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Abstract
The stick-breaking representation is one of the fundamental properties of the Dirichlet
process. It represents the random probability measure as a discrete random sumwhose
weights and atoms are formed by independent and identically distributed sequences
of beta variates and draws from the normalized base measure of the Dirichlet process
parameter. It is used extensively in posterior simulation for statistical models with
Dirichlet processes. The original proof of Sethuraman (Stat Sin 4:639–650, 1994)
relies on an indirect distributional equation and does not encourage an intuitive under-
standing of the property. In this paper, we give a new proof of the stick-breaking
representation of the Dirichlet process that provides an intuitive understanding of the
theorem. The proof is based on the posterior distribution and self-similarity properties
of the Dirichlet process.

Keywords Dirichlet process · Stick-breaking representation · Sethuraman’s
representation

1 Introduction

Sethuraman (1994) proved a fundamental property of the Dirichlet process (Ferguson
1973, DP)—namely that it can be constructed from two sequences of independent
and identically distributed (i.i.d.) variates. The result is known as the stick-breaking
representation (construction) theorem or Sethuraman’s representation theorem of the
Dirichlet process.

Let X be a complete and separable metric space with Borel σ -field B and

α = M · F0 (1)
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a finite nonnull measure on X , where M > 0 and F0 is a probability measure on
X . The distribution of a random probability measure F on X is DP(α), if for any
measurable partition B1, B2, . . . , Bk of X ,

(F(B1), F(B2), . . . , F(Bk)) ∼ Dirichlet(α(B1), α(B2), . . . , α(Bk)).

The stick-breaking representation is given as follows.

Theorem 1.1 (Sethuraman’s representation) Suppose θ1, θ2, . . .
i .i .d.∼ F0, u1,

u2, . . .
i .i .d.∼ Beta(1, M), and θi ’s and ui ’s are independent of each other. Then,

F =
∞∑

j=1

⎛

⎝u j

∏

l< j

(1 − ul)

⎞

⎠ δθ j ∼ DP(α), (2)

where δa is a degenerate probability measure at a.

The significance of the theorem is the following. First, the theorem relates the distri-
bution of random probability to two sequences of i.i.d. random variables, beta random
variables and those from the base measure of the Dirichlet process. The theorem’s
main purpose is to relate a complicated infinite dimensional object, the random proba-
bility measure, to more familiar objects, i.i.d. sequences of random variables. Second,
the theorem is constructive, i.e., it shows how to construct the Dirichlet process from
elementary random variables. Third, the theorem gives another proof that the DP is
discrete with probability one. Fourth, the arbitrary nature of X expands the definition
of the DP to allow a broad range of θi that need not lie in a finite dimensional Euclidean
space.

This simple constructive representation becomes the later basis for posterior compu-
tation (Ishwaran and James 2001; Neal 2000; Blei and Jordan 2006) and for extension
of themodel to dependent randomprobabilitymeasures (MacEachern2000;Rodriguez
et al. 2008; Chung and Dunson 2011).

The original proof given in Sethuraman (1994) relies on an inductive property of
the Dirichlet distribution. Although the statement of the theorem is simple, the proof
does not allow intuitive understanding. Broderick et al. (2013) showed another route
for the proof of the sticking-breaking representation, which is based on the Chinese
restaurant process and recursive application of de Finetti’s theorem to binary Pólya
urn sequences. Recently, Miller (2018) gave another proof of the Chinese restaurant
process from the stick-breaking representation.

In this paper, we give a new proof of the stick-breaking representation theorem
which is more intuitive and easier to understand. The proof is based on two basic
properties of the DP, the posterior distribution for i.i.d. samples and the self-similarity
property.

The rest of the paper is organized as follows. In Sect. 2, we give a new proof for
the stick-breaking representation theorem. The lemmas used in the proof are given in
Sect. 3.
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2 A new proof of the theorem

In this section, we give an another proof of Sethuraman’s representation theorem that
is more intuitive. In this proof, we use two properties of the Dirichlet process: the
posterior distribution for i.i.d. samples and the self-similarity property. The posterior
distribution of DP with an i.i.d. sample is given in Ferguson (1973, Theorem 1). If
F ∼ DP(α) and X |F ∼ F , then the posterior distribution of F given X = x is again
DP and

F |X = x ∼ DP(α + δx ). (3)

By the self-similarity property of the DP, the posterior of F given X = x can be
represented as

F
d= uδx + (1 − u)G, (4)

where u ∼ Beta(1, M), G ∼ DP(α), and u and G are independent. Ghosh and
Ramamoorthi (2003, P. 93.) state (4) for the finite dimensional Dirichlet distribution,
but the same proof goes through to prove (4) for the general Dirichlet process. We
use (3) and (4) as basic building blocks of the proof.

