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ABSTRACT

ENSO and the mean zonal sea surface temperature gradient (dSST) of the tropical Pacific are important

drivers of global climate and vary on decadal to centennial time scales. However, the relationship between

dSST and ENSO cannot be assessed with the short instrumental record, and is uncertain in proxy data, with

intervals of both stronger andweakerENSOpostulated to occurwith overall strong dSST in the past.Herewe assess

the ENSO–dSST relationship during the last millennium using general circulation models (GCMs) participating in

phase 3 of the PaleoclimateModeling Intercomparison Project. Last millenniumGCMsimulations show diversity in

the strength and direction of the ENSO–dSST relationship. Yet, the models that best simulate modern tropical

Pacific climate frequently have a more negative ENSO–dSST correlation. Thus, last millennium tropical Pacific

climate simulations support the likelihood of enhanced ENSO during decadal to centennial periods of reduced

tropical Pacific dSST. However, the alternating directional ENSO–dSST relationship in all model simulations sug-

gests that this relationship is not constant through time and is likely controlled by multiple mechanisms.

1. Introduction

ENSO strength is known to vary on multidecadal to

centennial time scales (Cobb et al. 2013, 2003; Deser

et al. 2012; Karamperidou et al. 2014; Wittenberg 2009)

and is hypothesized to be related to the mean state, or

background conditions, of the tropical Pacific (Collins

et al. 2010; Conroy et al. 2010; Fedorov and Philander

2001; Ford et al. 2015; Koutavas and Joanides 2012;

Rustic et al. 2015; Sadekov et al. 2013). This relationship

has implications for both forecasting ENSO and

projecting ENSO changes with anthropogenic forcing,

but the instrumental record remains too short to ade-

quately assess the nature of the ENSO–mean state re-

lationship. Paleoclimate data offer a means to examine

the ENSO–mean state relationship on longer time

scales, yet sparse data with limited temporal resolution

continue to hinder understanding of the direction and

stationarity of this relationship in the past. For example,

some recent studies conclude ENSO was stronger in the

past with a stronger tropical Pacific zonal SST gradient, a

common mean state metric (Ford et al. 2015), whereas

others conclude ENSO was stronger in the past with a

weaker zonal SST gradient (Koutavas and Joanides

2012; Rustic et al. 2015; Sadekov et al. 2013). Another

assessment suggests the possibility of no relationship, or

no consistent relationship, through time between ENSO

variance and the zonal SST gradient (Conroy et al. 2010).

Apart from differences in the hypothesized direction

of the ENSO–mean state relationship in the past, the

mechanisms invoked to explain this relationship—rooted
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in modern observations and modeling—also vary.

Frequently, the mean state, which varies due to both

internal and external forcing, is considered as the driver

of past changes in ENSO variance (Fedorov and Philander

2001). Several studies have explored the sensitivity of

ENSO to changes in the mean state using models of

varying complexity. These studies identified various pa-

rameters including zonal SST gradient strength, thermo-

cline depth in the eastern Pacific, the strength of the

equatorial upwelling, and surface wind intensity to be

among key drivers of ENSO variability (Battisti and Hirst

1989; Dewitte 2000; Wittenberg 2002; Zebiak and Cane

1987). Further studies have explored ENSO variability

during time periods with different radiative forcings

and background conditions. For example, earlyHolocene

ENSO variance was shown to be reduced due to cooler

mean state SST, a weaker thermocline, and weakened

horizontal currents (Roberts et al. 2014). Additionally,

mid-Holocene orbital forcing of the distribution of sea-

sonal insolation, in combination with upwelling in the

eastern Pacific, is thought to have enhanced the zonal SST

gradient across the Pacific. This enhanced gradient may

have inhibited the development of El Niño events and

reduced ENSO variance (Clement et al. 2000; Masson-

Delmotte et al. 2013). Both long-term and short-term

changes in subsurface temperatures and thermocline

structure may have also altered ENSO variance by

changing the balance of the many associated feedbacks

that control ENSO (Ford et al. 2015; Karamperidou et al.

2015; Timmermann 2003). A stronger mean zonal SST

gradient can also lead to an increase in the ENSO max-

imumpotential intensity, thus increasing the frequency of

stronger ENSO events (An and Jin 2004). Additionally,

mean state SST anomalies can influence critical atmo-

spheric ENSO feedbacks and key ENSO properties like

skewness and seasonal phase locking (Bayr et al. 2018).

Model biases in tropical Pacific mean state SST are

thus likely key contributors to the ENSO biases ob-

served in models through their role in influencing these

feedbacks (Bayr et al. 2018; Bellenger et al. 2014;

Ferrett et al. 2018).

However, ENSO may also influence the mean state.

