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A B S T R A C T   

Rapa Nui (Easter Island, Chile) presents a quintessential case where the tempo of investment in monumentality is 
central to debates regarding societal collapse, with the common narrative positing that statue platform (ahu) 
construction ceased sometime around AD 1600 following an ecological, cultural, and demographic catastrophe. 
This narrative remains especially popular in fields outside archaeology that treat collapse as historical fact and 
use Rapa Nui as a model for collapse more generally. Resolving the tempo of “collapse” events, however, is often 
fraught with ambiguity given a lack of formal modeling, uncritical use of radiocarbon estimates, and inattention 
to information embedded in stratigraphic features. Here, we use a Bayesian model-based approach to examine 
the tempo of events associated with arguments about collapse on Rapa Nui. We integrate radiocarbon dates, 
relative architectural stratigraphy, and ethnohistoric accounts to quantify the onset, rate, and end of monument 
construction as a means of testing the collapse hypothesis. We demonstrate that ahu construction began soon 
after colonization and increased rapidly, sometime between the early-14th and mid-15th centuries AD, with a 
steady rate of construction events that continued beyond European contact in 1722. Our results demonstrate a 
lack of evidence for a pre-contact ‘collapse’ and instead offer strong support for a new emerging model of 
resilient communities that continued their long-term traditions despite the impacts of European arrival. Meth
odologically, our model-based approach to testing hypotheses regarding the chronology of collapse can be 
extended to other case studies around the world where similar debates remain difficult to resolve.   

1. Introduction 

Monumental architecture, such as earthen mounds, massive stone 
circles, burial complexes, and temples trace the history of collaborative 
achievements by human communities over the last ca. 10,000 years. 
Because building these structures necessarily required group-level 
cooperation, their appearance, elaboration, and cessation at different 
times and places around the world are useful as archaeological evidence 
for changes in social organization and complexity (Abrams, 1989; 
DeMarrais et al., 1996; Kirch, 1990; Marcus and Flannery, 2004; 
Trigger, 1990). Yet, given the wide range of environmental and social 
conditions under which these phenomena emerge, explaining the dy
namics of monument construction in different world regions remains a 
central challenge to archaeologists (DiNapoli et al., 2019; Howey et al., 

2016). One step toward progress in this effort requires the establishment 
of reliable chronologies that provide probabilistic estimates for when 
monumentality begins, the timing of investments in these features made 
over the duration of their use, and the point at which construction ac
tivities cease. It is through such information that archaeologists can 
document events associated with increases in organizational 
complexity, cultural resilience in the face of environmental or de
mographic changes, or societal collapse. 

Though the definition and process of ‘collapse’ have long been 
debated (e.g., Butzer and Endfield, 2012; Kirch and Rallu, 2007; McA
nany and Yoffee, 2010; Middleton, 2012; Scheffer et al., 2012; Schwartz 
and Nichols, 2006; Strunz et al., 2019; Tainter, 1988, 2006; Yoffee and 
Cowgill, 1988), most scholars agree that these kinds of events commonly 
involve the end or decline in some kind of activity, whether it be changes 
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in settlement patterns, like depopulation of political centers, declines in 
focal aspects of religious and social activity, such as the end of monu
ment construction, or other factors (e.g., Dunnell and Greenlee, 1999; 
Middleton, 2017; Turner and Sabloff, 2012). In a recently proposed 
series of ‘grand challenges’ for archaeology, Kintigh et al. (2014a, 
2014b) highlight collapse as a central issue in the discipline and stress 
the need for broadly applicable ways of characterizing societal declines 
or transitions. One basic, but critical, component for resolving these 
issues concerns the chronology of these events in absolute and relative 
terms (Butzer and Endfield, 2012; Scheffer, 2016; Scheffer et al., 2012). 
Some recent studies have approached this issue using summed proba
bility distributions of radiocarbon dates (e.g., Downey et al., 2016; 
Hoggarth et al., 2016; Shennan et al., 2013). Here, using the hypothe
sized ‘collapse’ of Rapa Nui (Easter Island) monument construction as a 
case study, we present an alternative approach that makes use of 
Bayesian model-based testing of hypotheses for collapse that considers 
the onset, tempo, and cessation of archaeological events. Our Bayesian 
approach combines radiocarbon determinations, relative chronological 
information from architectural stratigraphy, and ethnohistoric accounts 
with the recently developed ‘tempo plot’ technique (Dye, 2016) to 
provide rigorous, model-based estimates for when monument con
struction begins, the rate of change in monument construction events, 
and the most likely timing for the cessation of these activities. 

Our results provide a key line of evidence contradicting the collapse 
narrative for Rapa Nui and thus calls into question a broad range of 
interdisciplinary research that uses the island as a model for societal 
decline more generally. Though we approach the issue of collapse on 
Rapa Nui with reference to chronologies of monument construction, we 
discuss how our methodological approach to testing hypotheses 
regarding the chronology of collapse can be extended to other case 
studies around the world where similar debates remain difficult to 
resolve. 

