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Abstract—Modern electric grids that integrate smart grid tech-
nologies require different approaches to grid operations. There
has been a shift towards increased reliance on distributed sensors
to monitor bidirectional power flows and machine learning
based load forecasting methods (e.g., using deep learning). These
methods are fairly accurate under normal circumstances, but
become highly vulnerable to stealthy adversarial attacks that
could be deployed on the load forecasters. This paper provides
a novel model-based Testbed for Simulation-based Evaluation
of Resilience (TeSER) that enables evaluating deep learning
based load forecasters against stealthy adversarial attacks. The
testbed leverages three existing technologies, viz. DeepForge:
for designing neural networks and machine learning pipelines,
GridLAB-D: for electric grid distribution system simulation, and
WebGME: for creating web-based collaborative metamodeling
environments. The testbed architecture is described, and a
case study to demonstrate its capabilities for evaluating load
forecasters is provided.

Index Terms—power grid, load forecasting, machine learning,
security, resilience, adversarial attacks, model-based testbed

I. INTRODUCTION

This work has been motivated by our NSA Science of

Security Lablet research efforts to create executable simulation

models and repeatable experiments for evaluating potential

vulnerabilities and successful resilient strategies for complex

Cyber-Physical Systems. To address these needs we developed

a web-based, cloud-hosted design environment and integrated

state-of-the-art simulation engines for multiple CPS domains

(highway and railway transportation, power distribution). This

paper focuses on the power grid domain of our multi-model

testbed.

In electrical grids, the power generation is typically con-

ducted on-demand, which requires utilities to continuously

forecast the grid loads [1]. The loads are estimated for the

long-term (LT) (i.e., more than a year), medium-term (MT) (i.e.,

a month to a year), and short-term (ST) (i.e., an hour to a week).

LT forecasts are used for planning the necessary generation,

transmission, and distribution equipment. MT forecasts are

used for adjusting the LT plans. ST forecasts are used for real-

time grid operations and operating both the grid and power

markets in a safe, secure, and reliable manner.

ST and MT forecasting have become challenging due to

the dynamic and distributed nature of modern electrical grids.

In the traditional grid, power is centrally generated, and the

power flow is unidirectional from generation to transmission

to distribution network. Smart grid technologies enable the

integration of distributed energy resources (DERs) that provide

local sources and introduce bidirectional power flow into the

system. Additionally, most DERs are variable sources such as

wind turbine and solar photovoltaic (PV) that are not always

available due to changing weather conditions such as storms.

Because of capability for bidirectional power flow and the

variable nature of DER, grid operations need to evolve from a

deterministic to a stochastic model.

Smart grid with DER integration have enabled consumers

to generate power locally and provide excess generated power

back to the electric grid for a financial benefit. In addition, the

potential dynamic pricing of electricity necessitates the use of

transactive controllers and smart demand management to get

the best pricing of power (e.g., move consumption to off-peak

hours). This stochastic environment has made load forecasting

significantly challenging where traditional demand-supply and

failure modeling is no longer suitable.

Figure 1: Deep Learning Based Load Forecasting in a Dynamic

Power Grid with Distributed Energy Resources

To address the above challenges, smart grid deploys a large

number of smart sensors that collect power flow readings at

various points in the network. The measurements from these

sensors can be used by deep learning based load forecasting

systems to estimate the expected system loads. Figure 1

illustrates the variety of factors affecting ST load forecasting

and how a deep learning system can be used to predict future

loads. The sensor readings recorded by smart meters (generated

by real system or a simulation) are stored in a time series

database, which is used by a neural network to learn expected

load on the system. Deep learning based forecasting is fairly

accurate under normal circumstances, but, due to its complexity,

becomes highly vulnerable to stealthy adversarial attacks. These
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attacks [2] subtly modify some of the sensor readings (by

intercepting and forwarding modified data) such that not only

the attacks remain undetectable by anomaly detection software,

but also the accuracy of the load predictors is significantly

reduced. As the adversarial attacks are not easily detected,

they can result in cumulative disruptions leading to significant

damage and loss before the system could be reverted to fallback

methods.

Adversarial machine learning has been studied in many

different categorization and estimation problems [2] [3]. Inves-

tigation of its use in cyber-physical systems (CPS) is recent, but

is quickly emerging as an active research field [4]. The cyber-

physical nature of smart grid makes it possible to attack specific

cyber components such that the resulting failures cascade to a

much wider region of the grid [5]. Further, attackers can exploit

the growing networking capability of monitoring and control

equipment to remotely attack specific components. Because

the electric grid is one of the national critical infrastructures, it

is crucial to study the vulnerability of different deep learning

based forecasting methods earlier in the design cycle to avoid

large-scale failures in a deployed system.

