15) is
equivalent to a(-) € A;. Since Ax = Ap.(z), we have A; = Ap..(5). Refer to y(-) that satisfy
(14)—(15) where a(-) € A, as an admissible path on 7. Again, for the rest of the paper
we will write suppress writing the dependence of y,(¢, a(z)) on a(-). There is no confusion
between the notation for admissible paths on I" and 7. The initial point will indicate which
dynamical system the path solves.

Note that if the initial pointz € I", n = 0 and

B(y.(1), wa(t) = a(r),

since a(t) € Ty, () and o1 = 03 = 1. Thus, (14)—(15) reduces to the dynamical system on I'
given in (5)—(6), and an admissible path on T, with a(-) € A, is also an admissible path on
I" with the same a(-) € A,.

Now, let 7 = {z € T. | Pr(z) € T}. Let the running cost and exit time penalty on
T: be given by 7 : Tc x A — R where 7(z,a) = r(Pr(z),a) and g : T, — R where
¢(z) = g(Pr(z)), respectively. Then the total cost associated with initial state z and control
a(-) € A, toreach T is given by

T
C(z,a() 52/0 7(y2(t), a(0)dt + g(yu(T))

where T = min{t | y,(t) € T}. Note that if z € T, then C(z, a(-)) = C(z, a(-)). The value
function v : T, — R is the minimal total cost to 7 starting at z and is given by

v(z) = inf C(z,a()). (16)
a()eA,

We have that the assumption (A1) implies:

The mappings (z, a) — 7(z, a) and (z, a) — 7(z, a)B(z, nw)a

are Lipschitz continuous in their first arguments.

g is lower semicontinuous and minz g < oo.

0< Ry <7(z,a) <Ry, forallze T, anda € A, B1)
0<G1 <g(z) <Gy, forallz e T,

There exists constants F, Fo such that:

0<F| <||f(z,a)B(z, n)a|| < F,, forallze T, anda € A.

Again, while (B1) does not guarantee the existence of an optimal control, the assump-
tion does ensure that the value function and corresponding viscosity solution of the
HJIB equation coincide. If we also assume the set V(x) is strictly convex, then V(z) =
{f(z,a)B(z, w)a/r(z,a) | a € A} is strictly convex for each z € T.. Thus, if an optimal
control exists in the problem on T, it also exists for the extended problem on 7.

Before deriving the corresponding HIB equation, we prove that the value function, v, is
the constant normal extension of the value function of the optimal control problem defined
on I'. The following theorem states that two admissible paths, y, (-) and y4, (), on T, with
equivalent initial points in 7, and equivalent controls stay equivalent for all time.
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Theorem 2.1 Suppose that z1,2, € T. such that Pr(z1) = Pr(zz). Let a;(-) € Az, and
a(-) € Ay, such that a; = ap. Suppose yy, : [0, 00) — T¢ solves (14) with y,, (0) = z;
and yy, : [0, 00) — T¢ solves (14) with y,, (0) = zp. Then Pr(yz, (t)) = Pr(y4, (1)) for all
t>0.

Proof Lety; : [0,00) — I'and y; : [0, c0) — T be given by
Yi () = Pr(yz (1)
and

y2(1) = Pr(yz, (1))

for all + > 0, respectively. We need to show that y; () = y2(¢) for all # > 0. We compute y’l.
We have the following singular value decomposition for P{.: P = UZU T where

0'100
U:[tltzn]andzz 000
000

Since t, tp, and n are orthonormal, fori, j = 1, 2,

tit;, i=j,
L)t Qtj) =
t t)(t; ®t;) 0. .

and fori =1,2
t ®tj)(n®n) =0.

Using the above, we have

Y1 () = (Pr(yzy (1)

dYZl
t
r (1)

= P{ [ (yz (1), a1 (1) B(yy, (1), pai (1)

= P{B(ys, (D). 1) [ (¥, (1), a1 (0)ar (1)

=t ®t +t®t)f(yi(t), ar(t)a; ()

= fyi(),a1(0))(t1 @ t; + & @ tr)a(t)

= f(yi1(t), a1 (1))a; (¢).
The last equality is true since t; @ t; + t2 @ t; is the orthogonal projection of a; (¢) onto the
tangent space at y, () and a;(t) € Ay, 1) C Ty, T Thus y; is an admissible path on I'
where y1(0) = x = Pr(z1) = Pr(z) and a1(-) € Ax = App(z). By the same reasoning y»
also an admissible path with y»(0) = x and a>(:) € Ax = Ap;(z,). We assume (Al). Thus,
the solution to (5)—(6) is unique. Since a; = ap, y;(t) = y2(¢) forall ¢+ > 0. O

=P§

Now, it easily follows that the value function defined on 7 is the constant normal extension
of the value function defined on I.

Corollary 2.2 [fu : T' — R is the value function on T given by (8), then
v(z) = u(z) = u(Pr(z))

where v is the value function on T, given by (16).

@ Springer



43 Page 100f29 Journal of Scientific Computing (2020) 84:43

Proof Letz € T, and a(-) € A,. Then a(-) € Ap.(z) since A, = Ap.(z). Then we have

T
C(z,a()) :/o 7(y2(1), a(0)dr + g(y2(T))

and

o T
C(Pr(z),a(")) =./o F(yprz) (1), a(®))dt + g(y Py (2) (1)),

where y;(-) and yp.(z () are admissible paths on T¢ with y;(0) = z, YPr(2) 0) = Pr(z),
respectively. Recall, that yp.(z is also an admissible path on I' so that C(Pr(z), a(-)) =
C(Pr(z),a(")).