Nonlinear ENSO rectification on the mean state sug-

gests that the known asymmetry between El Niño and

La Niña events (with stronger El Niño vs La Niña
events) causes residual heat from El Niño events to

continue warming the eastern Pacific cold tongue long

after an event ends (An and Jin 2004;Dewitte et al. 2009;

Hayashi and Jin 2017; Jin et al. 2003; Liang et al. 2012;

Sun 2003; Timmermann 2003; Timmermann and Jin

2002; Yeh and Kirtman 2004). The net effect of rectifi-

cation is a multidecadal weakening of the zonal SST

gradient as a result of strong El Niño events. Another

hypothesis also invokes ENSO asymmetry to explain a

weaker zonal SST gradient coincident with enhanced

ENSO variability, through recharge and loss of upper-

ocean heat content in the western equatorial Pacific

during ENSO events (Karnauskas et al. 2012). The

reddening of high-frequency noise, due to the thermal

inertia of the ocean, may also be the link between ENSO

and mean state properties (Samanta et al. 2018). While

these are certainly not the only means by which ENSO

influences the tropical Pacific mean state, they do high-

light ENSO’s role in altering the mean state, and have

been considered in explanations of the direction of the

ENSO–mean state relationship in the past (Koutavas and

Joanides 2012; Rustic et al. 2015; Sadekov et al. 2013).

Indeed, model biases in the simulation of ENSO feed-

backs have been linked to potential biases in the mean

warming patterns of tropical Pacific SST in future climate

scenarios (Karamperidou et al. 2017), illustrating that the

relationship between the tropical Pacific mean state and

ENSO variability is interactive and complex.

Last millennium transient simulations that include

natural forcing factors are an ideal medium in which to

address the question of the directionality of the ENSO–

mean state relationship in the absence of large, externally

forced background climate changes. The last millennium

is a time period with similar background forcing to the

twentieth century, prior to the advent of anthropogenic

forcing, and thus adequately captures natural variability

in the modern climate system. Annually resolved paleo-

ENSO data are also most abundant during this time in-

terval, permitting limited data–model comparisons. Phase 3

of the Paleoclimate Modeling Intercomparison Project

(PMIP3) provides a means to comprehensively assess the

lastmillenniumENSO–mean state relationshipwithinmany

different models with the same imposed radiative forcing

(Braconnot et al. 2012).

Climate model simulations can also be used to explore

the assumption of stationarity, in this case the unidir-

ectionality implicit in many discussions of the past

ENSO–mean state relationship. Limited inquiries into

whether the directionality of this relationship varies

over time have been carried out, due to the scarcity of

high-resolution paleo-ENSO data. GCM simulations

provide an additional avenue for assessing ENSO–mean

state interactions in models, and have the temporal res-

olution and length (i.e., at least 300–500 years) to address

the question of stationarity (Karnauskas et al. 2012;

Wittenberg 2009). Here we examine a suite of PMIP3

last millennium and preindustrial control simulations

to assess the ENSO–mean state relationship on multi-

decadal to centennial time scales. We seek to address

the directionality of the ENSO–mean state relationship

over the last millennium, the degree of model–proxy
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agreement, and whether the relationship has remained

stationary through time. This paper is organized as

follows: the simulations used in this study, along with

analytical methods, are presented in section 2. Section 3

presents the results of the modeling analysis and

section 4 discusses the last millennium ENSO–mean

state relationship in models, reviews the state of un-

derstanding of this relationship from the available

proxy data, and addresses implications for future

ENSO variability. The paper concludes with a sum-

mary in section 5.

2. Methods

SevenGCMs participating in both the last millennium

(past1000) and preindustrial control (piControl) exper-

iments of PMIP3, part of phase 5 of the Coupled Model

Intercomparison Project (CMIP5), were used to assess

the relationship between the zonal gradient of tropical

Pacific SST (dSST) and ENSO variability (Table 1). All

piControl simulations used in this analysis approximate

conditions at 1850 CE. Each model’s piControl simula-

tion was assessed using ENSO metrics (section 2a) rel-

ative to observational data to determine model skill in

simulating ENSO. Similarly, each model’s piControl

simulation was also assessed using mean state metrics

(section 2b) to determine model skill in simulating the

mean state. The GISS-E2-R piControl experiment in-

cludes four simulations with varying forcing factors. In

this study, we use the GISS-E2-R P1 simulation as it is

the longest of the four simulations (550 years). We dis-

regardMIROC-ESMdue to long-termdrift in its past 1000

simulation.