Figure 2: TeSER Testbed Architecture

In this paper, we describe a model-based Testbed for

Simulation-based Evaluation of Resilience (TeSER) [6] that

can analyze the resilience of load forecasters in the presence

of stealthy adversarial attacks. As shown in Figure 2, the

modeling front-end is built using the open-source Web-based

Generic Modeling Environment (WebGME) [7] that supports

creating web-based collaborative metamodeling environments.

WebGME’s plugin architecture enables interpretation of models

and generation of system artifacts (e.g., source code, configura-

tion files, and others), which can be used to execute experiments

on a compute platform (e.g., desktop, server, or cloud). The

stealthy adversarial attacks in this research were modeled using

DeepForge, an open-source web-based environment for deep

learning that enables collaborative modeling of neural networks

and machine learning pipelines for reproducible deep learning

experiments [8]. The testbed also utilizes an open-source power

distribution system simulator, GridLAB-D [9], for simulating

the electric grid and generating power flow data from smart

sensors. In addition, the web-server contains an integrated

model database that stores models of the electric grid, neural

networks, and machine learning pipelines. TeSER executes

the experiments on a connected cloud computing platform

that enables the large-scale computations required by these

experiments. The experiment results are collected and presented

to the user as both raw data and digestible plots for analysis.

The user is also provided with a full record of machine learning

training iterations and console logs of the machine learning

pipelines. We argue that by enabling earlier detection of the

vulnerabilities in deep learning based load forecasting systems,

our framework can help to both minimize the associated cost

and make these systems more effective.

In the rest of the paper: Section II provides the motivation

for analyzing vulnerabilities of load forecasters; Section III de-

scribes the core architectural components of TeSER; Section IV

gives a case study to demonstrate TeSER’s capabilities; and

Section V concludes the paper and highlights future work. Note

that a more detailed experiment—analyzing various attacker-

defender games—is given in [10], this paper focuses on the

architectural aspects of the testbed.

II. MOTIVATION

Smart grid is a complex example of CPS [5] where the phys-

ical and computational components interact in specific ways

to determine overall system functionality. For effective smart

grid operations, a range of sensors are used to monitor aspects

of the grid such as power flows at different locations, line

continuity, equipment and device failures, actuator positions,

and thermal characteristics. Load forecasting is essential for

proper planning of the electrical system to determine the power

equipment required and their arrangement, minimize system

overloads, reduce power losses, manage operations effectively,

and maintain the balance of supply and demand [1] [11].

Owing to bidirectional power flow and increases in DER

integration, the smart grid has become highly dynamic, which

directly affects the accuracy of load forecasts. The system

dynamics are further affected by factors such as the variations

in weather conditions and energy usage at different times of

the day, price fluctuations in power markers, and a deeply

integrated mix of residential, commercial, and industrial loads.

Traditional methods of load forecasting use deterministic

approaches (e.g., expert surveys and scenario-based assessment)

and quantitative methods (e.g., time series analysis, smoothing

averages and trend projections, least square estimates, and

regression analysis). Since these methods tend to fit load

expectations into a trending model, they do not work for

highly dynamic variations in smart grid network topology (e.g.,

bidirectional power flow) and power supply and demand (e.g.,

DERs and time of use rate). Machine learning techniques can

effectively handle these cases—where continuously updating

the model is neither plausible nor pragmatic. The deep learning

methods can be used for predicting loads in a more reliable

manner while minimizing cost.

Deep learning methods, however, suffer from the black box

problem, where there is no direct relation between inputs and

outputs. Moreover, the electric grid has become more connected

as the interactions between sensors, actuators, and controllers

are largely enabled through a cyber communication network.

This makes smart grids that use deep learning methods for
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load forecasting vulnerable to cyber-attacks and cascading

failures. There are several examples where significant damage

to the electric grid has occurred [12]. Therefore, the smart grid

must be secured from potential cyber-attacks on deep learning

based load forecasting methods. Stealthy adversarial attacks

can intercept inputs of deep learning systems and subtly modify

them to impact the system without being detected by anomaly

detectors. These types of attacks on deep learning methods

have been researched in the past, but as the deep learning

methods are only recently being used in a CPS context, a

testbed to enable such investigations is needed.