2. Background: Rapa Nui (Easter Island) 

Rapa Nui (Easter Island, Chile, Fig. 1) presents a quintessential case 
in world history where the tempo of intensified monument construction 
is central to debates regarding societal collapse. This small (164 km2) 
and isolated island is situated in the southeastern margin of East Poly
nesia, some 3000 km from South America and nearly 2000 km from the 
nearest inhabited island. Current estimates suggest that Polynesian 
voyagers initially colonized the island around the 13th century AD (e.g., 
Hunt and Lipo, 2008, 2006; Lipo and Hunt, 2016; Wilmshurst et al., 
2011). At some point after this event, islanders began constructing 
megalithic platforms (ahu) and carving and transporting multi-ton 

statues (moai). These monuments subsequently served as a major focal 
point for social and ritual activity of Rapa Nui’s pre-contact commu
nities (Martinsson-Wallin, 1994; M�etraux, 1940; Morrison, 2012; Ste
venson, 2002). Despite its size and remote location, the present 
archaeological record of Rapa Nui boasts hundreds of ahu and nearly 
1000 moai. 

The role of monument construction over the course of Rapa Nui’s 
culture history has been the subject of prolonged speculation and 
debate. Ahu construction and elaboration are commonly used as evi
dence for increasing social complexity and fission-fusion patterns among 
Rapa Nui’s social groups (Stevenson, 2002, 1997; 1986; Wallin and 
Martinsson-Wallin, 2008). In addition, numerous archaeological narra
tives for the island posit that an accelerated pace of monument con
struction, during the “Ahu Moai” phase, led to an environmental and 
demographic collapse around the 17th century. A core component of 
this narrative is the rapid destruction of monuments and end of ahu and 
moai construction, a time period termed the “Huri Moai,” literally ‘statue 
toppling,’ phase (Bahn and Flenley, 1992, 2017; Diamond, 2005; Flen
ley and Bahn, 2003; Kirch, 1984, 2017; Smith, 1961a). While a popular 
account, the lack of empirical evidence for many aspects of this narrative 
(Hunt, 2007; Hunt and Lipo, 2011; Mulrooney, 2013; Mulrooney et al., 
2010, 2009) has led some to argue that monument construction was 
instead a key factor in the long-term persistence of pre-contact com
munities that only terminated as a consequence of changes following the 
arrival of Europeans (Boersema, 2015; DiNapoli et al., 2019, 2018; Hunt 
and Lipo, 2018, 2011; Lipo et al., 2018; Mulrooney et al., 2010; Peiser, 
2005). Despite these criticisms, the notion that the late pre-contact 
period on Rapa Nui was a time of severe cultural and demographic 
changes remains popular (e.g., Bahn and Flenley, 2017; Kirch, 2017; 
Puleston et al., 2017; Rull, 2018, 2016; Rull et al., 2018; Scheffer, 2016). 
Indeed, the narrative of collapse on Rapa Nui is still persistently used in 
fields outside archaeology as a model for societal collapse, treating the 
supposed events of the ‘Huri Moai’ phase as historical fact (e.g., Akha
van and Yorke, 2019; Anderies, 2000; Basener and Ross, 2004; Basener 
and Basener, 2019; Bologna and Flores, 2008; Brander and Taylor, 1998; 
Brandt and Merico, 2015; Cazalis et al., 2018; D’Alessandro, 2007; 
Dalton et al., 2005; Dalton and Coats, 2000; de la Croix and Dottori, 
2008; Dockstader et al., 2019; Erickson and Gowdy, 2000; Pezzey and 
Anderies, 2003; Reuveny, 2012; Reuveny and Decker, 2000; Roman 
et al., 2017; Tak�acs et al., 2019; Uehara et al., 2010). 

Monumental architecture is central to explanations of Rapa Nui 
culture history and the proposed collapse of its pre-contact society. Yet, 
the chronology of ahu construction remains poorly resolved, leading to 
uncertainty in evidence such that debates are difficult to settle. For 
example, while we can currently say that monument construction was 

Fig. 1. Rapa Nui and East Polynesia. East Polynesia (left), and Rapa Nui showing the locations of all documented platform ahu as well as those analyzed in this 
study (right). 
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widespread during some component of Rapa Nui’s history, further de
tails about the onset, rate, and duration of these activities are ambig
uous. Moving past this generalization requires developing chronological 
models for these events involved in monument construction activities. 
Like with many chronological issues in archaeology, formal Bayesian 
models provide a useful tool to better resolve temporal patterns of 
monument construction (e.g., Carter et al., 2019; Chirikure et al., 2013; 
Culleton et al., 2012; Dye, 2016, 2012; Schulz Paulsson, 2019). 

