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ABSTRACT

ENSO and the mean zonal sea surface temperature gradient (dSST) of the tropical Pacific are important
drivers of global climate and vary on decadal to centennial time scales. However, the relationship between
dSST and ENSO cannot be assessed with the short instrumental record, and is uncertain in proxy data, with
intervals of both stronger and weaker ENSO postulated to occur with overall strong dSST in the past. Here we assess
the ENSO-dSST relationship during the last millennium using general circulation models (GCMs) participating in
phase 3 of the Paleoclimate Modeling Intercomparison Project. Last millennium GCM simulations show diversity in
the strength and direction of the ENSO-dSST relationship. Yet, the models that best simulate modern tropical
Pacific climate frequently have a more negative ENSO-dSST correlation. Thus, last millennium tropical Pacific
climate simulations support the likelihood of enhanced ENSO during decadal to centennial periods of reduced
tropical Pacific dSST. However, the alternating directional ENSO-dSST relationship in all model simulations sug-
gests that this relationship is not constant through time and is likely controlled by multiple mechanisms.

1. Introduction

ENSO strength is known to vary on multidecadal to
centennial time scales (Cobb et al. 2013, 2003; Deser
et al. 2012; Karamperidou et al. 2014; Wittenberg 2009)
and is hypothesized to be related to the mean state, or
background conditions, of the tropical Pacific (Collins
et al. 2010; Conroy et al. 2010; Fedorov and Philander
2001; Ford et al. 2015; Koutavas and Joanides 2012;
Rustic et al. 2015; Sadekov et al. 2013). This relationship
has implications for both forecasting ENSO and
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projecting ENSO changes with anthropogenic forcing,
but the instrumental record remains too short to ade-
quately assess the nature of the ENSO-mean state re-
lationship. Paleoclimate data offer a means to examine
the ENSO-mean state relationship on longer time
scales, yet sparse data with limited temporal resolution
continue to hinder understanding of the direction and
stationarity of this relationship in the past. For example,
some recent studies conclude ENSO was stronger in the
past with a stronger tropical Pacific zonal SST gradient, a
common mean state metric (Ford et al. 2015), whereas
others conclude ENSO was stronger in the past with a
weaker zonal SST gradient (Koutavas and Joanides
2012; Rustic et al. 2015; Sadekov et al. 2013). Another
assessment suggests the possibility of no relationship, or
no consistent relationship, through time between ENSO
variance and the zonal SST gradient (Conroy et al. 2010).

Apart from differences in the hypothesized direction
of the ENSO-mean state relationship in the past, the
mechanisms invoked to explain this relationship—rooted
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in modern observations and modeling—also vary.
Frequently, the mean state, which varies due to both
internal and external forcing, is considered as the driver
of past changes in ENSO variance (Fedorov and Philander
2001). Several studies have explored the sensitivity of
ENSO to changes in the mean state using models of
varying complexity. These studies identified various pa-
rameters including zonal SST gradient strength, thermo-
cline depth in the eastern Pacific, the strength of the
equatorial upwelling, and surface wind intensity to be
among key drivers of ENSO variability (Battisti and Hirst
1989; Dewitte 2000; Wittenberg 2002; Zebiak and Cane
1987). Further studies have explored ENSO variability
during time periods with different radiative forcings
and background conditions. For example, early Holocene
ENSO variance was shown to be reduced due to cooler
mean state SST, a weaker thermocline, and weakened
horizontal currents (Roberts et al. 2014). Additionally,
mid-Holocene orbital forcing of the distribution of sea-
sonal insolation, in combination with upwelling in the
eastern Pacific, is thought to have enhanced the zonal SST
gradient across the Pacific. This enhanced gradient may
have inhibited the development of El Nifio events and
reduced ENSO variance (Clement et al. 2000; Masson-
Delmotte et al. 2013). Both long-term and short-term
changes in subsurface temperatures and thermocline
structure may have also altered ENSO variance by
changing the balance of the many associated feedbacks
that control ENSO (Ford et al. 2015; Karamperidou et al.
2015; Timmermann 2003). A stronger mean zonal SST
gradient can also lead to an increase in the ENSO max-
imum potential intensity, thus increasing the frequency of
stronger ENSO events (An and Jin 2004). Additionally,
mean state SST anomalies can influence critical atmo-
spheric ENSO feedbacks and key ENSO properties like
skewness and seasonal phase locking (Bayr et al. 2018).
Model biases in tropical Pacific mean state SST are
thus likely key contributors to the ENSO biases ob-
served in models through their role in influencing these
feedbacks (Bayr et al. 2018; Bellenger et al. 2014;
Ferrett et al. 2018).