Theorem 2.1 implies that Pr(yz(t)) = ypq ) (¢) for all # > 0. Since

T={zeT.| Pr(z) e T},
we have
min{t | Pr(yz(t)) = Ypr(») (1) € T} =min{r | y,(1) € T}.
Therefore, T = T, and
C(z,a(-)) = C(Pr(z),a())
= C(Pr(2),a()).

Finally, we have
v(z) = inf C(z, a())
a(-)eA,
= inf C(Pr(z),a())
a()eAp. @)
= u(Pr(z)).

[m}

Now that we have showed that the value function on the narrow band is equivalent to
the value function on the surface, we define the Hamilton—Jacobi—Bellman equation on T
associated the value function v. Again, the dynamic programming principle states that for
sufficiently small T > 0, we have

T
v(z) = inf { / F(yz(1), a(r))dt + v(yz(r))}- a7
a()eA, 0
The corresponding Hamilton—Jacobi—Bellman equation on 7 is
miAn {F(Z, a) + Vu(z) - f(z,a)B(z, ,u)a} =0, ze T\7T. (18)
acA,

The boundary condition is
v(z) =3@), z€T. (19)

The assumption (B1) implies that the value function coincides with the unique viscosity
solution [2]. Corollary 2.2 implies that the viscosity solution of (18)—(19) is given by

v(z) = u(Pr(2)), (20)
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where u is the viscosity solution of (10)—(11) on T. An interesting result is that we can
prove (20) without Corollary 2.2, i.e., using only the derived HIB equations and properties
of viscosity solutions.

We begin with the following lemma that relates the surface gradients for parallel surfaces
at equivalent points:

Lemma 2.3 Assume € is small enough so that Pr is differentiable, and let |n| < €. Given
¢o € CH(), define ¢, € C' (') by ¢, (2) := ¢po(Pr(z)). Then forz € T,

Vréo(Pr(z)) = B(z, w)Vr, ¢y (2). 2

Proof Let ¢, : T. — R be the constant normal extension of ¢o. Then ¢, € C L(T.) and
$0|1‘ = ¢,. From Theorem A.1 in [18], we have that Vré¢o(Pr(z)) = B(z, 1)V (2).
n

Since ¢y is the constant normal extension of ¢o, V¢ (z) € T,I';. Thus, if z € 'y, Vo (z) =
Vr, ®n(2), and (21) holds. ]

The following theorem proves (20) directly using the definition of viscosity solutions.

Theorem 2.4 Ifu : I' — R is the viscosity solution to (10)—(11), then the constant normal
extension of u, u : T, — R, is the viscosity solution to (18)—(19).

Proof We have u(x) = g(x) forx € 7 and Pr(z) € 7 ifz € 7. Then forz € 7T,

u(z) = u(Pr(z)) = g(Pr(z)) = g().

Thus, u satisfies the boundary conditions (19). Next, we will show that u is a viscosity
subsolution of (18).

Assume zg € T and ¢ € C ! (T¢) such that u — ¢ has a strict local maximum at zg and
(u — ¢)(zg) = 0. We need to show that

min {?(zo, a) + Vo (zo) - f(zo,a)B(zo, u)a} <0. (22)

acA;

Let n = dr(zo) and ¢ : I' — R be the restriction to I of the normal extension of ¢|r .
n

Then we have that ¢g € C'(I') and ¢, := ¢|. € C'(I';) such that ¢, (z) = ¢o(Pr(2)) for
n
zely.
First, we will prove

B(zo, )V (z0) - a = B(zo, 1) Vr, ¢y(20) - a. (23)
Since a € A,y C T,,I", we have a - n = 0 and
B(zg, w)n ® nVe(zg) -a = 0.

Now, Vr, ¢, (20) = (I —n ® n) Ve (zp). Therefore, (23) holds.
Lemma 2.3 implies
B(zo, w)Vr, ¢y (20) = Vro(Pr(zo)). (24)

Let xo = Pr(zp). Then using the fact that B(zg, p) is symmetric, (23), and (24), we have

min {7(20, a) + Vo (20) - (20, 2) B(zo, M)a}

A€y,

= min {F(ZO,a) + B(zo, W)V (20) ?(ZO,a)a}

aeAzO
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= min {7 (2o, a) + B(zo, 1) Vr, ¢y (20) -?(zo,a)a}

aeAzO

= min {7(zo, a) + Vréo(Pr(zo)) ~7(10,a)a}

aeAzO

= min {7 (xp, a) + Vréo(Xo) - f (X0, a)a}.

aeA,‘0

Now, xg € I', ¢pg € C! (I') such that u — ¢ has a strict local maximum at Xg and

(u — ¢o)(%0) = (u — ¢)(2z0) = 0.