2.1. Previous chronologies for ahu construction 

Heyerdahl and Ferdon’s (Heyerdahl and Ferdon, 1961) Norwegian 
archaeological expedition to Rapa Nui in the 1950s provided the first 
modern attempts to build an absolute chronology for ahu construction. 
They built their chronology based on stratigraphic evidence derived 
from the excavation of numerous ahu complexes as well as 14C dates 
from ahu Vinapu, Te Peu, and several other important sites on the island. 
Based on this evidence, they argued that the island experienced an early 
period of ahu construction around ca. AD 800 and that this activity 
continued until AD 1600s (Smith, 1961b). Following Heyerdahl and 
Ferdon, Ayres (1971) offered the next absolute chronology based on 14C 
dates from excavations at ahu Tahai and Ko te Riku. Evidence from his 
excavations suggested that initial ahu construction activities began 
around AD 700. Mulloy and Figueroa (1978) later proposed that the 
initial construction of ahu Akivi and Vai Teka did not begin until ca. AD 
1450. Using a large suite of obsidian hydration dates from several south 
coast ahu, Stevenson (1986, pp. 74–76) argued that the initial con
struction of ahu Vaihu, Akahanga, and Ura Uranga te Mahina took place 
between AD 1301–1400, with additional platform ahu construction and 
rebuilding episodes continuing into the late 1600s. Stevenson (1997, pp. 
8–13) later altered this chronology using a different hydration rate 
constant to argue that initial construction occurred as early as ca. AD 
1000, with platform construction limited after ca. AD 1500–1600. In 
their reviews of early 14C dates from several ahu across the island, 
including ahu Nau Nau and Ature Huki (Skjølsvold, 1994), Heki’i 
(Martinsson-Wallin, 1998; Martinsson-Wallin and Wallin, 1998), Ra’ai 
(Martinsson-Wallin and Wallin, 2000), Viri o Tuki (Huyge and Cauwe, 
2005), Motu Toremo Hiva (Cauwe et al., 2010, 2006), Vinapu (Mar
tinsson Wallin, 2004), Rongo (Huyge and Cauwe, 2002), and Tautira 
(Martinsson-Wallin and Crockford, 2002), Wallin and colleagues 
(Wallin et al., 2010, p. 43; Wallin and Martinsson-Wallin, 2008, p. 154) 
suggest that initial construction of these complexes likely occurred 
around AD 1250–1400, but possibly as early as AD 1100–1200. In a later 
analysis of a select sample of 14C dates from ahu, Martinsson-Wallin 
et al. (2013) use summed probability distributions (SPD) to estimate the 
onset and cessation of ahu construction. In their visual interpretation of 
the ahu SPD, they suggest that ahu complexes “were securely in place on 
Rapa Nui by ca. AD 1300–1400” and claimed that a ‘destruction phase’ 
for large platform ahu occurred around AD 1600 (Martinsson-Wallin 
et al., 2013, pp. 417, Figure 7). This argument for a “[d]egeneration of 
ceremonial sites” (Wallin and Martinsson-Wallin, 2008, p. 154) during a 
destruction phase for platform ahu around AD 1600 assumes a transition 
from the “Ahu Moai” phase to the “Huri Moai” phase in Rapa Nui culture 
history (Kirch, 1984, 2017; Smith, 1961a; cf. Mulrooney et al., 2009; 
Lipo and Hunt, 2009). 

These previous dating programs have provided valuable data and 
working hypotheses for monument construction and testing the collapse 
narrative on Rapa Nui. These estimates for initial ahu construction are 
limited, however, given that they are not based on formal statistical 
models but on ad hoc visual approximations of the calibrated date lists, 
or in the case of Martinsson-Wallin et al. (2013), visual approximations 
of an SPD. Given contemporary concerns over choices of samples for 
generating radiocarbon dates (Hunt and Lipo, 2006; Wilmshurst et al., 
2011; Allen and Huebert, 2014; Rieth and Athens, 2013; Spriggs and 
Anderson, 1993; cf. Schmid et al., 2018), the now well-understood un
certainties with visual interpretations of dates, and a multitude of issues 

with simple visual inspection of SPD curves (Bayliss et al., 2007; Con
treras and Meadows, 2014; Crema et al., 2016; Dye, 2016; Timpson 
et al., 2014), these chronologies for initial ahu construction are in need 
of re-evaluation. Previous syntheses of 14C data from ahu have also not 
included the rigorous dating program by Wozniak (2003) at ahu Te Niu. 
Furthermore, the timing of the cessation of platform ahu construction is 
poorly understood, given the lack of formal modeling and sporadic and 
limited historical accounts from the 18th century. Bayesian chronolog
ical modeling provides a promising alternative for examining the chro
nology of ahu on Rapa Nui given the island’s short chronology and 
highly overlapping radiocarbon probability distributions, as well as the 
approach’s explicit aim of incorporating prior information about rela
tive construction components from the dated sequences and ability to 
formally model the timing of events that are otherwise not directly dated 
(Dye, 2016, 2012; Schulz Paulsson, 2019). 

3. Materials and methods 

3.1. Objectives 

Here, we use a sample of previously published 14C determinations in 
concert with relative ahu construction events to build a series of 
Bayesian models to estimate the onset and later tempo of ahu con
struction. We construct these models using OxCal v.4.3.2 (Bronk Ram
sey, 2017). For clarity, we capitalize and italicize OxCal commands (e.g., 
Phase, Sequence, etc.). We use the ArchaeoPhases package (Philippe 
et al., 2019) to create a tempo plots of ahu construction activity. Our 
primary objectives are: (1) to estimate how soon after the colonization of 
Rapa Nui initial monument construction began; and (2) to estimate the 
duration of ahu construction events, including initial platform con
struction and the timing of later investments, such as how far they 
extend into the pre-contact and/or early historic eras as a means of 
testing the claim that ahu construction ceased following a pre-contact 
collapse. These objectives require that we have a reliable estimate for 
initial colonization and select samples that most closely relate to ahu 
construction and use. 