However, ENSO may also influence the mean state.
Nonlinear ENSO rectification on the mean state sug-
gests that the known asymmetry between El Nifio and
La Nifa events (with stronger El Niflo vs La Niia
events) causes residual heat from El Nifio events to
continue warming the eastern Pacific cold tongue long
after an event ends (An and Jin 2004; Dewitte et al. 2009;
Hayashi and Jin 2017; Jin et al. 2003; Liang et al. 2012;
Sun 2003; Timmermann 2003; Timmermann and Jin
2002; Yeh and Kirtman 2004). The net effect of rectifi-
cation is a multidecadal weakening of the zonal SST
gradient as a result of strong El Nifio events. Another

JOURNAL OF CLIMATE

VOLUME 33

hypothesis also invokes ENSO asymmetry to explain a
weaker zonal SST gradient coincident with enhanced
ENSO variability, through recharge and loss of upper-
ocean heat content in the western equatorial Pacific
during ENSO events (Karnauskas et al. 2012). The
reddening of high-frequency noise, due to the thermal
inertia of the ocean, may also be the link between ENSO
and mean state properties (Samanta et al. 2018). While
these are certainly not the only means by which ENSO
influences the tropical Pacific mean state, they do high-
light ENSO’s role in altering the mean state, and have
been considered in explanations of the direction of the
ENSO-mean state relationship in the past (Koutavas and
Joanides 2012; Rustic et al. 2015; Sadekov et al. 2013).
Indeed, model biases in the simulation of ENSO feed-
backs have been linked to potential biases in the mean
warming patterns of tropical Pacific SST in future climate
scenarios (Karamperidou et al. 2017), illustrating that the
relationship between the tropical Pacific mean state and
ENSO variability is interactive and complex.

Last millennium transient simulations that include
natural forcing factors are an ideal medium in which to
address the question of the directionality of the ENSO-
mean state relationship in the absence of large, externally
forced background climate changes. The last millennium
is a time period with similar background forcing to the
twentieth century, prior to the advent of anthropogenic
forcing, and thus adequately captures natural variability
in the modern climate system. Annually resolved paleo-
ENSO data are also most abundant during this time in-
terval, permitting limited data-model comparisons. Phase 3
of the Paleoclimate Modeling Intercomparison Project
(PMIP3) provides a means to comprehensively assess the
last millennium ENSO-mean state relationship within many
different models with the same imposed radiative forcing
(Braconnot et al. 2012).

Climate model simulations can also be used to explore
the assumption of stationarity, in this case the unidir-
ectionality implicit in many discussions of the past
ENSO-mean state relationship. Limited inquiries into
whether the directionality of this relationship varies
over time have been carried out, due to the scarcity of
high-resolution paleo-ENSO data. GCM simulations
provide an additional avenue for assessing ENSO-mean
state interactions in models, and have the temporal res-
olution and length (i.e., at least 300-500 years) to address
the question of stationarity (Karnauskas et al. 2012;
Wittenberg 2009). Here we examine a suite of PMIP3
last millennium and preindustrial control simulations
to assess the ENSO-mean state relationship on multi-
decadal to centennial time scales. We seek to address
the directionality of the ENSO-mean state relationship
over the last millennium, the degree of model-proxy
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TABLE 1. PMIP3/CMIPS5 climate model information for this study. All past1000 simulations extend from 850 to 1850 CE. An asterisk
indicates that three different experiments with different volcanic forcings were considered. P124 uses the Crowley et al. (2008) dataset,
P126 has no volcanic forcing, and P128 uses Gao et al. (2008) dataset.

Organization Model Experiments
National Center for Atmospheric Research CCSM4 piControl, past1000
University of New South Wales, Australia CSIRO MKk3L-1.2 piControl, past1000
Met Office Hadley Centre HadCM3 piControl, past1000
Institut Pierre-Simon Laplace IPSL-CM5A-LR piControl, past1000
Max Planck Institute for Meteorology MPI-ESM-P piControl, past1000
Meteorological Research Institute MRI-CGCM3 piControl, past1000
National Aeronautics and Space Administration GISS-E2-R piControl, past1000: P124, P126, and P128*

agreement, and whether the relationship has remained
stationary through time. This paper is organized as
follows: the simulations used in this study, along with
analytical methods, are presented in section 2. Section 3
presents the results of the modeling analysis and
section 4 discusses the last millennium ENSO-mean
state relationship in models, reviews the state of un-
derstanding of this relationship from the available
proxy data, and addresses implications for future
ENSO variability. The paper concludes with a sum-
mary in section 5.