Since u is a viscosity subsolution of (10),

min {V(Xo, a) + Vrgo(xo) - f(Xo, a)a} <0.

aeAXO

Thus, (22) holds. The same argument can be applied to show that i is a viscosity supersolution
of (10). O

In the next section, we will present a special case of the above formulations for when
the speed and running cost functions are isotropic. The HIB equation on I" reduces to the
Eikonal equation. A noteworthy revelation is that if we ensure that the extended speed and
cost functions are isotropic as well, the control values in the extended optimal control problem
do not have to be restricted to be in the tangent bundle of T, i.e., the extended set of controls
is A = §"!. In this setup, the value function is the constant normal extension of the value
function on I'. Before we proceeding, we present a counter example to show that u is not
necessarily the value function of the extended control problem if the extended speed function
f is anisotropic and A=s1,

Example

Consider the following control problems on I" and 7¢: Let
Fr=-L1DCR
and
T ={l1}.
Lete > \/37/3, then
Te =(—1,1) x (—€,€)

and

T = {1} x (—¢, €).

For the control problem on I', the set of controls is A = {(—1, 0), (1, 0)} and A is the usual
set of admissible controls. Define f : ' x A — R by f(x,a) = +/3 and suppose that we
have unit running cost, i.e., 7(x,a) = 1. Then it is clear that u(0) = V3 /3 which is the
minimum travel time from x = 0 to 7 while traveling at speed V3.

Now for the extended control problem, let the control values be the set A = S!. Then the
set of admissible controls is given by

A= { measurable functions @ : [0, c0) — K}.
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Define f : T. x A — R such that f(z, &) = f (@) and the set { f(2)3 | & € A} is the ellipse
given by x? + y—; = 1 rotated at the origin clockwise by the angle /3. Then f(a) = +/3 if
a € Asothat f(z,a) = f(Prz,a) fora € A. Again, assume unit running cost.

Let v be the value function for this extended control problem. If v = u, then we should
have v((0, 0)) = u(0). However, note that f(z, V3 /2, 1/2)) = 3 and the Euclidean distance
between (0, 0) and (1, \/§/3) is 2\/§/3. Thus,

— - 24/3
C((0,0),d() = ‘Tf

when () = (V3 /2, 1/2). By the definition of the value function we must have

v((0,0)) = 29£ < ? = u(0).

Therefore, # cannot be the value function for the extended control problem.

3 The Isotropic Case

We derive the optimal control problems and HIB equations corresponding to the case when
the speed and cost functions are isotropic. As mentioned at the end of Sect. 2.2, we will show
that value function on T, is the normal extension of the value function on I' even when we
do not restrict the controls to the tangent space in the extended optimal control problem.

3.1 The Controlled Dynamics on I for Isotropic Speed and Cost Functions

The optimal control problem formulation is exactly the same as in Sect. 2.1, and (10) reduces
to the Eikonal equation on the surface:

r(x)
IVru)|| = . (25)
' f ()
We have the HIB equation
H(x, Vru(x) =rx) — f®[IVrux)|[ =0, xeT, (26)
and the boundary condition is
ux) =gx), xe7. 27)

Assuming (A1), the value function u coincides with the unique viscosity solution of (26)—
(27). We also have that V(x) is strictly convex for all x € I". Thus, an optimal control is
guaranteed.

3.2 Extension to T, in the Isotropic Case

We derive the extended Hamiltonian, H, on T, from the extended isotropic optimal control
problem such that if v : 7. — R is the unique viscosity solution of
H(x,Vv(z)) =0

with boundary conditions defined appropriately, then

v(z) = u(Pr(2)),
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where u is the solution to (26)—(27).
The noiations ti, t2, n, o1, and o, are as in Sect. 2.2. The extended set of compact control
values is A = §"~!, and the set of admissible controls is given by:

A= {measurable functions: @ : [0, c0) — Z}.

This is where the formulation differs from the previous section. We do not restrict the controls
to belong to the tangent bundle of I'. We extend the speed, cost, and exit time penalty functions
as above: ?(z) = f(Pr(z)),7(z) =r(Pr(z)),and g(z) = g(Pr(z)). The dynamical system
is given by

d — ~
d—f(t) = fly®)By@®), wa(), >0 (28)
yO) =z, z€eT,, (29)

where a(-) € A. Admissible paths on 7, with extended controls are solutions to (28)—(29)
denoted by y,(¢). Note that the admissible paths are not restricted to the parallel surface, I';,
to which the initial point z belongs.

The total cost function associated to the initial state z € T, and control a(-) € A is the
same as in Sect. 2.2. The value function v : 7. — R is the minimal total cost to 7 starting
at z and is given by

v(z) = inf_C(z,a(")). (30)
a()eA

We have that (A1) implies the following is true:

The mapping (z, @) — f(z)B(z, )4 is Lipschitz continuous
in the first argument and, 7 is Lipschitz continuous.

g is lower semicontinuous and miny g < oo.

0< Ry <7(z) <Ry, forallze T..

There exists constants F, Fasuch that:

0<F| <||f(@B(z wal <F,, forallze T, andd € A.

(CD)

We have that (C1) implies the value function, v, coincides with the unique viscosity solution
of (26)—(27) [2]. We also have that V(z) = {f(z)a/7(z) | 3 € Z} is strictly convex for all
z € I'. Thus, an optimal control is guaranteed.

We now prove that the value function, v, is a constant extension of a function on I'.
However, unlike in the previous section, it is not immediate from the following proofs that
v = u, where u is the value function on I'.

Theorem 3.1 Givena() € A and 21,2 € T¢ such that Pr(z1) = Pr(z2), let
Yz 1 [0,00) = T

and
Yz, + [0, 00) = T

solve (28) with y,, (0) = z1 and y.,(0) = zy, respectively. Then Pr(yz (1)) = Pr(yz (1))
forallt > 0.