3.2. Colonization models 

We use existing radiocarbon determinations from the published 
literature to provide refined Bayesian estimates for Rapa Nui coloniza
tion. We start by using 14C samples with a conventional radiocarbon age 
(CRA) � 650 BP not from ahu contexts (see Supplementary Materials; 
Table S1). Our use of a �650 BP threshold provides a focus on samples 
that conceptually relate to the early pre-contact/colonization era, such 
that the colonization estimate is not biased by younger 14C samples that 
are unrelated to colonization (Mulrooney et al., 2011). We do not 
include samples from monumental architecture contexts in the coloni
zation models as these determinations are included in the ahu models. 
We group the 14C samples into a single Phase, with the start Boundary 
providing the colonization estimate. We built two colonization models 
using 14C samples from archaeological contexts: one with only 
short-lived plant remains (n ¼ 9), and a second with these nine 
short-lived samples and 19 unidentified charcoal samples. For the sec
ond model, we apply a Charcoal Outlier parameter to assess the influence 
of unidentified charcoal samples on the precision of our colonization 
estimate (Bronk Ramsey, 2009; Dee and Bronk Ramsey, 2014; Schmid 
et al., 2018). 

3.3. Relative construction model for platform ahu 

Rapa Nui islanders constructed multiple classes of ritual stone 
structures that are collectively referred to as ahu. Here, we focus our 
study on the ca. 150 known platform ahu, also called ‘image-ahu’ or ahu 
moai, which are the largest and most common form of pre-contact ahu 
(Martinsson-Wallin, 1994). The term image-ahu denotes that many of 
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these monuments have one or more moai statues, though this is not al
ways the case. Their central architectural feature is a rectangular plat
form with a dressed stone or closely aligned back wall. These central 
platforms typically contain combinations of auxiliary features, such as 
linear alignments of stacked stone projecting laterally from the platform 
(termed ‘wings’), a ramp descending from the front of the platform that 
is paved with water-worn boulders (poro), a pavement/plaza of poro 
stone in front of the ramp, a rectangular embankment enclosing the 
plaza, and a crematorium (which generally is attached to the back side 
of the platform). Ahu also often contain burial features within different 
components of the structure. Lastly, their visible attributes and strati
graphic information from archaeological excavations have shown that 
most platform ahu were continually added to over the years with mul
tiple building events (Martinsson-Wallin, 1994; Skjølsvold, 1994; Smith, 
1961a). These different architectural features allow for building relative 
chronologies of ahu construction that can be used as informative priors 
in Bayesian models. Specifically, if we consider the different construc
tion elements as depositional events (Dye, 2016, 2010), then the central 
platform is logically the initial construction component, as the other 
components are built off of it and, therefore, wings, ramps, crematoria, 
etc., must logically post-date platform construction (See Fig. 2 for a 
model schematic of a typical platform ahu). In most instances the 
stratigraphic relationships between different architectural elements 
confirm this generalized sequence (e.g., wing structures that abut the 
central platform). 

3.4. Models for ahu construction 

To build a chronology for events associated with ahu construction, 
we create a series of multi-phase Bayesian models designed to estimate 
initial platform construction, the timing of later additions, and end of 
construction for several ahu. These models incorporate radiocarbon 
determinations, relative architectural stratigraphy, and ethnohistoric 
accounts as informative priors. Using published contextual information 
from excavations at ahu, we group 14C determinations into Phases 
related to the construction of the central ahu platform using three classes 
of events: (1) samples related to events from contexts below the platform 
are treated as termini post quos (TPQs), which we term ‘pre-platform 
construction’ phases; (2) samples contextually associated with our 
target event of platform construction are classified as ‘platform con
struction’ phases; and (3) samples from any of the auxiliary features (e. 
g., ramps, wings) that post-date platform construction are termini ante 
quos (TAQs), which we term ‘post-platform’ phases. In these models, the 

determinations from pre-platform, platform, and post-platform events 
are grouped into unordered Phases within an ordered Sequence. We also 
use the Boundary start estimate from the colonization model to constrain 
the estimates for platform construction, as initial ahu construction must 
logically post-date colonization. Lastly, for the end of the Sequence we 
input a uniform calendar date range (of AD 1838–1868 (Date(U(1838, 
1868)) in OxCal) to serve as a cutoff point for the construction estimates. 
This choice of AD 1838–1868 is based on historic European accounts of 
the last time a moai statue was recorded as still standing upright on an 
ahu platform, which serves as a conservative estimate for the time period 
after which we assume no platform ahu were built (see section 3 of 
Supplementary Materials for an extended discussion of this rationale). 
This final parameter simply serves to constrain the right side of the 
calibrations in the post-platform phase. The general form of these ahu 
models is: Colonization > TPQ (pre-platform) > Target (platform con
struction) > TAQ (post-platform) > AD 1838–1868. 

We construct multi-phase models for each individual ahu with 14C 
determinations from either (a) TPQ, target, and TAQ; (b) TPQ and 
target, (c) target and TAQ, or (d) TPQ and TAQ events. Models of types 
(a), (b), and (c) are constructed as Contiguous Sequences, and the start of 
the target event Boundary provides the estimate for initial ahu con
struction, the start Boundary for the post-platform phase provides the 
estimate for later construction events, and the end Boundary estimates 
the end of ahu construction activities. Models of type (d) are constructed 
as Sequential Sequences, and we insert a Date command between the end 
Boundary of the pre-platform Phase and the start Boundary of the post- 
platform Phase to estimate the start of platform construction. We use 
the Difference query to estimate the temporal lag between the coloni
zation Boundary and the start of construction for each ahu. 