2. Methods

Seven GCMs participating in both the last millennium
(past1000) and preindustrial control (piControl) exper-
iments of PMIP3, part of phase 5 of the Coupled Model
Intercomparison Project (CMIPS), were used to assess
the relationship between the zonal gradient of tropical
Pacific SST (dSST) and ENSO variability (Table 1). All
piControl simulations used in this analysis approximate
conditions at 1850 CE. Each model’s piControl simula-
tion was assessed using ENSO metrics (section 2a) rel-
ative to observational data to determine model skill in
simulating ENSO. Similarly, each model’s piControl
simulation was also assessed using mean state metrics
(section 2b) to determine model skill in simulating the
mean state. The GISS-E2-R piControl experiment in-
cludes four simulations with varying forcing factors. In
this study, we use the GISS-E2-R P1 simulation as it is
the longest of the four simulations (550 years). We dis-
regard MIROC-ESM due to long-term drift in its past 1000
simulation.

Each past1000 simulation spans 850-1850 CE, and is
forced with evolving boundary conditions, including
volcanic and solar forcing, orbital variations, land use,
and trace gases (Schmidt et al. 2011, 2012). The GISS-
E2-R last millennium simulations assessed include three
of eight different ensemble members: P124, P126, and
P128. These ensemble members have different volcanic

forcing (P124: Crowley et al. 2008; P126: none; P128:
Gao et al. 2008) but the same solar, land use, greenhouse
gas, and orbital forcing. These ensemble members were
chosen because, while not exactly the same, their
boundary conditions are most similar to those for the
GISS-E2-R piControl simulation, facilitating a more
direct comparison.

a. ENSO metrics

Metrics for ENSO variability (amplitude; Bellenger
et al. 2014), and ENSO asymmetry (skewness) were
calculated using Nifio-3 (5°N-5°S, 150°-90°W) monthly
SST anomalies. Amplitude and skewness were deter-
mined from the overall standard deviation and skewness
of the Nifio-3 monthly SST anomalies, respectively.
Alpha, an ENSO nonlinearity metric that is the leading
coefficient of the quadratic curve fit of the first two
principal components of tropical Pacific SST anomalies,
was determined as described in Karamperidou et al.
(2017). This metric was shown to reflect the relative
balance of ENSO feedbacks that leads to the presence of
ENSO diversity (or ENSO “flavors™; i.e., strong eastern
Pacific and moderate central Pacific events). The model
metrics were compared to the same metrics calculated
from HadISST1.1 monthly observations (Rayner et al.
2003) from 1870 to 2017. Similarity to the observations
was assessed using

Normalized metric

_ |[Model metric value — Observation metric value|
Intermodel metric standard deviation

as per Bellenger et al. (2014). Lower numbers indicate
higher degree of similarity to the observations (Fig. 1,
Fig. S1 in the online supplemental material).

b. Mean state metrics

Metrics for mean state bias (R), multidecadal dSST
variability (power), and SST magnitude [mean bias
error (MBE)] were used to determine model skill in
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FIG. 1. ENSO metrics calculated with preindustrial control Nifio-3
SST anomalies. The color bar is normalized error compared to
observations (HadISST1.1). Light colors indicate strong agreement
with observations; dark colors indicate weaker agreement. Observation
alpha = 0.29, amplitude = 0.80, and skewness = 0.78. Models are listed
in order of agreement with observations. Metric values can be found in
Table S1.

simulating the mean state. Note that R is the pattern
correlation coefficient between time-averaged model
and observational (HadISST1.1) equatorial Pacific SST
(5°N-5°S, 150°E-80°W). Power in both models and ob-
servations was determined using the 8-20 year average
of the dSST power spectrum. The power spectra were
calculated using the WaveletComp package in the sta-
tistical software R, which applies the Morlet wavelet to a
dataset. dSST is defined as western equatorial Pacific
SST (5°N-5°S, 100°E-180°) subtracted by eastern
equatorial Pacific SST (5°N-5°S, 160°-80°W). MBE is
the mean bias error between time-averaged, detrended,
observational SST and time-averaged, model SST across
the equator. HadISST was detrended to remove any
anthropogenic warming trend in modern SST prior to
comparison with models. Metric similarity to the ob-
servations was assessed using the normalized metric
equation presented in section 2a. Lower numbers indi-
cate higher degree of similarity to the observations
(Fig. 2, Fig. S2). All analysis in future sections are con-
ducted on average annual values and thus mean state
seasonal metrics are not considered here.