The proof of Theorem 3.1 is analogous to the proof of Theorem 2.1 except the control
a(-) belongs to the extended control space, A. A consequence of the control belonging to
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the extended space is that now the projected paths Pry,(-) may not solve (5). This is due to
the fact that (t; @ t; +to @ t2)a(r) # a(t) if A(t) ¢ Tpp(y,r)) Where t; and t, are the basis
tangent vectors of Tpp.(y,(r)). We now prove that the extended value function in the isotropic
case is constant along the normals of I".

Corollary 3.2 If Pr(z)) = Pr(zy) forz,,2; € T, then v(z) = v(z2).

Proof Let@(-) € A. We have

_ T, _
C(z1,4()) :/0 7 (Y2, (0))dt +g(y2,(T1))

and

_ T, _
C(z2,a(")) :/0 7(yz, (1))dt + 8(y2,(T2)),

where yz, (-) and yy, (-) are admissible paths on T, with extended control, a(-) € A, and
¥z, (0) = 21, yz,(0) = zp where Pr(z;) = Pr(zz).
Theorem 3.1 implies that Pr(y,, (1)) = Pr(yz,(¢)) for all > 0. Since

T={zeT.|Pr(z)eT},
we have
min{7 | Pr(yz (1)) = Pr(¥z, (1)) € T} = min{r |y, (t) € T} = min{t | y,, (1) € T}.
Therefore, T = T, and C(z;,a(-)) = C(z2, () fora(-) € A. Now,
v(z)) = inf_C(z1,3a(-)) = inf_C(z2,3()) = v(z).
a)eA a()eA
O

In the above proof, it is not immediate that we can take the infimum over A C .Z, which
would imply that v is the normal extension of u, the value function on I'. We will use the
corresponding HIB equations and Corollary 3.2 to show that v = u.

We define the HIB equation on T¢ associated the value function v. Again, the dynamic
programming principle states that for sufficiently small 7 > 0 we have

v(z) = ian{/ 7(yz(t))dt+v(yz(f))}- (€1Y)
AlJo

a()e
We get the Hamilton—Jacobi—Bellman equation on 7 :
min {?(z) + Vu(z) - B(z, u)?(z)ﬁ} =0. (32)
acA
Since the speed and cost functions are isotropic, (32) reduces to an anisotropic Eikonal

equation: o B
H(z, Vv(z)) =7(z) — — f(@)|B(z, n)Vv(2)|| = 0. (33)

The boundary condition is -
v(z) =¢(z), z€7. (34)
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Since the value function coincides with the unique viscosity solution, Corollary 3.2 implies
that the viscosity solution of (33)—(34) is a constant along the normals of T, i.e., there is a
function w : I' — R such that forz € T,

v(z) = w(z) := w(Pr(z)).
We now prove that w = u where u is the viscosity solution of (26)—(27).

Theorem 3.3 Ifu : ' — R is the viscosity solution to (26)—(27), then the constant normal
extension of u, u : T — R, is the viscosity solution to (33)—(34).

Proof Just as in Theorem 2.4, u satisfies the boundary conditions (34). Assume for contradic-
tion that u is not the viscosity solution to (33). But from Corollary 3.2 we have that viscosity
solution of (33)—(34), v = w for some w € C'(I"). Therefore, if 7 is not the unique viscosity
solution then we have u # w. For contradiction, we will show that w is the viscosity solution
of (26) and thus, u = w.

Letxg € I and ¢ € C'(I') such that w — ¢ has a local maximum at xo. Consider the
normal extensions of w and ¢, then w — ¢ has a local max at xq. Since w is a viscosity
subsolution to (33) and ¢ € C'(T,), we have that

7(x0) — f (%0)||B (X0, ©) V(x0)|| < 0. (35)
Since xg € I', 01 = 02 = 1 and V¢(xg) € T, I'. Therefore,
B(xp, ) =t; @t + b @ty + un ®@n,
and we have that B(xg, 1)V (Xg) = Vo (xo) = Vr¢(Xg). Thus,
r(x0) — f(x0)IIVre (xo)l| <0, (36)

and w is a viscosity subsolution. The same argument can be applied to show that w is a
viscosity supersolution. Therefore, w is the viscosity solution to (26) and hence w = u. O

To summarize, we have shown that we may appropriately extend the control space in
the case of isotropic speed and running costs. This has the implication that even though the
admissible paths on T have the “choice” to leave the tangent space of I, the optimal paths
in the extended control problem remain on or parallel to I'.

4 Numerical Implementation and Simulations
4.1 Numerical Setup

In the implementation of our new framework, we use a uniform Cartesian grids and denote
the grid step size by h. TE” denotes the part of the grid in the narrow band of radius € around
the given surface.

We use the Lax-Friedrichs fast sweeping methods in [16] and a high order version in [39]
for our simulations. It is also possible to an upwind scheme generalized from [36]. Unless we
mention otherwise, we use the standard first order finite differencing in the approximation
of the partial derivatives for the Lax-Friedrichs numerical Hamiltonians.!

I All code used to produce the numerical simulations can be found at https://github.com/lindsmart/
MartinTsaiExtHJB.