Consider a sequence of random variables θ1, θ2, . . .whose distribution is described
below. Let F ∼ DP(α) where α = M · F0, M > 0 and F0 is a probability measure
on X . Given F , sample θ1 from F . Given θ1, by (4) the distribution of F can be
represented as

F
d= u1δθ1 + (1 − u1)G1,

where u1 ∼ Beta(1, M), G1 ∼ DP(α) and u1 and G1 are independent. Given θ1 and

F , sample θ2 fromG1. By applying (4) again, given θ1 and θ2,G1
d= u2δθ2+(1−u)G2,

where u2 ∼ Beta(1, M), G2 ∼ DP(α) and u2 and G2 are independent. Combining
the results of F and G1, we get that given θ1 and θ2,

F
d= u1δθ1 + (1 − u1)

(
u2δθ2 + (1 − u2)G2

)

d= u1δθ1 + u2(1 − u1)δθ2 + (1 − u1)(1 − u2)G2,

where u1, u2
i .i .d.∼ Beta(1, M), G2 ∼ DP(α) and (u1, u2) is independent of G2.

Given θ1, θ2 and F , sample θ3 from G2, and so on. Repeating the same argument, we
obtain that given θ1, θ2, . . . , θk ,

F
d= u1δθ1 + u2(1− u1)δθ2 + · · ·+

(
uk

∏

l<k

(1 − ul)

)
δθk +

⎛

⎝
∏

l≤k

(1 − ul)

⎞

⎠Gk, (5)

where u1, . . . , uk
i .i .d.∼ Beta(1, M), Gk ∼ DP(α) and ui ’s and Gk are independent.

To complete the proof, we use the following two lemmas whose proofs are given
in the next section.
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Lemma 2.1 The sequence θ1, θ2, . . . is marginally an i.i.d. sequence from F0.

Lemma 2.2 Given θ1, θ2, . . ., the conditional distribution of F is given by

F
d=

∞∑

j=1

⎡

⎣u j

∏

l< j

(1 − ul)

⎤

⎦ δθ j , (6)

where u1, u2, . . .
i .i .d.∼ Beta(1, M).

Lemma 2.2 implies the θi ’s and u′
i s are independent of each other, and together

with Lemma 2.1 it implies the conclusion of the theorem. ��
Remark 2.3 In the proof, we use the form of the posterior with DP prior and the self-
similarity property of DP, and thus implicitly assume the existence of DP. Sethuraman
(1994) proved the stick-breaking representation without assuming the existence of DP
and thus can be considered as an alternative proof of the existence theorem. Our proof,
however,is not an alternative proof of the existence of DP.

Remark 2.4 Since the proofs of the existence ofDP and the posterior ofDP in Ferguson
(1973) can be carried out under the assumption of complete and separableX and these
facts are used in the proof, we assume X is a complete and separable metric space.

Remark 2.5 A referee pointed out that a similar proof can be done using the indirect
distributional equation used in the proof of Sethuraman (1994),

F
d= uδθ + (1 − u)G, (7)

where F,G ∼ DP(α), u ∼ Beta(1, M) and θ ∼ F0. By repeated applications of
equation (7), one gets

F
d=

k∑

i=1

⎛

⎝ui
∏

j<i

(1 − u j )

⎞

⎠ δθi +
k∏

j=1

(1 − u j )G.

Similarly to the proof of Lemma 2.2, one can show (2). This proof is the same as the
original proof of Sethuraman (1994) except that (7) is used instead of the distributional
relation of the finite dimensional Dirichlet distribution.

3 Proofs of lemmas

In this section, we give the proofs of the lemmas used in the previous section.

Proof of lemma 2.1 First, marginally θ1 ∼ F0. We prove the lemma by induction.
Suppose θ1, . . . , θk , are i.i.d. from F0.Wewill show that θk+1 given θ1, . . . , θk follows
F0. For a measurable A ⊂ X ,

P(θk+1 ∈ A|θ1, . . . , θk) = E
[
P(θk+1 ∈ A|θ1, . . . , θk, F)|θ1, . . . , θk

]
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= E
[
Gk(A)|θ1, . . . , θk

]

= F0(A).