3.5. Model-based estimates for the duration of ahu construction 

To explore the duration of ahu construction activities, we implement 
Dye’s (2016) ‘tempo plot’ procedure as a means for examining the 
temporal patterns of ahu construction events. Tempo plots utilize the 
raw output of OxCal’s Markov-Chain-Monte Carlo (MCMC) procedure 
(using the MCMC_Sample query) to summarize the joint posteriors of 
multiple estimated events and to visualize the Bayes estimate and 
credible interval of the cumulative temporal distribution of the specified 
events (Dye, 2016, p. 2). Thus, the tempo plot is a summary of “how 
many events took place before each date in a specified range of dates” 
(Dye, 2016, p. 2), where the slope of the curve relates to the rate at 
which events occur: steeper and flatter shapes of the curve indicate more 
rapid or slower frequency of events, respectively. In our tempo plot, we 
treat the timing of initial platform construction and construction of later 
ahu components, such as plazas, ramps, and wings, as a single class of 
events related to ahu construction activities. These events encompass 
both initial ahu construction and further investments made through 
subsequent additions and modifications to these monuments overtime. 
In OxCal terms, these are the Boundaries for initial platform construction 
and start and end of TAQ phases. We also use the ‘TempoActivityPlot’ 
function of the ArchaeoPhases package (Philippe et al., 2019) to 
examine the patterns of ahu construction activity. The tempo-activity 
plot is similar to the normal tempo plot, but instead of plotting the cu
mulative number of events, it graphically displays the first derivative of 
the tempo plot curve. As such, the tempo activity plot shows the 
changing rate of construction events. The results of both analyses pro
vide a model-based depiction of the patterns in ahu construction activity 
over time. 

The later estimates in the tempo plot may be sensitive to the choice of 
a calendar date cutoff after which we assume no platform ahu were built 
(e.g., McCoy et al., 2012). To examine the influence of our preferred 
calendar date range of AD 1838–1868 on the results, we also run the 
tempo and tempo-activity plots with a cutoff of AD 1771 to examine 
whether there is a notable change in construction associated with the 
profound impacts of European contact (see Supplementary Materials 

Fig. 2. Model schematic of a platform ahu. Schematic of a typical platform 
ahu showing a plan view (top) and cross-section (bottom). Figure adapted from 
Martinsson-Wallin (1994) and Skjølsvold (1994). 
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sections 3 and 4 for rationale). 

3.6. Sample selection 

In these ahu models, we exclude 14C samples from bulk soil, those 
with unclear stratigraphic relationships with ahu features, those from 
the Gakushuin lab (GaK) (e.g., Ayres, 1971; Esen-Baur, 1983) known to 
be problematic (Blakeslee, 1994; Spriggs, 1989; Spriggs and Anderson, 
1993) and samples with unknown relations between the target and 
dated events. For example, we exclude a number of 14C determinations 
on abraded coral artifacts from Ahu Nau Nau at Anakena given the 
unknown time lag between coral harvesting and deposition at the ahu 
(Beck et al., 2003, p. 100). We also exclude obsidian hydration dates 
given long-standing, unresolved issues with the method (see Supple
mentary Materials, Section 5, Table S3). Given the general lack of 
short-lived samples from ahu contexts, we must rely on unidentified 
charcoal samples, which may have inbuilt age (Allen and Huebert, 
2014). We apply a Charcoal Outlier parameter to these unidentified 
charcoal samples whereby all samples have a 100% probability of being 
outliers, which can help produce more accurate results in simulated and 
real-world case studies, especially when paired with multiple Phases 
(Bronk Ramsey, 2009; Dee and Bronk Ramsey, 2014). We also apply a 
General “t” type Outlier parameter to all identified charcoal samples to 
statistically assess potential poor fit between the model and radiocarbon 
determinations, using an outlier probability ¼ 0.05 (Bronk Ramsey, 
2009). With these uncertainties and potential issues in mind, the ma
jority of our models for ahu construction are best described as TPQs for 
initial construction. 

We present modeled results as 95.4% highest posterior density 
(HPD) estimates in calibrated years AD. Estimates are rounded out to 
nearest 5 years. 14C samples used in the colonization models are 
included in Table S1 and samples for the ahu models are in Table S2. We 
created tempo plots in R (R Core Team, 2019) using the ArchaeoPhases 
package (Philippe et al., 2019). Full descriptions for each model and 
tempo plot, including calibration procedures, contextual information, 
OxCal and R code necessary for reproducing this analysis are available in 
Supplementary Materials. 

4. Results 

4.1. Rapa Nui colonization 

The single-phase colonization model using only short-lived samples 
estimates initial colonization of Rapa Nui in the range 1150-1290 cal. AD 
(Amodel ¼ 105.6, Aoverall ¼ 101). Our second model that incorporates 
unidentified charcoal samples and a Charcoal Outlier parameter suggests 
a slightly more precise colonization estimate of 1150-1280 cal. AD 
(Amodel ¼ 121, Aoverall ¼ 120.5). Given the negligible difference between 
these two results, we opted for the more precise estimate with higher 
agreement indices provided by the outlier model for use in the ahu 
models and tempo plots. 