c. Model ENSO—-dSST assessment

The past1000 and piControl experiments for each
model were used to assess the ENSO-dSST relationship.
For each simulation, a dSST time series was created
using SST data averaged from the same western equa-
torial Pacific and eastern equatorial Pacific regions de-
fined in section 2b. Data were low-pass filtered to
remove frequencies (<7 years) associated with ENSO.
After filtering, the data were averaged to create an an-
nual average dSST time series. Similarly, a Nifio-3 time
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FIG. 2. Tropical Pacific mean state metrics calculated with pre-
industrial control SST data. The color bar is normalized error
compared to observations (HadISST1.1). Light colors indicate
strong agreement with observations; dark colors indicate weaker
agreement. Observation R = 1, power = 0.22, and MBE = 0.
Models are listed in order of agreement with observations. Metric
values can be found in Table S1.

series was created from monthly Nifio-3 anomalies,
bandpass filtered with a 4-month to 7-yr window to re-
move low-frequency mean state variability while keep-
ing frequencies associated with ENSO. After filtering,
December-February (DJF) anomalies were averaged
together to obtain an annual Nifio-3 DJF anomaly
time series.

To assess the multidecadal relationship between ENSO
variability and dSST in past1000 and piControl model
simulations, 40-yr moving standard deviations were cal-
culated for Nifio-3 and 40-yr moving averages were cal-
culated for dSST. To assess the directionality of the mean
state—ENSO variability relationship, 60-yr moving corre-
lation coefficients were calculated between the Nifio-3
standard deviation and mean dSST time series; 40-yr
moving windows were chosen for a more direct compari-
son to proxy dSST records with a minimum 40-yr resolu-
tion (see the appendix). Various correlation windows (40,
50, 60, 70, 80, and 90 years) were tested and 60-yr correlations
appeared representative for each model. Autocorrelation in
each time series was calculated and used to determine the
effective sample size (Dawdy and Matalas 1964) and statis-
tical significance of the correlations.

Red noise testing of the ENSO-dSST relationship in
past1000 models simulations was conducted as another
means of determining significance. Using the auto-
correlative parameters of the raw ENSO monthly
anomalies, 10000 time series with the autoregression
[AR(1)] coefficient and mean of the original were cre-
ated, then filtered, for each model. The same 40-yr
running standard deviation was applied to the 10000
time series. This process was repeated with raw model
dSST to create 10000 dSST red noise time series with
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the same AR(1) coefficient and mean of the original for
each model. These time series also underwent the same
filtering and 40-yr averaging. We calculated 60-yr run-
ning correlations between dSST and ENSO for both
ENSO and red noise dSST as well as red noise ENSO
and dSST. Last, the red noise ENSO and red noise dSST
were correlated together as well. Skewness was calcu-
lated on each distribution of model correlations and
noise correlations to determine the symmetry of the
distributions (see Fig. 4 below). Skewness of each dis-
tribution provided a metric to assess similarity between
all noise correlations and model correlations.

3. Results
a. Climate model ENSO and mean state

Metrics of ENSO nonlinearity (alpha), ENSO vari-
ability (amplitude), and ENSO skewness, as compared
to observational values, vary from model to model
(Fig. 1). The GCMs with preindustrial control ENSO
metrics that most closely approximate observations for
each category were CCSM4 (alpha), HadCM3 (ampli-
tude), and CSIRO MKk3L (skewness). The GCMs with
preindustrial control ENSO metrics furthest from ob-
servations were HadCM3 (alpha), CSIRO MK3L (am-
plitude), and GISS-E2-R (skewness). Thus, no GCM
was closest to or furthest from observations in more than
one category (Table S1), necessitating the use of aver-
aging scores across categories to determine the average
metric error, a measure of the highest and lowest per-
forming models. Overall, the highest performing GCMs
were CCSM4 and CSIRO Mk3L and the lowest per-
forming GCMs were MRI-CGCM3 and GISS-E2-R.

Model skill in simulating the mean state was assessed
by correlating the pattern of simulated mean annual SST
with observational SST across the equatorial Pacific (R),
assessing multidecadal variability in dSST in models
(power), and assessing differences in SST magnitude
between models and observations (MBE; Fig. 2).
Correlating model with observational SST patterns re-
vealed correlations higher than 0.60 in most models,
with the highest correlation in CCSM4. The lowest
correlations were found in HadCM3. While CCSM4 also
showed the most multidecadal variability of any model
(Fig. S2), MPI-ESM-P and CSIRO Mk3L most closely
matched observed multidecadal dSST power. IPSL-
CMS5SA-LR had the least multidecadal variability of
any GCM. The model most similar to observations in
terms of SST magnitude was CCSM4 and the furthest
from observations was MPI-ESM-P (Fig. 2, Fig. S3). The
average of normalized scores revealed that the highest
ranking GCMs were CCSM4 and MRI-CGCM3 and the
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lowest ranking models were HadCM3 and IPSL-CM5A-
LR (Table S1).