This paper describes a novel web-based and cloud-deployed

testbed that can evaluate the vulnerability of deep learning

models, that rely on a network of sensors for their inputs, to

stealthy adversarial attacks. Specifically, the testbed is applied

to load forecasters based on deep learning that use power

flow readings from smart meters as their input. TeSER uses

GridLAB-D for simulating an electric distribution system,

and DeepForge for designing adversarial attack models and

anomaly detectors. To avoid detection, the adversarial attacks

are limited to modify the sensor readings within a given lower

and upper threshold [13]. The testbed enables modeling of

attacker-defender interactions as a Stackelberg game [4], where

the defender uses a random subset of sensor readings and

a neural network for load prediction, and then the attacker

modifies some of those sensor readings within a configurable

lower and upper bound. In addition, several load forecasters

can be designed for introducing uncertainties that defend the

load forecasting system against stealthy adversarial attacks.

III. TESER COMPONENTS & FEATURES

The goal of TeSER is to provide a collaborative design and

experimentation environment for evaluating the security and

resilience of CPS amidst various cyber attack and defense

strategies and the impact of these strategies on the physical in-

frastructure. The testbed leverages open-source technologies to

build design tools that are reusable and configurable. It is web-

based, cloud deployed, and supports real-time collaboration

among researchers and analysts on models and experiments.

In addition, it stores all input data, model parameters, and

simulation results in the models, and version controls the

models for experiment repeatability and provenance. This

section provides an architectural overview of TeSER’s core

components and key features (as summarized in Figure 3).

Figure 3: TeSER Core Components and Features

A. Modeling Framework

WebGME allows both the creation of rich, domain-specific

modeling languages (DSMLs) and the use of those DSMLs

to create domain models. It supports creating plugins that

interpret the domain models, generate related system artifacts

(e.g., source-code, scripts, configuration files), execute code on

integrated compute platforms (e.g., cloud), collect experiment

results, and display them to the users as digestible charts/plots

and downloadable artifacts. For the modeling and experi-

mentation front-end, WebGME’s decorators and visualizers

enable custom visualization of models, and the integrated

console logging and feedback notifications allow users to get

insights into long-running applications in the backend. A key

aspect of WebGME is that it is web-based, highly scalable,

and supports real-time collaboration among researchers and

analysts who can edit the system and experiment models

simultaneously from different locations using various web-

browsers. WebGME stores all models in a MongoDB database

and provides full version control and change tracking. Once

designers create system models, analysts can use them to

experiment with different designs. TeSER leverages WebGME

for power distribution grid and deep learning models, but other

CPS domains, such as transportation and healthcare, can also

be supported using WebGME’s extensible architecture.

B. Deep Learning Framework

DeepForge is built using WebGME and supports rapid

development of neural-network and machine learning (ML)

models. Modeling in DeepForge uses four main concepts, viz.

Operations: atomic functions that accept named inputs and

generate named outputs; Pipelines: specific ML activities such

as training, data processing, and predicting; Executions: run-

time instances of pipelines; and Jobs: run-time instances of

operations along with associated execution metadata. As shown

in Figure 4, the left side is a popular neural network model

of a long-short term memory (LSTM) autoencoder for time

series forecasting. The right side shows some of the reusable

operations for creating ML pipelines (e.g., GetLocalPredictor

implements a prediction routine and PlotOperation plots the

time series data). A load forecasting processing pipeline is

shown in the middle. Note, that the contents of some compound

layers—most notably the LSTM blocks—are not modeled in

DeepForge but directly mapped to classes in the Keras library.

Figure 4: Deep Learning Framework
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DeepForge allows users to add their own reusable operations

in the library, and reuse pipeline models for creating variant

or derived models. The neural network models are stored in a

separate library for reuse. A neural network model can be used

in multiple pipelines, and a single pipeline could use multiple

neural network models. The integrated cloud backend is capable

of executing several pipelines in parallel. DeepForge supports

detailed views into pipeline execution progress by providing

console logs that show the training iterations and by displaying

integrated plots about training, testing, and prediction results.

Another important feature of DeepForge is that it continuously

aligns the Python code with corresponding pipeline models.

The user can edit either the Python code or the pipeline model

independently and DeepForge automatically synchronizes the

other. In addition, all test data and models are stored in the

connected artifacts store. With these comprehensive features

and integrated experimentation support tools and compute

infrastructure, DeepForge provides a powerful web-based

environment for deep learning that TeSER leverages for creating

its deep learning framework.