4.2. Ahu construction estimates 

Based on the available data, we were able to create Bayesian models 
for 11 ahu. Results for the time lag following colonization until the 
estimated timing of initial ahu construction are presented in Table 1. 
Fig. 3 shows the modeled distributions for these estimates. Full discus
sion of 14C samples from ahu contexts and Bayesian models is provided 
in Supplementary Materials. 

Samples within the models for ahu Rongo 1, Motu Toremo Hiva, 
Ra’ai, Ature Huki, Akivi, Vai Teka, and Tautira are comprised of un
identified charcoal, and as such these estimates may be affected by 
inbuilt age. Models for Ahu Heki’i, Nau Nau, and Te Niu contain both 
short-lived and unidentified charcoal samples in their TPQ (pre-plat
form) and TAQ (post-platform) Phases and thus their results are more 

accurate estimates for the timing of platform construction. 

4.3. Tempo of ahu construction activities 

Tempo and tempo-activity plot results are shown in Figs. 4 and 5. 
The 11 ahu in our study have multiple construction elements (see Sup
plemental Materials), and these plots include estimated boundaries for 
initial platform construction, boundaries for the start of later construc
tion episodes (TAQ Phases), and boundary end estimates for non- 
platform components. Results of the sensitivity analysis examining the 
effect of different calendar date cutoffs for the likely end of ahu con
struction can be found in Section 4 and Figs. S14–S17 of Supplementary 
Materials. For our sample of 11 ahu, the shape of the tempo plots using 
an AD 1838–1868 cutoff point indicate a fairly rapid period of ahu 
construction from ca. AD 1350–1450, followed by a steady tempo of ahu 
construction that continues beyond European contact in AD 1722. The 
results indicate that ahu construction activities continue into post- 
contact times, with a flattening of the upper bound of 95% credible 
interval at ca. 1750. The shape of tempo activity plot in Fig. 5 suggests 
that the rate of activity begins to slowly decline beginning around AD 

Table 1 
Initial ahu construction. Estimates for initial platform construction for 11 ahu 
sites found across Rapa Nui and the estimated time lag between initial human 
colonization and construction of each ahu. All models have agreement indices 
>60. Full results and code are in Supplementary Materials.  

Ahu name Initial platform 
construction estimate 
(95.4% HPD) 

Years after 
colonization (95.4% 
HPD) 

Amodel Aoverall 

Akivi 1420-1730 cal. AD 180–515 104.8 104.3 
Ature Huki 1320-1695 cal. AD 80–480 92.2 94.2 
Heki’i 1320-1445 cal. AD 70–260 106.8 109.3 
Motu 

Toremo 
Hiva 

1315-1415 cal. AD 60–230 95.1 95.8 

Nau Nau 1410-1450 cal. AD 145–285 100.2 98.1 
Nau Nau IV 1435-1655 cal. AD 180–445 100.2 98.1 
Ra’ai 1310-1510 cal. AD 65–310 89.2 89.1 
Rongo 1 1305-1490 cal. AD 55–285 106.5 105.5 
Tautira 1505-1825 cal. AD 260–610 99.7 100.2 
Te Niu 1415-1615 cal. AD 165–405 100.8 93.6 
Vai Teka 1460-1750 cal. AD 220–535 103.8 103.9  

Fig. 3. Rapa Nui colonization and ahu construction estimates. Bayesian 
estimates for colonization and initial platform construction for 11 ahu. 
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1550 through the 18th century. 
Using an AD 1771 cutoff produces results that are essentially iden

tical for time periods before AD 1700, but suggests a possible cessation 
of construction activities around the time of initial European contact in 
AD 1722 (based on the flattening of the upper bound of the 95% credible 
interval envelope, Fig. S15). The greatest difference between the results 
using the different cutoff dates is shown in the tempo-activity plots in 
the latter part of the 18th century (Figs. S16 and S17). Using an AD 
1838–1868 cutoff suggests possible construction activities continuing 
just prior to this date, whereas the AD 1771 cutoff appears to artificially 
truncate the activity. Based on the available historical evidence and the 
results presented here, we suggest that ca. AD 1838–1868 is a more 
reasonable and conservative cutoff point. However, both iterations of 
the tempo plots suggest that ahu construction activities likely continued 
at least until European contact in AD 1722. 

5. Discussion 

5.1. Colonization estimates 

Our Bayesian colonization estimate of 1150-1280 cal. AD is in broad 

agreement with previous estimates based on short-lived samples (Hunt 
and Lipo, 2006; Lipo and Hunt, 2016; Wilmshurst et al., 2011). How
ever, our estimate is both broader and potentially earlier than the esti
mate of 1200–1253 cal. AD presented in Wilmshurst et al. (2011) and 
Schmid et al.’s (2018) Bayesian estimate of 1245-1280 cal. AD (68.2% 
HPD). The difference between our results and those recently published 
by Schmid et al. (2018) is potentially explained by their use of several 
younger 14C samples that are unrelated to colonization, some samples 
not derived from archaeological contexts (e.g., those samples from Mann 
et al. (2008)), and their presentation of 68.2% HPD rather than 95.4% 
estimates. Given the available radiocarbon data, our results provide 
currently the most accurate, if somewhat less precise, colonization es
timate for the island and add to a growing corpus of analyses suggesting 
initial Polynesian colonization of Rapa Nui between the late 12th and 
early 13th centuries AD. 