b. ENSO—-dSST relationship over the last millennium

The ENSO-dSST relationship over the last millen-
nium varies substantially between different GCM sim-
ulations. Time series of past1000 dSST and ENSO reveal
no similarities in dSST or ENSO variability across
models (Fig. 3). Additionally, time series of correlation
coefficients representing the ENSO-dSST relationship
are nonstationary, alternating between negative and
positive correlations in all models. The distributions of
these correlation coefficients in most models are mod-
erately skewed (0.5 < skewness < 1), with primarily
negative correlation coefficients (Fig. 4). Correlation
distributions in CCSM4 and GISS-E2-R P126 are highly
skewed (skewness > 1), with correlations that are
overwhelmingly negative. Only two of the models as-
sessed here, MRI-CGCM3 and GISS-E3-R P128, have
correlation distributions that are approximately sym-
metric (0 < skewness < 0.5). While correlation distri-
bution skewness does not neatly align with either overall
dSST or ENSO rankings, it does appear that, generally
speaking, skewness decreases as the average ranking
(e.g., model performance) decreases (Table S1), with
the exception of the GISS-E2-R models. Comparison of
the model correlation distributions to correlations gen-
erated from red noise time series indicates the noise
correlations are approximately symmetric for every
model (s1—s3 values, Fig. 4). Correlations between model
metrics and ENSO-dSST correlation skewness shows
the alpha and power metrics both have statistically sig-
nificant (p < 0.05) correlations with last millennium
ENSO-dSST correlation distribution skewness (Table S2).

To further explore the role of internal versus external
forcing of the ENSO-mean state relationship, we com-
pared past1000 and piControl ENSO-mean state corre-
lation distribution skewness. The piControl correlation
distributions are variable across models and there is no
clear relationship with model skill in simulating ENSO
and dSST (Fig. S4). CCSM4, GISS-E2-R, and HadCM3
piControl correlation distributions are moderately to
highly positively skewed, similar to their past1000 coun-
terparts. The remaining piControl correlation distribu-
tions are approximately symmetric, much like the noise
distributions.

4. Discussion

We focus our discussion on the last millennium sim-
ulations in order to facilitate more direct compari-
son with last millennium proxy reconstructions of dSST
and ENSO. In last millennium simulations, there is no
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intermodel agreement in the magnitude or direction of
dSST change or ENSO variability (Fig. 3), similar to
control simulations (Fig. S5). However, there is a pre-
ponderance of negative correlations between multi-
decadal dSST and ENSO variability in most models. The
GCMs that more accurately simulate ENSO and the
mean state show a more skewed distribution of corre-
lations. These skewed distributions indicate the ENSO-
mean state relationship is more frequently negative,
with a stronger mean state (e.g., enhanced zonal gradient)
co-occurring with reduced ENSO variability. Overall,
correlation distribution skewness decreases as simulation
skill decreases, with the exception of the GISS-E2-R
models (Fig. 4).

The models showing similar piControl and past1000
correlation distribution patterns suggests internal vari-
ability is the primary driver of the ENSO-mean state
relationship (Coats and Karnauskas 2017; Karnauskas
et al. 2012; Wittenberg 2009). For some models, how-
ever, piControl distribution is not significantly different
than the noise distributions, while the past1000 is posi-
tively skewed due the prevalence of more negative
ENSO-dSST correlations. This suggests that external

forcing, most likely, volcanic forcing, shapes the ENSO-
dSST relationship in these models. Climate models
have a demonstrated ENSO sensitivity to volcanic
eruptions with a recent study showing highly variable
ENSO response to volcanic forcing in CMIP5/PMIP3
models (Dee et al. 2020; Pausata et al. 2016, 2020;
Stevenson et al. 2016). The potential influence of vol-
canism on the modeled ENSO-mean state relationship
is further highlighted by the GISS-E2-R models used in
this study. GISS-E2-R P124, P126, and P128 all have
large differences in their ENSO-mean state correlation
distribution skewness. The only difference between the
GISS-E2-R models is the volcanic forcing, with P126
having no volcanic forcing and P124 and P128 using
different volcanic forcing datasets [see Crowley et al.
(2008) and Gao et al. (2008), respectively]. In addition to
using a different volcanic forcing dataset from P124,
P128 was noted to have double the radiative forcing due
to a conversion error when specifying the volcanic
forcing (Schmidt et al. 2013). The correlation distribu-
tion skewness in the GISS-E2-R simulations decreases
as volcanic forcing increases, suggesting a potential
volcanic influence on the mean state—ENSO relationship.
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starting from the upper-left corner and moving to the right.