The equalities follow from the definition of θk and equation (5). This completes the
proof. ��

Proof of lemma 2.2 Let u1, u2, . . .
i .i .d.∼ Beta(1, M), θ1, θ2 . . .

i .i .d.∼ F0, Gk
i .i .d.∼

DP(α), and all these random elements are independent. Define

F∗
k = u1δθ1 + u2(1 − u1)δθ2 + · · · +

[
uk

∏

l<k

(1 − ul)

]
δθk +

⎡

⎣
∏

l≤k

(1 − ul)

⎤

⎦Gk .

Then, given θ1, . . . , θk F∗
k has the same distribution as F for all k ≥ 1, by equa-

tion (5). Let F∗ = ∑∞
j=1

[
u j

∏
l< j (1 − ul)

]
δθ j . We will show that the distribution

of F given θ j ’s is the same as that of F∗ given θ j ’s. For this, it suffices to show that
for all disjoint measurable sets B1, B2, . . . , Bm ⊂ X , the conditional distribution of
(F(B1), . . . , F(Bm)) given θ j ’s is the same as that of (F∗(B1), . . . , F∗(Bm)). Since
the distributions of (F(B1), . . . , F(Bm)) and (F∗(B1), . . . , F∗(Bm)) are supported on
a bounded set, equality of moments of all orders implies equality of the distributions.
Thus, we need to show that for all n1, . . . , nm ≥ 0,

E
[
F(B1)

n1 × · · · × F(Bm)nm
∣∣θ1, θ2, . . .

]

= E
[
F∗(B1)

n1 × · · · × F∗(Bm)nm
∣∣θ1, θ2, . . .

]
, a.s. (8)

By the martingale convergence theorem, as k −→ ∞,

E
[
F(B1)

n1 × · · · × F(Bm)nm |θ1, . . . , θk
]

−→ E
[
F(B1)

n1 × · · · × F(Bm)nm |θ1, θ2 . . .
]
, a.s.,

where the right hand side (RHS) is the same as the left hand side (LHS) of (8). On the
other hand, since F∗

k (Bj ), F∗(Bj ) ≤ 1,

∣∣E
[
F∗
k (B1)

n1 × · · · × F∗
k (Bm)nm

∣∣θ1, θ2, . . .
]

−E
[
F∗(B1)

n1 × · · · × F∗(Bm)nm
∣∣θ1, θ2, . . .

]∣∣

≤ E

[ ∣∣F∗
k (B1)

n1 × · · · × F∗
k (Bm)nm − F∗(B1)

n1 × · · · × F∗(Bm)nm
∣∣ |θ1, θ2, . . .

]

≤
m∑

i=1

niE
[|F∗

k (Bi ) − F∗(Bi )|
∣∣θ1, θ2, . . .

]
.

The last inequality holds because |∏k
i=1 ai − ∏k

i=1 bi | ≤ ∑k
i=1 |ai − bi | if 0 ≤

|ai |, |bi | ≤ 1, for i = 1, 2, . . . , k. For any measurable B ⊂ X ,

E
[|F∗

k (B) − F∗(B)| ∣∣θ1, θ2, . . .
]
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= E

⎛

⎝

∣∣∣∣∣∣

k∑

j=1

⎡

⎣u j

∏

l< j

(1 − ul)

⎤

⎦ δθ j (B) +
⎡

⎣
∏

l≤k

(1 − ul)

⎤

⎦Gk(B)

−
∞∑

j=1

⎡

⎣u j

∏

l< j

(1 − ul)

⎤

⎦ δθ j (B)

∣∣∣∣∣∣

∣∣θ1, θ2, . . .

⎞

⎠

= E

⎛

⎝

∣∣∣∣∣∣

⎡

⎣
∏

l≤k

(1 − ul)

⎤

⎦Gk(B) −
∞∑

j=k+1

⎡

⎣u j

∏

l< j

(1 − ul)

⎤

⎦ δθ j (B)

∣∣∣∣∣∣

∣∣θ1, θ2, . . .

⎞

⎠

≤ 2E

⎛

⎝
∏

l≤k

(1 − ul)

⎞

⎠ = 2

(
M

M + 1

)k

−→ 0.

Thus, limk→∞
∑m

i=1 niE
[|F∗

k (Bi ) − F∗(Bi )|
∣∣θ1, θ2, . . .

] = 0 a.s. This in turn
implies

lim
k→∞E

[
F∗
k (B1)

n1 × · · · × F∗
k (Bm)nm

] = E
[
F∗(B1)

n1 × · · · × F∗(Bm)nm
]
a.s.

Thus, we have shown (8). This completes the proof. ��
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