Each past1000 simulation spans 850–1850 CE, and is

forced with evolving boundary conditions, including

volcanic and solar forcing, orbital variations, land use,

and trace gases (Schmidt et al. 2011, 2012). The GISS-

E2-R last millennium simulations assessed include three

of eight different ensemble members: P124, P126, and

P128. These ensemble members have different volcanic

forcing (P124: Crowley et al. 2008; P126: none; P128:

Gao et al. 2008) but the same solar, land use, greenhouse

gas, and orbital forcing. These ensemble members were

chosen because, while not exactly the same, their

boundary conditions are most similar to those for the

GISS-E2-R piControl simulation, facilitating a more

direct comparison.

a. ENSO metrics

Metrics for ENSO variability (amplitude; Bellenger

et al. 2014), and ENSO asymmetry (skewness) were

calculated using Niño-3 (58N–58S, 1508–908W) monthly

SST anomalies. Amplitude and skewness were deter-

mined from the overall standard deviation and skewness

of the Niño-3 monthly SST anomalies, respectively.

Alpha, an ENSO nonlinearity metric that is the leading

coefficient of the quadratic curve fit of the first two

principal components of tropical Pacific SST anomalies,

was determined as described in Karamperidou et al.

(2017). This metric was shown to reflect the relative

balance of ENSO feedbacks that leads to the presence of

ENSO diversity (or ENSO ‘‘flavors’’; i.e., strong eastern

Pacific and moderate central Pacific events). The model

metrics were compared to the same metrics calculated

from HadISST1.1 monthly observations (Rayner et al.

2003) from 1870 to 2017. Similarity to the observations

was assessed using

Normalizedmetric

5
jModelmetric value2Observationmetric valuej

Intermodelmetric standard deviation
,

as per Bellenger et al. (2014). Lower numbers indicate

higher degree of similarity to the observations (Fig. 1,

Fig. S1 in the online supplemental material).

b. Mean state metrics

Metrics for mean state bias (R), multidecadal dSST

variability (power), and SST magnitude [mean bias

error (MBE)] were used to determine model skill in

TABLE 1. PMIP3/CMIP5 climate model information for this study. All past1000 simulations extend from 850 to 1850 CE. An asterisk

indicates that three different experiments with different volcanic forcings were considered. P124 uses the Crowley et al. (2008) dataset,

P126 has no volcanic forcing, and P128 uses Gao et al. (2008) dataset.

Organization Model Experiments

National Center for Atmospheric Research CCSM4 piControl, past1000

University of New South Wales, Australia CSIRO Mk3L-1.2 piControl, past1000

Met Office Hadley Centre HadCM3 piControl, past1000

Institut Pierre-Simon Laplace IPSL-CM5A-LR piControl, past1000

Max Planck Institute for Meteorology MPI-ESM-P piControl, past1000

Meteorological Research Institute MRI-CGCM3 piControl, past1000

National Aeronautics and Space Administration GISS-E2-R piControl, past1000: P124, P126, and P128*
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simulating the mean state. Note that R is the pattern

correlation coefficient between time-averaged model

and observational (HadISST1.1) equatorial Pacific SST

(58N–58S, 1508E–808W). Power in both models and ob-

servations was determined using the 8–20 year average

of the dSST power spectrum. The power spectra were

calculated using the WaveletComp package in the sta-

tistical softwareR, which applies theMorlet wavelet to a

dataset. dSST is defined as western equatorial Pacific

SST (58N–58S, 1008E–1808) subtracted by eastern

equatorial Pacific SST (58N–58S, 1608–808W). MBE is

the mean bias error between time-averaged, detrended,

observational SST and time-averaged, model SST across

the equator. HadISST was detrended to remove any

anthropogenic warming trend in modern SST prior to

comparison with models. Metric similarity to the ob-

servations was assessed using the normalized metric

equation presented in section 2a. Lower numbers indi-

cate higher degree of similarity to the observations

(Fig. 2, Fig. S2). All analysis in future sections are con-

ducted on average annual values and thus mean state

seasonal metrics are not considered here.

c. Model ENSO–dSST assessment

The past1000 and piControl experiments for each

model were used to assess theENSO–dSST relationship.

For each simulation, a dSST time series was created

using SST data averaged from the same western equa-

torial Pacific and eastern equatorial Pacific regions de-

fined in section 2b. Data were low-pass filtered to

remove frequencies (,7 years) associated with ENSO.

After filtering, the data were averaged to create an an-

nual average dSST time series. Similarly, a Niño-3 time

series was created from monthly Niño-3 anomalies,

bandpass filtered with a 4-month to 7-yr window to re-

move low-frequency mean state variability while keep-

ing frequencies associated with ENSO. After filtering,

December–February (DJF) anomalies were averaged

together to obtain an annual Niño-3 DJF anomaly

time series.

To assess the multidecadal relationship between ENSO

variability and dSST in past1000 and piControl model

simulations, 40-yr moving standard deviations were cal-

culated for Niño-3 and 40-yr moving averages were cal-

culated for dSST. To assess the directionality of the mean

state–ENSO variability relationship, 60-yr moving corre-

lation coefficients were calculated between the Niño-3
standard deviation and mean dSST time series; 40-yr

moving windows were chosen for a more direct compari-

son to proxy dSST records with a minimum 40-yr resolu-

tion (see the appendix). Various correlation windows (40,

50, 60, 70, 80, and 90 years)were tested and 60-yr correlations

appeared representative for each model. Autocorrelation in

each time series was calculated and used to determine the

effective sample size (Dawdy and Matalas 1964) and statis-

tical significance of the correlations.