@ Springer


https://github.com/lindsmart/MartinTsaiExtHJB
https://github.com/lindsmart/MartinTsaiExtHJB

Journal of Scientific Computing (2020) 84:43 Page 170f29 43

We present several examples of our new formulation performed on surfaces of co-
dimension one in three dimensions. For the first three examples, we compute the solution to
the Eikonal equation on the surface. As shown in Sect. 3, the equivalent equation on 7 is

1Bz, ))Vv(@)|| =1, z€T\T (37
v(@z) =3@), zeT. (38)
Again,
Bz.p) =o'ty @t +0, 't ®t, + un @ n.

Since the desired solution, v, has been proven to be constant along the normals of the surface,
I', n ® nVu(z) = 0. Therefore, i can be any real number. We let £ = 1 in all of our
computations.

Approximating the solution to (37)—(38) requires the computation of the singular values
and vectors of the derivative of the closest point mapping, P{.. We defer the discussion of
these approximations to Sect. 4.1.4. In the last example, we apply our framework to solve an
HJB equation with an anisotropic speed function.

4.1.1 Boundary Closure

We note that the analytical formulation of the HIB equations does not require boundary
conditions on d7,. However, since we are using Cartesian grids we must take careful con-
sideration of the discretization near the boundary, 37/". When approximating the partial
derivatives of v, a neighboring grid node may lie outside of Teh. We will call these ghost
nodes. In our implementation, we provide a boundary closure procedure to enforce the fact
that the solution is a constant along normal function. For each ghost node, we perform the
following procedure:

(1) Project the node into the narrow band.

(2) The value at the ghost node is then calculated by interpolating grid values surrounding
the projected point. Formally, we must use an interpolation scheme of order higher to
the discretization of the PDE on T,

Next, we describe how the boundary closure procedure affects the numerical accuracy.
Let z; be a ghost node, and z = z; — am; be the projection of the ghost node into 7. Denote
the solution at z* by v := v(z}’). Suppose that we use a first order scheme to discretize the
HIJB equation on Teh. Then the interpolation used in the approximation of v} should yield at
least second order in / accuracy, in order to maintain formally the first order accuracy. This
is due to the amplification by a factor of ~~! in the finite difference scheme errors of the
approximation of the values at the neighboring grid nodes of z;.

4.1.2 Depth of Projected Points and Bounding the Thickness of the Narrow Band

When choosing « for the the projected ghost node discussed above, a necessary condition is
that the nearby surrounding nodes used to interpolate the value of vy must be in Teh. In our
numerical simulations, we use cubic interpolation to approximate v(z®). Thus, it requires 4
nearby grid nodes for three dimensional cases. It can be shown thatif |dr (z;) —«| < € —2./nh,
where 7 is the dimension. Then the inner nodes used to interpolate the value at each ghost
node are in Teh. We suggest to use a projected node as close to the boundary node as possible.
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Therefore in our numerical simulations, we choose @ = dr(z;) — (€ — 2+/nh). We discuss
the effect of the choice of « in Sect. 4.2.

The maximal value of € is restricted by the curvatures of I". We must have € smaller than
the reach of the surface, which depends on the reciprocal of the maximal curvatures. The
minimal value of € is determined by the finite difference stencils in approximating the partial
derivatives of the PDE and the boundary closure procedure. Both stencils require that the
narrow band is sufficiently “thick” relative to the mesh size h with € > 2./nh.

The resulting numerical discretization of the HBJ equation on Teh is convergent for any €
in the interval described above; i.e. it is convergent for very thin O(h) narrow bands as well
as for thicker one whose widths are independent of /. We remark that this convergent regime
is very different that requiring ¢ ~ O(h?),0 < p < 1, in the related work of [18], dealing
with singular integrals.

4.1.3 Approximation Errors

The error computed by the proposed algorithm can be written as the sum of errors corre-
sponding to different approximations:

Error = Eyodei(€) + Ea(h) + Er(h) + Ep, (h, €) , (39)
where

e E, 40 relates to how the surface PDE is approximated in the tubular neighborhood by
an extended PDE and the boundary conditions. Our main contribution is in deriving the
extension for which E;;,4. = O for any € that is smaller than the reach of the surface;

e FE A corresponds to the numerical error for approximating the extended PDE problem.
Our extension allows for higher order (in /) methods to be applied;

e [Ev relates to errors in approximating the surface and its geometric properties.

This error corresponds to approximation of the closest point mapping to the surface and
its curvatures. Since these quantities are computed based on finite differencing using the
grid, the error depends on £;

e Ey, is the numerical error in approximating the L, norm of the computed errors. Our
formulation allows for a very accurate approximation to this error term.

4.1.4 Application to Solving HJB on Point Clouds

We now describe how we compute the closest point mapping when the surface is represented
as a point cloud. (See Fig. 1.) Denote the point cloud by I'x C I', with K indicating the total
number of points in the set. Here, we shall assume that the K points uniformly distribute on
the surface. The purpose of the exposition here is to point out a promising application of the
method to point cloud data. A full analysis of the algorithm in this area warrants a separate
paper.

We approximate Pr using the following strategy:

(1) Foreachz; € Tgh , estimate "k locally on the grid nodes. Call the local surface associated
to the point z;, 'k (z;).
(2) Compute the closest point of z; on the local surface, I'x (z;).