This potential influence should be the subject of future
research.

Paleoclimate data—model comparison is a valuable
tool for both validating model output and understanding
proxy climate data. However, limited paleoclimate data
still preclude a thorough and conclusive assessment of
the ENSO-mean state relationship, even in the last
millennium, when data are most abundant. Monthly or
annual ENSO reconstructions from corals are not con-
tinuous, and when statistically combined, interannual to
decadal age model error can dampen ENSO variance
estimates. Continuous, annual ENSO reconstructions
from teleconnected regions are thus the only current
means of adequately assessing ENSO variance in this
time period but require the assumption of constant

ENSO teleconnections through time. For the mean
state, continuous marine sediment based proxy SST
records are relatively abundant in the western Pacific,
but only one record, which is short in length and possibly
prone to bioturbation, is currently available from the
eastern Pacific. Nevertheless, here we conduct an initial
exploration of the ENSO-dSST relationship in proxy
records to demonstrate how this assessment can be
done in the future when more records are available. We
calculate a composite dSST record from 10 high-resolution
proxy SST records and compare the resulting time series to
the Li et al. (2011) Nifio-3 reconstruction (hereafter Li),
developed from the first principal component of the North
American Drought Atlas (see the appendix). Similar to
the model data, these datasets were compared in 40-yr
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FIG. 5. ENSO and dSST information from paleoclimate observations. (a) dSST time series. The black line in-
dicates the mean proxy dSST and the shading indicates the uncertainty. The dashed line indicates mean proxy dSST
z score. The mean z score represents the west Pacific z score subtracted by the east Pacific z score resulting in a
mean slightly below zero. Averaged dSST from ERSST (green) and HadISST (purple) are plotted in 10-yr in-
tervals. (b) The 40-yr ENSO standard deviation of Li et al. (2011). (¢) ENSO-dSST comparison between Li et al.

(2011) and proxy dSST (see the appendix).

intervals. However, the proxy data resolution resulted in a
low sample size, precluding the use of correlation coeffi-
cients in the analysis. Nonetheless, qualitative comparisons
show a primarily negative relationship between ENSO and
dSST, with some multidecadal periods of a positive rela-
tionship (Fig. 5b).

The negative and positive correlations observed in the
models (and proxy data) suggest the assumption of a
consistent ENSO-mean state relationship on multi-
decadal to centennial time scales, either in direction or
strength, is not valid. However, the greater frequency
of a negative relationship during the last millennium in
models that best simulate ENSO and the mean state, as
well as the available proxy data, suggests the hypothe-
sized mechanisms that produce such a negative rela-
tionship on these time scales may be at work more
frequently over the last millennium. These mechanisms
include nonlinear ENSO rectification on the mean state,
whereby a stronger ENSO reduces dSST, resulting in
negative correlations. Or, the mean state may be the
driver of ENSO strength, with a stronger zonal SST
gradient inhibiting the development of El Nifio events.
Regardless, as the time periods of strong and weak, as
well as negative and positive, ENSO-mean state rela-
tionships vary from model to model, the primary drivers
of this relationship over the last millennium are likely
variable, and internal in nature. However, differences in
the degree of skewness between past1000 and piControl

experiments in some models (Fig. S4) suggests the
ENSO-mean state relationship could also be partly
influenced by external forcings on multidecadal to cen-
tennial time scales. This should be the subject of future
research.