Red noise testing of the ENSO–dSST relationship in

past1000 models simulations was conducted as another

means of determining significance. Using the auto-

correlative parameters of the raw ENSO monthly

anomalies, 10 000 time series with the autoregression

[AR(1)] coefficient and mean of the original were cre-

ated, then filtered, for each model. The same 40-yr

running standard deviation was applied to the 10 000

time series. This process was repeated with raw model

dSST to create 10 000 dSST red noise time series with

FIG. 1. ENSOmetrics calculated with preindustrial control Niño-3
SST anomalies. The color bar is normalized error compared to

observations (HadISST1.1). Light colors indicate strong agreement

with observations; dark colors indicate weaker agreement. Observation

alpha5 0.29, amplitude5 0.80, and skewness5 0.78.Models are listed

in order of agreement with observations. Metric values can be found in

Table S1.

FIG. 2. Tropical Pacific mean state metrics calculated with pre-

industrial control SST data. The color bar is normalized error

compared to observations (HadISST1.1). Light colors indicate

strong agreement with observations; dark colors indicate weaker

agreement. Observation R 5 1, power 5 0.22, and MBE 5 0.

Models are listed in order of agreement with observations. Metric

values can be found in Table S1.
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the same AR(1) coefficient and mean of the original for

each model. These time series also underwent the same

filtering and 40-yr averaging. We calculated 60-yr run-

ning correlations between dSST and ENSO for both

ENSO and red noise dSST as well as red noise ENSO

and dSST. Last, the red noise ENSO and red noise dSST

were correlated together as well. Skewness was calcu-

lated on each distribution of model correlations and

noise correlations to determine the symmetry of the

distributions (see Fig. 4 below). Skewness of each dis-

tribution provided a metric to assess similarity between

all noise correlations and model correlations.

3. Results

a. Climate model ENSO and mean state

Metrics of ENSO nonlinearity (alpha), ENSO vari-

ability (amplitude), and ENSO skewness, as compared

to observational values, vary from model to model

(Fig. 1). The GCMs with preindustrial control ENSO

metrics that most closely approximate observations for

each category were CCSM4 (alpha), HadCM3 (ampli-

tude), and CSIRO Mk3L (skewness). The GCMs with

preindustrial control ENSO metrics furthest from ob-

servations were HadCM3 (alpha), CSIRO Mk3L (am-

plitude), and GISS-E2-R (skewness). Thus, no GCM

was closest to or furthest from observations inmore than

one category (Table S1), necessitating the use of aver-

aging scores across categories to determine the average

metric error, a measure of the highest and lowest per-

forming models. Overall, the highest performing GCMs

were CCSM4 and CSIRO Mk3L and the lowest per-

forming GCMs were MRI-CGCM3 and GISS-E2-R.

Model skill in simulating the mean state was assessed

by correlating the pattern of simulatedmean annual SST

with observational SST across the equatorial Pacific (R),

assessing multidecadal variability in dSST in models

(power), and assessing differences in SST magnitude

between models and observations (MBE; Fig. 2).

Correlating model with observational SST patterns re-

vealed correlations higher than 0.60 in most models,

with the highest correlation in CCSM4. The lowest

correlations were found inHadCM3.While CCSM4 also

showed the most multidecadal variability of any model

(Fig. S2), MPI-ESM-P and CSIRO Mk3L most closely

matched observed multidecadal dSST power. IPSL-

CM5A-LR had the least multidecadal variability of

any GCM. The model most similar to observations in

terms of SST magnitude was CCSM4 and the furthest

from observations wasMPI-ESM-P (Fig. 2, Fig. S3). The

average of normalized scores revealed that the highest

ranking GCMs were CCSM4 andMRI-CGCM3 and the

lowest rankingmodels wereHadCM3 and IPSL-CM5A-

LR (Table S1).