C. Distribution Grid Modeling & Simulation Tools

TeSER leverages a web-based platform from prior work [14]

and WebGME for building its collaborative tools to support

evaluation of distribution grids with integrated DER and their

resilience against cyber and physical attacks. As shown in

Figure 5, first a user either creates a new grid model or imports

an existing GridLAB-D file and updates it as needed. Next, it

provides player files (timestamped values of grid objects as

input) and recorder files (specification of object values to collect

as output). Finally, the weather files, if needed, can be supplied.

The plugins are used to interpret the models and configurations

to generate artifacts that are sent to a Simulation Driver and

Event Manager module, which orchestrates the power grid

simulation in the cloud accordingly, and gathers feedback from

the executing experiments. The generated statistics specified in

the recorder files are collected and returned to the user when

the simulation completes. Continuous feedback is given while

the simulation is running. TeSER uses this tool for simulating

power distribution grid and generating smart meter recordings

as input data for the deep learning models.

Figure 5: Distribution Grid Modeling & Simulation

D. Cloud Computing Backend

TeSER currently supports ML experiments in the power grid

domain. The distribution grid simulation can take a long time

for large grid models (e.g., with 1000+ nodes) or when multiple

simulations are needed for different training inputs. The deep

learning pipelines can also be computationally expensive, but

multiple ML pipelines can be executed in parallel for faster

responses. For these reasons, it is necessary to integrate a

scalable and powerful compute platform. TeSER supports an

integrated cloud computing backend that is hosted at Vanderbilt.

The cloud also provides capability to store large datasets for

ML pipelines and results of previous executions of pipelines.

Users can login and inspect all of the executions ran previously

(which could have taken hours or even days) including the

console logs of all iterations, generated result files, and plots.

Further, the user can investigate the execution results step-by-

step and even re-execute any step (i.e., job).

E. Model Database

For web-based ML experimentation environments, it is

crucial that models are version-controlled and accessible

directly from the modeling frameworks. TeSER relies on the

WebGME supported MongoDB object-oriented database. How-

ever, collaboration is highly challenging for large models (e.g.,

1000+ node grid) as every small change in the interconnected

graphical model can amount to a large update to be broadcasted.

WebGME solves this issue by utilizing a Git-like commit

architecture for model changes and only broadcasting deltas

to all the modelers. The commits also enable fine-grained

change tracking and allow relatively easier merging of models

when a conflict arises. The WebGME model databse is used

in TeSER to store not only the models of power grid, neural

networks, machine learning pipelines, but also to store data and

result artifacts. This greatly enhances the reproducibility and

provenance of experiments. This database can also be queried

using WebGME command-line tools, which enables automated

experiments as well as testing.

F. Tools for Notebook-Based Analysis

CPS contain many interconnected physical and cyber com-

ponents and their experimentation generates a large amount of

data, which requires a rich framework for automated analysis.

In the machine learning communities, Jupyter Notebooks are

popular as they have integrated Python interpreter and analysis

tools. TeSER has integrated Jupyter Notebooks in the WebGME

front-end to facilitate analysis of data through Python scripts.

As mentioned in Section III-B, DeepForge keeps the pipeline

models and their corresponding Python code side-by-side and

synchronized. The integration with Jupyter Notebooks allows

embedding those Python scripts in Notebook cells and testing

the corresponding pipeline models in an automated manner. For

Notebook-based analysis, the user generates Jupyter Notebook

files by executing TeSER plugins on a loaded model (or

WebGME’s Python libraries could be used to query the model

from a user-created Notebook). TeSER also runs a Jupyter

Notebook server besides the WebGME server and accesses
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it using a WebGME visualizer. The Notebook server enables

users to develop scripts and algorithms for analyzing experiment

results. As the Notebook server is accessed using WebGME

visualizer, that can also update the model based on analysis

results received from the Notebook server. Note that the

notebook-based approach is optional for more advanced post-

simulation analysis tasks.

G. Tools for Integrated ML Experiments

Experimentation with complex CPS not only requires para-

metric variations and cyber defense and attack combinations

(i.e., design of experiments), but also an integrated deep-

learning framework for analyzing ML algorithms. TeSER cur-

rently supports the power grid domain. It integrates GridLAB-D

simulator for power distribution simulation and frameworks,

such as Keras and TensorFlow, for creating deep-learning

models. At present, the data from grid simulation is fed into

deep learning models manually. However, we are working

on integrating the two modeling environments into a single

framework. This will support automated workflows of power

grid simulation, generation of simulation data and its feed into

corresponding ML pipelines. The pipeline execution results

could also be fed back to update the grid model and close the

loop. Figure 6 shows the overall architecture for integrated ML

experiments. Here, the training operation in the ML pipeline

refers to the corresponding grid model. The DeepForge code

generator converts the pipeline model into an executable job

script and the GridLAB-D Extension code generator generates

templates to configure the simulation driver. We are developing

an API for orchestrating the integrated ML experiments, which

can execute grid simulations using an integrated simulation

driver (like in III-C) and run the ML pipelines using the

simulation data generated from grid simulations.