Historically, climate models have struggled to project
ENSO variability that is consistent across models, with
little to no intermodel consensus regarding future changes
(Cai et al. 2015; Collins et al. 2010; Karamperidou et al.
2017; Meehl et al. 2007; Vecchi et al. 2008; Watanabe et al.
2011) unless models are subselected based on certain
metrics (Cai et al. 2018; Karamperidou et al. 2017).
Projected changes in the zonal SST gradient also conflict
with modern observations. In this case, models show a
weakening of the zonal SST gradient with increased
greenhouse gas radiative forcing, but this trend has not
been observed in twentieth-century SST datasets, and
there is limited agreement between twentieth-century
observations and simulations (Coats and Karnauskas
2017; DiNezio et al. 2013; Seager et al. 2019). The ulti-
mate cause of this discrepancy is hypothesized to be model
bias, in this case, a central-eastern Pacific equatorial cold
tongue that is too cold (Seager et al. 2019) or too far west
(Samanta et al. 2018) or biases in the simulation of the
equatorial undercurrent (Coats and Karnauskas 2018).
Simulations without a cold tongue bias show a strength-
ened zonal SST gradient, rather than a weakened gradient
(Seager et al. 2019). Karamperidou et al. (2017) linked the
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pattern of tropical Pacific SST change in future climate
scenarios to model biases in simulating ENSO feedbacks
and nonlinearity; they found that models with strong
ENSO nonlinearity (alpha metric used here) tend to sim-
ulate less relative warming of the cold tongue compared to
the entire equatorial Pacific, possibly due to their en-
hanced thermodynamic damping in the east Pacific. It may
also be spuriously high variance in the western Pacific in
models that produces centennial trends in dSST (Samanta
et al. 2018). However, of the models assessed here, those
with a cold tongue bias do not consistently have a more
highly skewed or symmetric ENSO-dSST correlation
distribution, suggesting that correcting for this cold tongue
mean state bias may not inform on the future mean state—
ENSO relationship. Additionally, the cold tongue bias was
substantially improved in CMIP5 versus CMIP3 models,
and yet, ENSO was not equally improved (Bellenger et al.
2014). Thus, an improved mean state does not necessarily
imply improved ENSO. Furthermore, as our work shows,
the mean state also cannot be used as a predictor of ENSO
variability on multidecadal time scales, given the shifting
direction and strength of this relationship. Further research
into ENSO-mean state dynamics, particularly the oscilla-
tions between periods of positive and negative covariance
between ENSO and the mean state, may elucidate mech-
anisms of tropical Pacific internal variability that further
improve future projections of both ENSO and the mean
state, either individually or in tandem.

5. Summary

The direction and stationarity of the ENSO-tropical
Pacific mean state relationship is difficult to assess with
the short observational record and remains uncertain in
proxy data. However, this relationship has implications
for the nature of both the future mean state and interannual
variability in the tropical Pacific and teleconnected regions.
The assessment presented here uses last millennium climate
model simulations to determine the nature of the ENSO-
dSST relationship on multidecadal to centennial time scales.
Last millennium simulations from climate models with
ENSO and dSST characteristics that best approximate ob-
servations show more frequent multidecadal periods of
negative correlation coefficients between ENSO variability
and dSST strength. The distributions of correlations are
more symmetric in models that agree more poorly with
observed ENSO and dSST statistics. Predominantly nega-
tive ENSO-dSST relationships are also seen in the avail-
able, but limited, proxy data. This relationship indicates
increased ENSO strength frequently co-occurs with weaker
dSST and vice versa during the last millennium. However,
all model simulations and the proxy data also show alter-
nating periods of positive and negative ENSO-dSST
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relationships. Thus, the ENSO-dSST relationship is not
unidirectional on these time scales, suggesting this re-
lationship is dynamic. This observed alternating rela-
tionship and its underlying mechanisms should motivate
future research as it will improve understanding of
tropical Pacific internal variability and future climate
projections of ENSO and the tropical Pacific mean state.
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APPENDIX

Proxy ENSO and dSST Assessment
a. Record selection

There are several estimates of dSST, and even more of
ENSO variability, spanning parts of the last millennium.
To compare last millennium ENSO-mean state rela-
tionships in the proxy and model data, we analyze, based
on specific criteria, the most robust available estimates
of both dSST and ENSO. For ENSO, these criteria are
that the data are 1) continuous, 2) annually resolved, 3)
have minimal age uncertainty, 4) span the last millen-
nium, and 5) have been calibrated and verified with
observations. The only ENSO dataset that meets these
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criteria currently is Li. Li uses the first principal com-
ponent of the North American Drought Atlas (NADA,
version 2) developed from annually resolved North
American tree-ring data to reconstruct Nifio-3 vari-
ability. This ENSO reconstruction meets the above cri-
teria, has a statistically robust relationship with Nifio-3
SST, and is the longest (900-2002 CE) annually resolved
reconstruction available to date. ENSO reconstruc-
tions that contain other types of annually resolved
proxy data, mainly corals, were also considered, but the
interannual to decadal chronology error on individual
coral records can lead to incorrect estimates of past
ENSO variability when they are combined. We ac-
knowledge that because the Li reconstruction is based
on terrestrial proxies and assumes a stationary hydro-
climatic teleconnection with North America, there is
also inherent uncertainty associated with using this
reconstruction.