b. ENSO–dSST relationship over the last millennium

The ENSO–dSST relationship over the last millen-

nium varies substantially between different GCM sim-

ulations. Time series of past1000 dSST andENSO reveal

no similarities in dSST or ENSO variability across

models (Fig. 3). Additionally, time series of correlation

coefficients representing the ENSO–dSST relationship

are nonstationary, alternating between negative and

positive correlations in all models. The distributions of

these correlation coefficients in most models are mod-

erately skewed (0.5 , skewness , 1), with primarily

negative correlation coefficients (Fig. 4). Correlation

distributions in CCSM4 and GISS-E2-R P126 are highly

skewed (skewness . 1), with correlations that are

overwhelmingly negative. Only two of the models as-

sessed here, MRI-CGCM3 and GISS-E3-R P128, have

correlation distributions that are approximately sym-

metric (0 , skewness , 0.5). While correlation distri-

bution skewness does not neatly align with either overall

dSST or ENSO rankings, it does appear that, generally

speaking, skewness decreases as the average ranking

(e.g., model performance) decreases (Table S1), with

the exception of the GISS-E2-R models. Comparison of

the model correlation distributions to correlations gen-

erated from red noise time series indicates the noise

correlations are approximately symmetric for every

model (s1–s3 values, Fig. 4). Correlations betweenmodel

metrics and ENSO–dSST correlation skewness shows

the alpha and power metrics both have statistically sig-

nificant (p , 0.05) correlations with last millennium

ENSO–dSST correlation distribution skewness (Table S2).

To further explore the role of internal versus external

forcing of the ENSO–mean state relationship, we com-

pared past1000 and piControl ENSO–mean state corre-

lation distribution skewness. The piControl correlation

distributions are variable across models and there is no

clear relationship with model skill in simulating ENSO

and dSST (Fig. S4). CCSM4, GISS-E2-R, and HadCM3

piControl correlation distributions are moderately to

highly positively skewed, similar to their past1000 coun-

terparts. The remaining piControl correlation distribu-

tions are approximately symmetric, much like the noise

distributions.

4. Discussion

We focus our discussion on the last millennium sim-

ulations in order to facilitate more direct compari-

son with last millennium proxy reconstructions of dSST

and ENSO. In last millennium simulations, there is no
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intermodel agreement in the magnitude or direction of

dSST change or ENSO variability (Fig. 3), similar to

control simulations (Fig. S5). However, there is a pre-

ponderance of negative correlations between multi-

decadal dSST andENSOvariability inmostmodels. The

GCMs that more accurately simulate ENSO and the

mean state show a more skewed distribution of corre-

lations. These skewed distributions indicate the ENSO–

mean state relationship is more frequently negative,

with a strongermean state (e.g., enhanced zonal gradient)

co-occurring with reduced ENSO variability. Overall,

correlation distribution skewness decreases as simulation

skill decreases, with the exception of the GISS-E2-R

models (Fig. 4).

The models showing similar piControl and past1000

correlation distribution patterns suggests internal vari-

ability is the primary driver of the ENSO–mean state

relationship (Coats and Karnauskas 2017; Karnauskas

et al. 2012; Wittenberg 2009). For some models, how-

ever, piControl distribution is not significantly different

than the noise distributions, while the past1000 is posi-

tively skewed due the prevalence of more negative

ENSO–dSST correlations. This suggests that external

forcing, most likely, volcanic forcing, shapes the ENSO–

dSST relationship in these models. Climate models

have a demonstrated ENSO sensitivity to volcanic

eruptions with a recent study showing highly variable

ENSO response to volcanic forcing in CMIP5/PMIP3

models (Dee et al. 2020; Pausata et al. 2016, 2020;

Stevenson et al. 2016). The potential influence of vol-

canism on the modeled ENSO–mean state relationship

is further highlighted by the GISS-E2-R models used in

this study. GISS-E2-R P124, P126, and P128 all have

large differences in their ENSO–mean state correlation

distribution skewness. The only difference between the

GISS-E2-R models is the volcanic forcing, with P126

having no volcanic forcing and P124 and P128 using

different volcanic forcing datasets [see Crowley et al.

(2008) andGao et al. (2008), respectively]. In addition to

using a different volcanic forcing dataset from P124,

P128 was noted to have double the radiative forcing due

to a conversion error when specifying the volcanic

forcing (Schmidt et al. 2013). The correlation distribu-

tion skewness in the GISS-E2-R simulations decreases

as volcanic forcing increases, suggesting a potential

volcanic influence on the mean state–ENSO relationship.

FIG. 3. Time series of 40-yr moving-average dSST (black), 40-yr moving ENSO standard deviation represented by Niño-3 (red), and

60-yr correlation coefficients (blue) of CMIP5 past1000 model simulations. Dashed black and red lines indicate the mean of dSST and

ENSO, respectively. Dashed blue lines indicate a correlation coefficient of zero.
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This potential influence should be the subject of future

research.