In our implementation, we use biquadratic interpolation at each z; to compute 'y (z;).
Another option to locally estimate the surface is least squares as in [23]. We then use Newton’s
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Fig. 1 Example of a point cloud for the Stanford bunny zoomed in near the top of the head.

method to obtain the closest point of each z; on I'y (z;). Denote the closest point mappings
by P}'x (z;). Then on each grid node z;, the equation is discretized as usual, with Pli (z;)
being approximated by finite differences of Pl‘«‘g (z;). We use a fourth-order finite difference
scheme to estimate P[. and singular value decomposition to obtain the singular values and
singular vectors of P[.. We show the effect of this approximation procedure in Sect. 4.2.

In any case, the term, ET, in (39) now depends on 1/ K, which corresponds to the uniform
spacing of the points. Therefore, with a fixed point cloud, refinement of Cartesian grids
eventually will not further improve the accuracy in the numerical solutions when compared
to the solution on the idealized smooth surface sampled by the point cloud. In Sect. 4.3, we
present some results revealing the effect of different surface sampling densities.

If noise is introduced to the point cloud, and if the amount of perturbation in the original
“surface normals” is significant, more sophisticated surface fitting is required; e.g. adopting
a similar strategy proposed in [23]. We will investigate this important issue in a future
manuscript. Nevertheless, in Sect. 4.3, we present some results revealing the effect of noise
in the point cloud.

4.2 Example 1.1

First, we present a numerical convergence study. We approximate the solution to (37)—(38),
where I" is a sphere centered at (0, 0, 0), with radius, ro = 0.5, and 7 is a point on the sphere.
The exact singular values and vectors in B(z, 1) are used. In the case of a sphere

op=0p=1—-—" = — (40)
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Fig.2 Two view points of the distance function on a sphere.

where r(z) is the radius of the sphere going though z centered at (0, 0, 0). Figure 2 shows
the distance function to a point on the sphere for two different view points.

Since the solution is constant along the normals of I, we can easily estimate the L error.
Using the formulation in [18], the estimation of the L error is given by the following formula:

e — " |lLyry ~ Y @(Pr(@i) — v Ke(dr @) @)h,

Z; ETeh

where u is the exact solution and u” is the approximated solution on I" using the approximate
solution, vf’, of the extended equation with grid size h. Here,

2
Ke(dr(z)) = A % eXP(m)

where A = 7.513931532835806 and
J(z;) = 0107,

where o7, o> are given in (40).

Because all the characteristics of the solution emanate from the source point on the sphere,
the errors at the source point will propagate through the solution in the entire computational
domain. Therefore, we initialize the solution near 7 with the exact solution if u(z) < 0.2
The L1 and L, errors are reported in Table 1. We see that first order convergence is achieved
in the L error. However, because of the singularity of the solution at the point opposite the
source point on the sphere, the order in the L, error is less than one. The results verify that
the boundary closure procedure does not influence the overall order of the scheme.

We report the number of iterations it takes for the L, norm of the difference in the solution
between successive iterations is less than 1.0e — 13. One iteration includes one sweep of the
grid in each of the eight sweeping directions. The timing for the numerical experiments scales
linearly to the number of grid nodes in the narrow band, T, and the number of iterations
used in the Lax-Friedrichs scheme. The computations were performed on a MacBook laptop
with a 1.6 GHz Intel CPU on a single core using Julia. One Lax-Friedrichs iteration took on
average 0.34260 seconds for the case N = 101 in Table 1. We note that our code was not
optimized for efficiency.

Another advantage of our setup is that we can use existing high order methods to compute
the solution to HJB equations on surfaces. In Table 2, we present the L and L, errors and
orders for the third order method given in [39]. We initialize the solution near 7 to the exact
solution if #(z) < 0.2. We see that third order is achieved in the L error. Again, because of
the singularity in the solution at the point opposite the source point on the sphere, the order
in the L, error is first order.
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Table 1 Errors and orders of accuracy for the distance function on a sphere, computed by the first order
Lax-Friedrichs sweeping algorithm. We use h = 2/(N — 1) and € = 4h

N Number of points in T¢ L error order Lo error Order Iterations
101 63302 0.02319 0.03741 32
201 252310 0.01138 1.0345 0.02213 0.76291 49
301 566458 7.5443e-3 1.0158 0.01611 0.78624 65
401 1571974 5.6562¢-3 1.0041 0.01280 0.79978 80

Table 2 Errors and orders of accuracy for the distance function on a sphere, computed by the third order
Lax-Friedrichs sweeping algorithm. We use h = 2/(N — 1) and e = 11h

N Number of points in 7¢ L error order Lo error Order Iterations
101 183810 5.1129¢-4 0.02779 65

201 702626 6.6194e-5 2.9706 0.01137 1.2987 92

301 1566014 2.0373-5 29182 7.1199¢-3 1.1587 100

401 2776370 8.5992e-6 3.0069 5.1806e-3 1.1085 119

4.3 Example 1.2

In this example, we compute the distance function on the sphere when the sphere is rep-
resented as a point cloud. We show the effect of our method when using different uniform
samplings of the sphere.” The results are tabulated in Table 3 when the sampling of the
sphere has 400, 800, and 1600 points. We again initialize the solution by exact solutions
around the same neighborhood of 7 as in Sect. 4.2. By comparing the L error from Table
1 for N = 101 and the L error in Table 3 for N = 101 and no noise, it appears that the
dominating source of error is the numerical discretization of the PDE. As the grid is refined,
we see that it appears the error related to approximating the surface begins to dominate. This
is apparent by comparing the L error from Table 1 for N = 301 and the L; error from
Table 3 for N = 301 with no noise. Notice as the point cloud becomes more dense and the
accuracy of the surface approximation increases, it appears the dominating error is again due
to the numerical discretization of the PDE.