5.2. The onset, tempo, and end of ahu construction activities 

Our earliest estimate comes from ahu Rongo 1, which has an initial 
construction estimate of 1305-1490 cal. AD, estimated at some 55–285 
years after colonization. The latest initial construction estimate is from 

Fig. 4. Tempo of ahu construction events. Tempo plot for the cumulative number of ahu construction events, including initial construction and later building 
activities. Dashed lines are the upper and lower bounds of the 95% Bayesian credible intervals. 

Fig. 5. Rate of change in ahu construction events. Tempo-activity plot showing the first derivative of the tempo plot Bayesian estimate, or rate of change over 
time in ahu construction events. 
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ahu Tautira, estimated at 1505–1825 cal. AD, some 260–610 years after 
colonization. Each of these estimates, however, are derived from un
identified charcoal samples with potential inbuilt age, and as such 
should be treated as TPQs for initial construction. The most secure es
timates come from ahu Nau Nau (1410–1450 cal. AD, 145–285 years 
after colonization), Heki’i (1320–1445 cal. AD, 70–260 years after 
colonization), and Te Niu (1415–1615 cal. AD, 165–405 years after 
colonization). Hence, given the models and available data from 11 ahu, 
what we can confidently state is that initial platform ahu construction 
began sometime between the early-14th and mid-15th centuries AD. 
These model-based estimates for initial ahu construction are later than 
previous ad hoc interpretations of 14C samples (Martinsson-Wallin et al., 
2013; Wallin et al., 2010, p. 43; Wallin and Martinsson-Wallin, 2008, p. 
154), which suggested initial construction potentially as early as 
1100–1250 AD. These results have implications for monumentality in 
the wider region, as they call for a reassessment of previous claims that 
megalithic construction began on Rapa Nui prior to elsewhere in East 
Polynesia (Martinsson-Wallin et al., 2013). Specifically, our revised es
timates for initial ahu construction may be penecontemporaneous with 
temple (marae) construction in central East Polynesia. 

While our results are based on 11 of ca. 150 known platform ahu on 
Rapa Nui, this represents the largest possible sample of features with 
reliable chronological data and thus our results provide the most com
plete island-wide synthesis currently possible. It is possible, however, 
that initial ahu construction began earlier at locations not covered by our 
sample. In addition, the tempo-activity plot in Fig. 5 suggests a relatively 
slow decrease in the rate of ahu construction events from ca. AD 1550 
through the 18th century, though we stress that this result should serve 
as a hypothesis in need of further testing as additional radiocarbon dates 
from ahu contexts become available. In particular, our analysis lacks 
samples from Rapa Nui’s south coast, which contains some of the highest 
densities of large platform ahu on the island (Martinsson-Wallin, 1994). 
Ahu on Rapa Nui’s south coast have been intensively studied by Ste
venson (1986), whose work yielded a large corpus of obsidian hydration 
dates. Given uncertainties with obsidian hydration dating on Rapa Nui 
and elsewhere (see section 4 in Supplementary Materials), these dates 
could not be included in our Bayesian models. While Stevenson’s (1986) 
original obsidian hydration chronology for south coast ahu is consistent 
with the results of our Bayesian models, Stevenson’s (1997) later efforts 
that include a revised hydration rate are incompatible with both our 
estimate for initial colonization of Rapa Nui and the timing of ahu 
construction. This inconsistency is due to the lack of a secure clock 
mechanism for obsidian hydration dating (Anovitz et al., 1999), and for 
this reason we exclude these dates. 

The most significant results from our Bayesian analyses are the 
tempo plots for the duration of ahu construction activities (Figs. 4 and 
5), which provide important falsifying evidence that directly challenges 
core components of Rapa Nui’s collapse narrative. Previous chronolo
gies for platform ahu have hypothesized that their construction ceased in 
the 17th century (e.g., Martinsson-Wallin et al., 2013; Stevenson, 1997; 
Wallin and Martinsson-Wallin, 2008). The claim of a pre-contact end to 
platform ahu construction stems from assumptions about a transition in 
Rapa Nui culture history from an “Ahu Moai” phase, during which 
platform ahu were constructed and moai statues erected upon them, to a 
period of cultural and demographic collapse termed the “Huri Moai” 
phase that saw the toppling of moai and destruction of platform ahu 
(Kirch, 2017, 1984; Martinsson-Wallin et al., 2013). The occurrence and 
chronology of the Huri Moai phase are largelyconstruction activities 
based upon Englert’s (1948) conjecture of AD 1680 as the timing for the 
outbreak of a war described in oral traditions collected in the late 19th 
and early 20th centuries; however, archaeological evidence in support of 
this event is either lacking or has been debunked (Lipo and Hunt, 2009; 
Mulrooney et al., 2009). The results of our Bayesian chronology add to 
these previous studies questioning the empirical sufficiency of the ‘Huri 
Moai’ phase or a cultural collapse in late pre-contact Rapa Nui. Our 
results also question recent claims by Rull (2016) and colleagues (Rull 

et al., 2018) that a major drought ca. AD 1600 caused an end to 
moai/ahu construction The results of our tempo plots indicate a rapid 
period of ahu construction between ca. AD 1350–1450 with a steady 
period of construction events that continue into the early historic era. In 
this regard, given that many of the 14C dates from our sample of 11 ahu 
are from unidentified charcoal only strengthen this result, as their po
tential for inbuilt age may indicate that these activities occurred even 
more recently. 