Paleoclimate data–model comparison is a valuable

tool for both validatingmodel output and understanding

proxy climate data. However, limited paleoclimate data

still preclude a thorough and conclusive assessment of

the ENSO–mean state relationship, even in the last

millennium, when data are most abundant. Monthly or

annual ENSO reconstructions from corals are not con-

tinuous, and when statistically combined, interannual to

decadal age model error can dampen ENSO variance

estimates. Continuous, annual ENSO reconstructions

from teleconnected regions are thus the only current

means of adequately assessing ENSO variance in this

time period but require the assumption of constant

ENSO teleconnections through time. For the mean

state, continuous marine sediment based proxy SST

records are relatively abundant in the western Pacific,

but only one record, which is short in length and possibly

prone to bioturbation, is currently available from the

eastern Pacific. Nevertheless, here we conduct an initial

exploration of the ENSO–dSST relationship in proxy

records to demonstrate how this assessment can be

done in the future when more records are available. We

calculate a composite dSST record from 10 high-resolution

proxy SST records and compare the resulting time series to

the Li et al. (2011) Niño-3 reconstruction (hereafter Li),

developed from the first principal component of the North

American Drought Atlas (see the appendix). Similar to

the model data, these datasets were compared in 40-yr

FIG. 4. Histograms of multidecadal past1000 dSST–ENSO correlation coefficients plotted against a series of red noise tests. Skewness

values associated with model and each noise test are shown in each panel. Models are plotted in order from highest to lowest skewness

starting from the upper-left corner and moving to the right.
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intervals. However, the proxy data resolution resulted in a

low sample size, precluding the use of correlation coeffi-

cients in the analysis. Nonetheless, qualitative comparisons

show a primarily negative relationship between ENSO and

dSST, with some multidecadal periods of a positive rela-

tionship (Fig. 5b).

The negative and positive correlations observed in the

models (and proxy data) suggest the assumption of a

consistent ENSO–mean state relationship on multi-

decadal to centennial time scales, either in direction or

strength, is not valid. However, the greater frequency

of a negative relationship during the last millennium in

models that best simulate ENSO and the mean state, as

well as the available proxy data, suggests the hypothe-

sized mechanisms that produce such a negative rela-

tionship on these time scales may be at work more

frequently over the last millennium. These mechanisms

include nonlinear ENSO rectification on the mean state,

whereby a stronger ENSO reduces dSST, resulting in

negative correlations. Or, the mean state may be the

driver of ENSO strength, with a stronger zonal SST

gradient inhibiting the development of El Niño events.

Regardless, as the time periods of strong and weak, as

well as negative and positive, ENSO–mean state rela-

tionships vary frommodel to model, the primary drivers

of this relationship over the last millennium are likely

variable, and internal in nature. However, differences in

the degree of skewness between past1000 and piControl

experiments in some models (Fig. S4) suggests the

ENSO–mean state relationship could also be partly

influenced by external forcings on multidecadal to cen-

tennial time scales. This should be the subject of future

research.

Historically, climate models have struggled to project

ENSO variability that is consistent across models, with

little to no intermodel consensus regarding future changes

(Cai et al. 2015; Collins et al. 2010; Karamperidou et al.

2017; Meehl et al. 2007; Vecchi et al. 2008;Watanabe et al.

2011) unless models are subselected based on certain

metrics (Cai et al. 2018; Karamperidou et al. 2017).

Projected changes in the zonal SST gradient also conflict

with modern observations. In this case, models show a

weakening of the zonal SST gradient with increased

greenhouse gas radiative forcing, but this trend has not

been observed in twentieth-century SST datasets, and

there is limited agreement between twentieth-century

observations and simulations (Coats and Karnauskas

2017; DiNezio et al. 2013; Seager et al. 2019). The ulti-

mate cause of this discrepancy is hypothesized to bemodel

bias, in this case, a central-eastern Pacific equatorial cold

tongue that is too cold (Seager et al. 2019) or too far west

(Samanta et al. 2018) or biases in the simulation of the

equatorial undercurrent (Coats and Karnauskas 2018).

Simulations without a cold tongue bias show a strength-

ened zonal SST gradient, rather than a weakened gradient

(Seager et al. 2019). Karamperidou et al. (2017) linked the

FIG. 5. ENSO and dSST information from paleoclimate observations. (a) dSST time series. The black line in-

dicates themean proxy dSST and the shading indicates the uncertainty. The dashed line indicates mean proxy dSST

z score. The mean z score represents the west Pacific z score subtracted by the east Pacific z score resulting in a

mean slightly below zero. Averaged dSST from ERSST (green) and HadISST (purple) are plotted in 10-yr in-

tervals. (b) The 40-yr ENSO standard deviation of Li et al. (2011). (c) ENSO–dSST comparison between Li et al.

(2011) and proxy dSST (see the appendix).
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pattern of tropical Pacific SST change in future climate

scenarios to model biases in simulating ENSO feedbacks

and nonlinearity; they found that models with strong

ENSO nonlinearity (alpha metric used here) tend to sim-

ulate less relative warming of the cold tongue compared to

the entire equatorial Pacific, possibly due to their en-

hanced thermodynamic damping in the east Pacific. It may

also be spuriously high variance in the western Pacific in

models that produces centennial trends in dSST (Samanta

et al. 2018). However, of the models assessed here, those

with a cold tongue bias do not consistently have a more

highly skewed or symmetric ENSO–dSST correlation

distribution, suggesting that correcting for this cold tongue

mean state bias may not inform on the future mean state–

ENSO relationship. Additionally, the cold tongue bias was

substantially improved in CMIP5 versus CMIP3 models,

and yet, ENSOwas not equally improved (Bellenger et al.