In Table 3, we also consider when noise is introduced to the point clouds of different
sampling densities. The noise is applied by adding & % (—1 + 2 * rand())/2 to each point
in the point clouds, where § = 0.001, 0.005 and rand() is a uniformly distributed random
number in (0, 1). We can see if the noise is too large the error begins to deteriorate, and we
need a more sophisticated surface fitting algorithm in our method.

4.4 Example 1.3

Next, we study the affect that the depth of projected ghost nodes has on the overall error for
the distance function on the sphere. The set up is the same as in the previous section. Here,
we choose a 1013 sized grid with € = 11h where & = 2/100. We estimate the L1 error for
when the boundary closure procedure is carried out at four different depths. Recall that a

2 The uniform samplings of the sphere were computed using the code provided at https://github.com/
AntonSemechko/S2-Sampling-Toolbox.
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Table3 L errors for the first
order Lax-Friedrichs scheme

using different densities of K =400 K =800 K = 1600
uniformly sampled point cloud

53
Z

L errors using I'g

representations of the sphere and 101 0.02332 0.02317 0.02318

different noises applied to the 201 0.01172 0.01144 0.01139

point clouds. Here, K is the 301 8.0413¢-3 7.6406¢-3 7.5649¢-3

number of points in the point

cloud 0.001 101 0.02349 0.02321 0.02313
201 0.01192 0.01153 0.01148
301 8.2866e-3 7.7936e-3 7.75321e-3

0.005 101 0.02464 0.02364 0.02404

201 0.01389 0.01339 0.01531
301 0.01082 0.01265 0.01279

The noise is applied by adding 8 * (—1 + 2« rand()) /2 to each point in
the point clouds. Weuse h = 2/(N — 1) and € = 4h

Table 4 Comparison of different choices of « for the sphere on a 1013 grid. Here, € = 11h and h = 2/100.

o d(z) — (11 —2/3)h d(z) — 3h d(z) d(z) + 3h

Ly error 0.02298 0.02303 0.02320 0.02349

ghost node, z;, is outside of 7" and is projected into 7, along the normal of the surface at
that point, i.e.,

Z; — Z; —an;.
Table 4 shows the L error for the depths:
a =d(z) — (10 — 2+/3)h, d(z) — 3h,d(z), d(z) + 3h.

We can see that the error the solution is not very sensitive to the choice of depth. In our
simulations, we chose ¢ = € — 2/3h.

4.5 Example 1.4

Finally, we compare the following: (1) our method on the sphere, using exact singular values
and vectors as in the set up for Table 1; (2) our method with the point cloud procedure
described in 4.1.4 and finite differences to estimate Pli; (3) the method in [27]. Since method
(3) requires € = Ch? where C = V3 and y € (0, 1), to fairly compare the error of the
methods, we increase the width of the narrow band to & = 2h%7, which is used in the
convergence analysis of (3) in [27]. We initialize the experiments using methods (1), (2), and
(3) with exact values given in a box of length £ around the source point/points in the initial
sets. We also are not able to compute the L error for method (3) since the solution is not
constant along the normals of I'. Therefore, we can only report the L, error, and we use
trilinear interpolation to approximate the solutions on I for (3). The errors are reported in
Table 5. We can also see that estimating Pr from a point cloud and Pli from finite differences
does not greatly influence the L error of the method.
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Table 5 Comparison of methods on a 101 3 grid: (1) Our method using exact closest point mapping and exact
singular values and vectors; (2) Our method using closest point mapping sampled from a an equally distributed
point cloud of 400 points and finite differences to compute singular values and vectors; (3) method in [27].
Here, € = 2107 and h = 2/100.

Method (1) (2) 3)
L error 0.03226 0.03334 0.17072
Ly error 0.07787 0.07667

4.6 Example 2

In Figs. 3, 4, and 5, the distance function to a source point is shown on various sur-
faces. The contours shown are equally spaced and parallel. The solutions for the torus
and bunny are computed on a 201 grid, and a 1013 grid is used for the elephant, mask,
human skull, and dinosaur skull. All computations use a narrow band width of € = 4h
and point cloud representations for the surfaces. The number of points in the point clouds
of the torus® and bunny4 are 178,350 and 228,096, respectively. For the elephant, mask,
human skull, and dinosaur skull®, we used point clouds with 65,292, 1,199,988, 234,618,
and 139,491 points, respectively. In Fig. 3, a cross section of the solution is displayed
to show that the solution is indeed constant along the normals of the surface. Our new
framework also allows us to sort point clouds. Figure 3 displays level “belts” of the point
cloud, i.e., points in the point cloud whose distance from the source point lies in given
interval.