These results suggest that the activities of the so-called “Ahu Moai” 
phase that included statue platform construction and use likely 
continued up to and beyond European contact. This conclusion is 
bolstered by the fact that in AD 1722 the Dutch captain Jacob Rog
geveen observed rituals being performed by islanders in front of statue 
platforms, and in 1770 the Spanish also observed that statue platforms 
were still being used for ritual activity (Corney et al., 1967). For 
example, Roggeveen (Corney et al., 1967, p. 15) states “what the form of 
worship of these people comprises we were not able to gather any full 
knowledge of, owing to the shortness of our stay among them; we 
noticed only that they kindle fire in front of certain remarkably tall stone 
figures they set up; and, thereafter squatting on their heels with heads 
bowed down, they bring the palms of their hands together and alter
nately raise and lower them.” As others have argued (Boersema, 2015; 
Mulrooney et al., 2010), this direct observation suggests that platform 
ahu were still the focus of ritual activity at the point of, and following, 
European contact. This conclusion suggests that the observations made 
by the Dutch in AD 1722, and likely the Spanish in AD 1770, were 
relatively accurate depictions of Rapa Nui communities and their tra
ditions. These findings are significant as they highlight the resilience of 
Rapa Nui communities following the devastating demographic impacts 
following European arrival (e.g., Fischer, 2005; Hunt and Lipo, 2011; 
Peiser, 2005; Rainbird, 2002). Indeed, the steady continuous nature of 
construction of ahu features in the history of Rapa Nui strongly supports 
an emerging model in which this group-level activity served as a vital 
component of communities necessary for long term sustainability on this 
tiny and remote island (DiNapoli et al., 2019, 2018; Hunt and Lipo, 
2018, 2011). 

6. Conclusion 

In 1979, Carl Sagan popularized the aphorism “extraordinary claims 
require extraordinary evidence.” This aphorism has become “a funda
mental principle of scientific skepticism” (Voss et al., 2014, p. 893). 
Dramatic claims about societal collapse events require methods that are 
capable of linking expectations about collapse to the archaeological 
record. Our approach, and that of Dye (2016, 2012, 2010) offers one 
means of addressing this need. Here, we have provided a template for 
model-based approaches that address questions related to the tempo of 
collapse in other regions. In particular, our results highlight the utility of 
the tempo plot technique for quantifying the timing and rate of change 
in archaeological events within a Bayesian framework. To date, there 
have been few applications of the method beyond Dye’s (2016) original 
formulation, which include Banks et al.’s (2019) study of the tempo of 
change in Upper Paleolithic lithic typologies and Marsh et al.’s (2017) 
examination of the expansion of the Inca Empire. Our results demon
strate that the tempo plot technique has wide applicability for quanti
fying the timing and rate of change of archaeological processes, in 
particular declines or cessation of activities associated with purported 
‘collapse’ events and provides a viable alternative to the more common 
approach of using summed probability distributions of radiocarbon 
dates. Tempo plots can also provide a useful extension of more common 
Bayesian approaches and offer ways to better characterize and quantify 
similar case studies around the world, such as the rate of decline at 
various Maya political centers (e.g., Ebert et al., 2017, 2016; Hoggarth 
et al., 2016) and other areas (e.g., Bar-Oz et al., 2019; Carter et al., 2019; 
O’Shea et al., 2019). 

Rapa Nui remains one of the most popular accounts of a society that 
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self-destructed and is persistently used as a paragon of societal collapse. 
In particular, there are numerous recent non-archaeological studies that 
treat this collapse event as fact, and which attempt to use Rapa Nui to 
validate and calibrate general-purpose economic and demographic 
models (e.g., Akhavan and Yorke, 2019; Anderies, 2000; Basener and 
Ross, 2004; Basener and Basener, 2019; Bologna and Flores, 2008; 
Brander and Taylor, 1998; Brandt and Merico, 2015; Cazalis et al., 2018; 
D’Alessandro, 2007; Dalton et al., 2005; Dalton and Coats, 2000; de la 
Croix and Dottori, 2008; Dockstader et al., 2019; Erickson and Gowdy, 
2000; Pezzey and Anderies, 2003; Reuveny, 2012; Reuveny and Decker, 
2000; Roman et al., 2017; Tak�acs et al., 2019; Uehara et al., 2010). The 
results of our Bayesian models, along with recent dates from the Rano 
Raraku statue quarry (Sherwood et al., 2019; Simpson et al., 2018), 
indicate there was not a pre-contact ‘collapse’ in ahu or moai construc
tion, but that monument activity continued into the post-contact era. 
These findings add to the growing corpus of independent lines of evi
dence contradicting the traditional ‘collapse’ narrative for Rapa Nui 
(Hunt and Lipo, 2011; Lipo et al., 2016; Mulrooney, 2013; Mulrooney 
et al., 2010; Simpson and Dussubieux, 2018), and thus question the 
results of a broad range of interdisciplinary research on societal collapse 
that assume the occurrence of this event with certainty. 
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