Figure 6: Integrated ML Experimentation in TeSER

H. Tools for Integrating Modeling Frameworks

Integrating modeling frameworks is needed in TeSER for

connecting the power grid simulations and deep learning

pipeline executions in a tight loop. We leverage WebGME’s

command-line interface for merging the corresponding DSML

and creating an integrated modeling environment. In addition,

we also leverage DeepForge’s extension mechanism for integrat-

ing other modeling languages. The currently available support

for creating Keras library based neural network models is an

example of how DeepForge’s extension mechanism works.

IV. CASE STUDY

The collaborative model-based approach provided by TeSER

enables rapid prototyping and experimentation with various

neural network architectures and data processing, training and

evaluation pipelines. Furthermore, tight integration with the

CPS simulation tools—such as GridLAB-D—simplifies the

process and shortens the time for input data generation for such

models. Below we aim to illustrate how one can use the testbed

to easily build and compare various ML-based predictors for

load estimation in power distribution networks, and how this

process is supported by the web-based design environment. For

specific detailed analysis of prediction accuracy, its effects on

load forecasting and of various attack and defend strategies,

please refer to [10] [4].

A dataset has been generated with a realistic GridLAB-D

model with 109 commercial and residential loads, where each

endpoint reports its power usage on an hourly basis over a

period of 90 days. Based on these reports the total power

consumption in the distribution network is calculated. The case

study aims to create and evaluate alternative regression models,

which can predict the network-level (total) load for the next

hour based on the previous 24 hours of data. The dataset was

split into training and testing parts with 81 and 9 days of

measurement data respectively.

We built a single generic data processing pipeline to train and

evaluate the alternative ML models (see Figure 7). The testbed

allows to (re)assign different ML architectures to the data

processing pipeline. The current workflow loads the simulation

results, implements the train/test split, drives the training (for

a given number of epochs) and evaluates the model on the test

data. It generates plot data for the training loss and summary

statistics on the test results.

Figure 7: DeepForge generic pipeline model for training

As shown in Figure 8, we selected three popular architectures

for time series forecasting with neural networks. First, a

multilayer perceptron (MLP) model with two hidden layers (64-

nodes each) is built. The second model is a deep convolutional

network (CNN) with two sets of 1-dimensional filters sweeping

on the time axis. Last, a more complex long short-term memory

(LSTM) model is created (three LSTM layers with two fully

connected layers). All three models use simple Rectified

Linear Unit (RelU) activation functions and dropout layers

for regularization. The training loss figure (Figure 9) of the

three alternatives is captured from the testbed’s web interface.
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(a) LSTM model (b) CNN model (c) MLP model

Figure 8: Alternative neural network architectures for regression

Figure 9: Training loss for MLP, CNN and LSTM

Evaluating the alternative predictors for the simulation

data requires a single change in the pipeline–architecture

assignment. The testbed takes care of input data generation,

model versioning and tracing the analysis results back to the

versioned model. This relatively simple experiment resulted in

the prediction mean squared error (MSE) of 1.854 for MLP,

0.616 for CNN, and 0.106 for LSTM. As a baseline, the

constant mean predictor has an MSE of 12.218. These results

show the relative performances of the neural network models

and agree with our assumptions on how 1-D convolutional and

recurrent models can better learn and predict time series data.

V. CONCLUSIONS & FUTURE WORK

In this paper, we presented TeSER that is built using widely

used open-source technologies. We presented its application

in the power grid domain for evaluating deep learning based

load forecasters. We described the testbed architecture and its

core components and features and demonstrated it with a case

study on load forecasters. TeSER uses a model-based approach

and is web-based and cloud deployed. It provides strict version

store for storing models (such as grid, neural network, and

pipeline models), input datasets, and experiment results, thereby

enabling experiments to be traceable and parameterizable.

We are working on integrating the power grid simulation and

the deep learning framework into a single framework for end-

to-end integrated workflows between them. This will support

automated workflows of power grid simulation, generation of

simulation data and its feed into corresponding ML pipelines.

We are also extending our library of reusable and configurable

cyber-attacks (modeled as ML pipelines), neural network

models, and cyber-defense models of anomaly detectors that

can mitigate the impact of stealthy adversarial attacks.
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