Another advantage of our formulation is that when we compute the characteristics, known
as geodesics, of the Eikonal equation via the extended Eikonal equation on the narrowband,
the paths remain on the surface if the initial point lies on I'. Since the solution to (37)—(38)
is constant along the normals of I', the gradient always belongs to the tangent spaces of I" or
its parallel surfaces, I';). We have that B(x, u)a =aforx e "anda € Ay = IyI' N sn—1
since 01 = o3 = 1. Thus, if the initial point is z € I', the geodesic on the surface can be
obtained by solving the dynamical system

dy ,_ —Voaw) )
dt IVu(y)ll
y0)=1z,z€eTl. 42)

In Fig. 6, we consider the case when we have two source points and display the solution
and some geodesics. Recall that in Theorem 2.1 we showed that paths with equivalent initial
points remain equivalent for all time. We show a visualization of this property in Fig. 7. In
the next section we will compare geodesics of the HIB equation given different anisotropic
speed functions.

3 The point cloud for the torus was generated using the standard parametrization of a torus.

4 The point cloud for the Stanford bunny is generated from a refinement of the triangulated Stanford bunny
from https://casual-effects.com/data/ [26].

5 The point clouds for the surfaces in Fig. 5 were generated from the triangulations downloaded at https://
www.myminifactory.com/scantheworld/.
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Fig. 3 Top left: Distance function on a torus. Top right: Points from the corresponding point cloud whose
distance from the source point lies in the interval (0.09,1.1), (0.29,3.1), (0.49,5.1), or (0.69,7.1). Bottom:
Solution slice at z=.5 with contours showing that the solution is indeed constant along normal.

Fig.4 Distance function on the Stanford bunny with four viewpoints.
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Fig. 6 Left: The distance function for two source points. Right: Eight geodesics computed on the Stanford
bunny.

Fig.7 Verification of

Theorem 2.1, i.e., paths with
equivalent starting points stay
equivalent for all time. We plot
the red geodesic from Fig. 6, and
the initial point of the blue
parallel path is offset by 0.015
along the normal of the bunny at
that point.
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b=0.5 b=10.5

Fig. 8 Anisotropic example for the curvature based speed function showing the contours and geodesics for
values of b = 0, 0.05, 0.5.

4.7 Example 3

Finally, we test implement the framework on an anisotropic speed function. We solve

mgn [Vv(z) - f(z,a)B(z, w)a + 1} =0, zeT\T, (43)

v(z) =2(@), z€T, (44)

where f : I' x A — Ris a curvature based speed function on the surface. We use the speed
function proposed in [38]. The speeds are fast on low curvature areas of the surface and slow
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on high curvature areas. This means that the corresponding “shortest” paths traverse areas of
the lowest curvatures. These paths are typically longer than the geodesics of the surface.
The normal curvature of I" at x in the direction a is given by

_.r| k1 0
Ka(X) = a [Oxz]a

where «1 and «; are the principal curvatures of I" at x. Then the curvature-minimizing speed
function is given by

J(x, a) = exp(=b|lra(x)]]),

where b is a positive constant. When b = 0, (43) reduces Eikonal equation on the surface.
A larger value of b corresponds to a greater difference in speeds between areas of low and
high curvature. We display the solutions for varying b values to a source point on the bunny
in Fig. 8.

In this example, the set V(x) = {f(x,a)a | a € A,} is not neccesarily convex for all x
in I". Therefore, an optimal control may not exist. However, we can still extract suboptimal
paths, called anisotropic geodesics, whose total cost is arbitrarily close to the value function
at the starting point. Just as in the isotropic case, the anisotropic geodesics computed from
the extended HIB equation on the narrow band will lie on the surface since B(x,a)a = a
for x € I'. The paths can easily be extracted because we compute the minimizing control at
each grid node when solving (43)—(44). Once we have the optimal (or suboptimal) control
values, a*(-), we then solve dynamical system

d
d—f(r) = f(y(1). 2" (1)a* (1), 1 > 0
y0) =1z, zeTl.

We plot three anisotropic geodesics for each b value in Fig. 8. We can see as b increases the
Euclidean distances of the paths are longer, and the paths start to seek out the narrow valleys
of the bunny.

5 Summary and Conclusion

In this paper, we presented a new formulation to compute solutions of a class of HIB equations
on smooth hypersurfaces. We extend the HIB equation’s associated optimal control problem
from the surface to an equivalent problem defined in a sufficiently “thin” narrow band around
the surface, in the embedding Euclidean space. The extension was done so that the resulting
value function is the constant normal extension of the value function defined in the optimal
control problem on the surface. We presented the formulations for the general anisotropic
equation and showed that the viscosity solution of the HIB equation on the narrow band is
the constant normal extension of the viscosity solution on the surface, independently of the
optimal control problems. We also presented the isotropic case and showed there is no need to
restrict the control space in order to have an equivalent formulation. The proposed approach
is independent of surface representation and can be used to compute and define optimal
control problems on uniformly distributed point clouds sampled from some smooth surface.
It is also clear that our proposed extension approach can be applied in to time dependent
equations arising from the finite horizon control problems. Together with [9], our extension
approach provides a good framework for solving to mean field games to high order accuracy
on complicated and non-parametrized surfaces.
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With this new framework, we are able to use Cartesian grids and the existing methods
for computing solutions to HJB equations in Euclidean space on a very thin narrow band
to solve HJB equations on surfaces coupled with a simple boundary closure procedure. Our
numerical examples verify that the boundary closure procedure does not influence the overall
order of the method. We also show that our formulation allows one to easily solve the surface
HJB equations to high order accuracy.
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