2014). Thus, an improved mean state does not necessarily

imply improved ENSO. Furthermore, as our work shows,

themean state also cannot be used as a predictor of ENSO

variability on multidecadal time scales, given the shifting

direction and strength of this relationship. Further research

into ENSO–mean state dynamics, particularly the oscilla-

tions between periods of positive and negative covariance

between ENSO and the mean state, may elucidate mech-

anisms of tropical Pacific internal variability that further

improve future projections of both ENSO and the mean

state, either individually or in tandem.

5. Summary

The direction and stationarity of the ENSO–tropical

Pacific mean state relationship is difficult to assess with

the short observational record and remains uncertain in

proxy data. However, this relationship has implications

for the nature of both the futuremean state and interannual

variability in the tropical Pacific and teleconnected regions.

The assessment presented here uses lastmillennium climate

model simulations to determine the nature of the ENSO–

dSST relationship onmultidecadal to centennial time scales.

Last millennium simulations from climate models with

ENSO and dSST characteristics that best approximate ob-

servations show more frequent multidecadal periods of

negative correlation coefficients between ENSO variability

and dSST strength. The distributions of correlations are

more symmetric in models that agree more poorly with

observed ENSO and dSST statistics. Predominantly nega-

tive ENSO–dSST relationships are also seen in the avail-

able, but limited, proxy data. This relationship indicates

increased ENSO strength frequently co-occurs with weaker

dSST and vice versa during the last millennium. However,

all model simulations and the proxy data also show alter-

nating periods of positive and negative ENSO–dSST

relationships. Thus, the ENSO–dSST relationship is not

unidirectional on these time scales, suggesting this re-

lationship is dynamic. This observed alternating rela-

tionship and its underlying mechanisms should motivate

future research as it will improve understanding of

tropical Pacific internal variability and future climate

projections of ENSO and the tropical Pacific mean state.
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APPENDIX

Proxy ENSO and dSST Assessment

a. Record selection

There are several estimates of dSST, and evenmore of

ENSO variability, spanning parts of the last millennium.

To compare last millennium ENSO–mean state rela-

tionships in the proxy andmodel data, we analyze, based

on specific criteria, the most robust available estimates

of both dSST and ENSO. For ENSO, these criteria are

that the data are 1) continuous, 2) annually resolved, 3)

have minimal age uncertainty, 4) span the last millen-

nium, and 5) have been calibrated and verified with

observations. The only ENSO dataset that meets these

1 SEPTEMBER 2020 WYMAN ET AL . 7547

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/17/7539/4985054/jclid190673.pdf by guest on 14 Septem
ber 2020

https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.metoffice.gov.uk/hadobs/hadisst/
https://www.metoffice.gov.uk/hadobs/hadisst/
https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
http://www.cesm.ucar.edu/projects/community-projects/LME/data-sets.html
http://www.cesm.ucar.edu/projects/community-projects/LME/data-sets.html
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data


criteria currently is Li. Li uses the first principal com-

ponent of the North American Drought Atlas (NADA,

version 2) developed from annually resolved North

American tree-ring data to reconstruct Niño-3 vari-

ability. This ENSO reconstruction meets the above cri-

teria, has a statistically robust relationship with Niño-3
SST, and is the longest (900–2002 CE) annually resolved

reconstruction available to date. ENSO reconstruc-

tions that contain other types of annually resolved

proxy data, mainly corals, were also considered, but the

interannual to decadal chronology error on individual

coral records can lead to incorrect estimates of past

ENSO variability when they are combined. We ac-

knowledge that because the Li reconstruction is based

on terrestrial proxies and assumes a stationary hydro-

climatic teleconnection with North America, there is

also inherent uncertainty associated with using this

reconstruction.

To assess changes in dSST through the last millen-

nium, we combine proxy records from the western

Pacific and eastern Pacific to create a composite dSST

record from all available data. Proxy record criteria for

selection included that each record 1) is marine; 2)

contained quantitative planktonic foraminifera Mg/Ca

or alkenone-based SST data; 3) had accessible age

model data; 4) is continuous, with multidecadal resolu-

tion; and 5) is fromwithin the eastern Pacific cold tongue

(58N–58S, 1208–908W), or western Pacific warm pool

(108N–108S, 1058–1358E). These criteria allowed for the

creation of the composite proxy dSST time series of

the last millennium using only records that directly

and quantitatively reconstruct SST (Fig. 5, Table S3).

Of all existing paleoclimate records available for

public use, nine records from the western Pacific and

one from the eastern Pacific fit the above criteria

(Fig. S6). Only one record from the western Pacific is

alkenone based. As it is debated whether to mix al-

kenone and Mg/Ca estimates (Koutavas and Joanides

2012), we explored the impact of including this record

in the estimate of dSST. Including this record (Zhao

et al. 2006) did not alter the dSST time series appre-

ciably (Fig. S7).

b. Age uncertainty propagation in marine SST
records

Inherent in every proxy record is some degree of age

uncertainty. To combine each proxy record to create a

dSST time series, the age uncertainty of each record was

accounted for by creating 10 000 age–depth iterations of

each paleoclimate record using the published age dates

in Bchron. Bchron is a statistical package for generating

age models from dated material (Haslett and Parnell

2008) using the reported ages, age uncertainty, sample

depth of dated material, and sample depths of nondated

material to generate a suite of possible age models

constrained by the uncertainty of the dated material.

Using 10 000 possible age models for each record allows

for a statistically robust examination of age uncertainty

when combining said records. Allowing variations within

age uncertainty produced some records that begin earlier

or end later than published records, causing the com-

posite dSST record to extend a bit further back in time

than the originally published records.

c. Creating composite dSST record

All 10 000 iterations of each record were interpolated

in 40-yr intervals between 760 and 1960 CE and nor-

malized by subtracting the long-term mean and dividing

by the standard deviation of each iteration. The interval

760–1960 CE was chosen as it spans the length of the

newly modeled eastern Pacific record and western

Pacific records and 40-yr intervals is the highest resolu-

tion allowable given the limits of individual proxy res-

olution. A composite western Pacific record was created

by averaging each normalized record together. The

normalized eastern Pacific record and composite west-

ern Pacific record are plotted in Fig. S8. The eastern

Pacific time series was subtracted from the western

Pacific time series to create 10 000 iterations of the dSST

time series. These were sorted and the median time se-

ries was used for comparison to the Li ENSO time series.

The 0.95 dSST quantile the 0.05 dSST quantile were

used as bounds for age uncertainty. A z score above the

mean for the sorted, median time series (mWest 520.07,

mEast 5 0.08, mdSST 5 20.15) indicates above-average

SST or dSST (8C). Regime shift detection on the proxy

dSST time series was conducted per published methods

in 120-yr windows (Rodionov 2004, 2006). Regime shift

detection calculates the change in dSST needed for a

shift to a new climate regime for each time step using the

mean, variance, and test window length. ERSSTv5

(Huang et al. 2017) and HadISST1.1 SST data from the

grids containing each proxy were also extracted and

normalized to create western Pacific and eastern Pacific

composite SST time series. These records were sub-

tracted to produce the observed dSST record from 1880

to 2000, which is compared to the proxy dSST time se-

ries (Fig. 5a).

d. SST uncertainty propagation in marine proxy
records

The published SST uncertainty for each proxy record

ranges from 0.28 to 1.48C and was normalized:

Normalized uncertainty5
SSTuncertainty

SST
,
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where SST represents the interpolated SST for each

time step in each record. The western Pacific uncer-

tainties were combined:

Uncertainty 5

 ffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

X2
i

2

s !

n
,

where X represents the uncertainty for a given record

and n represents the number of records included. The

east and west uncertainty was combined to obtain a total

SST uncertainty for the proxy dSST time series:

dSSTUncertainty 5
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 1E22
p �

,

where W represents the western Pacific uncertainty and

E represents the eastern Pacific uncertainty. The com-

bined uncertainty was added to the 0.95 dSST quantile

and subtracted from the 0.05 dSST quantile in order to

combine age uncertainty and SST uncertainty to create

the most conservative estimate of uncertainty.

e. Proxy dSST–ENSO assessment

We calculated 40-yr standard deviations of the Li

ENSO time series to assess multidecadal ENSO vari-

ability (Fig. 5). To assess the ENSO–dSST relationship

on multidecadal time scales, ENSO reconstructions were

also categorically compared to the proxy dSST time series

over 40-yr windows (Fig. 5b). Such categorical assessments

of paleoclimate data are a means to interpret paleoclimate

data when limited sample size or the qualitative nature of

the proxy interpretation precludes time series analysis

(DiNezio and Tierney 2013; Higley et al. 2018; Oster et al.

2015). dSST and ENSO directionality was assessed by

determining if dSST strength and ENSO variability were

high or low over the time period. If dSST strength and

ENSO variability were high or low at the same time, the

two parameters were said to positively covary. If dSSTwas

high while ENSO was low, or vice versa, they were said to

negatively covary. ENSOvariability was considered high if

the analysis window standard deviation was higher than

the standard deviation for the entire time series. dSST was

considered high if the analysis window average was higher

than the average for the entire time series.
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