To assess changes in dSST through the last millen-
nium, we combine proxy records from the western
Pacific and eastern Pacific to create a composite dSST
record from all available data. Proxy record criteria for
selection included that each record 1) is marine; 2)
contained quantitative planktonic foraminifera Mg/Ca
or alkenone-based SST data; 3) had accessible age
model data; 4) is continuous, with multidecadal resolu-
tion; and 5) is from within the eastern Pacific cold tongue
(5°N-5°S, 120°-90°W), or western Pacific warm pool
(10°N-10°S, 105°-135°E). These criteria allowed for the
creation of the composite proxy dSST time series of
the last millennium using only records that directly
and quantitatively reconstruct SST (Fig. 5, Table S3).
Of all existing paleoclimate records available for
public use, nine records from the western Pacific and
one from the eastern Pacific fit the above criteria
(Fig. S6). Only one record from the western Pacific is
alkenone based. As it is debated whether to mix al-
kenone and Mg/Ca estimates (Koutavas and Joanides
2012), we explored the impact of including this record
in the estimate of dSST. Including this record (Zhao
et al. 2006) did not alter the dSST time series appre-
ciably (Fig. S7).

b. Age uncertainty propagation in marine SST
records

Inherent in every proxy record is some degree of age
uncertainty. To combine each proxy record to create a
dSST time series, the age uncertainty of each record was
accounted for by creating 10 000 age—depth iterations of
each paleoclimate record using the published age dates
in Bchron. Behron is a statistical package for generating
age models from dated material (Haslett and Parnell
2008) using the reported ages, age uncertainty, sample
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depth of dated material, and sample depths of nondated
material to generate a suite of possible age models
constrained by the uncertainty of the dated material.
Using 10000 possible age models for each record allows
for a statistically robust examination of age uncertainty
when combining said records. Allowing variations within
age uncertainty produced some records that begin earlier
or end later than published records, causing the com-
posite dSST record to extend a bit further back in time
than the originally published records.

c. Creating composite dSST record

All 10000 iterations of each record were interpolated
in 40-yr intervals between 760 and 1960 CE and nor-
malized by subtracting the long-term mean and dividing
by the standard deviation of each iteration. The interval
760-1960 CE was chosen as it spans the length of the
newly modeled eastern Pacific record and western
Pacific records and 40-yr intervals is the highest resolu-
tion allowable given the limits of individual proxy res-
olution. A composite western Pacific record was created
by averaging each normalized record together. The
normalized eastern Pacific record and composite west-
ern Pacific record are plotted in Fig. S8. The eastern
Pacific time series was subtracted from the western
Pacific time series to create 10000 iterations of the dSST
time series. These were sorted and the median time se-
ries was used for comparison to the Li ENSO time series.
The 0.95 dSST quantile the 0.05 dSST quantile were
used as bounds for age uncertainty. A z score above the
mean for the sorted, median time series (uwest = —0.07,
MEast = 0.08, wasst = —0.15) indicates above-average
SST or dSST (°C). Regime shift detection on the proxy
dSST time series was conducted per published methods
in 120-yr windows (Rodionov 2004, 2006). Regime shift
detection calculates the change in dSST needed for a
shift to a new climate regime for each time step using the
mean, variance, and test window length. ERSSTv5
(Huang et al. 2017) and HadISST1.1 SST data from the
grids containing each proxy were also extracted and
normalized to create western Pacific and eastern Pacific
composite SST time series. These records were sub-
tracted to produce the observed dSST record from 1880
to 2000, which is compared to the proxy dSST time se-
ries (Fig. 5a).

d. SST uncertainty propagation in marine proxy
records

The published SST uncertainty for each proxy record
ranges from 0.2° to 1.4°C and was normalized:

SST uncertainty

Normalized uncertainty = SST
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where SST represents the interpolated SST for each
time step in each record. The western Pacific uncer-

tainties were combined:
5 n
2 X
i=1

Uncertainty = ——,
n

where X represents the uncertainty for a given record
and n represents the number of records included. The
east and west uncertainty was combined to obtain a total
SST uncertainty for the proxy dSST time series:

dSST Uncertainty = (\/2 W2 + EZ),

where W represents the western Pacific uncertainty and
E represents the eastern Pacific uncertainty. The com-
bined uncertainty was added to the 0.95 dSST quantile
and subtracted from the 0.05 dSST quantile in order to
combine age uncertainty and SST uncertainty to create
the most conservative estimate of uncertainty.

e. Proxy dSST-ENSO assessment

We calculated 40-yr standard deviations of the Li
ENSO time series to assess multidecadal ENSO vari-
ability (Fig. 5). To assess the ENSO-dSST relationship
on multidecadal time scales, ENSO reconstructions were
also categorically compared to the proxy dSST time series
over 40-yr windows (Fig. 5b). Such categorical assessments
of paleoclimate data are a means to interpret paleoclimate
data when limited sample size or the qualitative nature of
the proxy interpretation precludes time series analysis
(DiNezio and Tierney 2013; Higley et al. 2018; Oster et al.
2015). dSST and ENSO directionality was assessed by
determining if dSST strength and ENSO variability were
high or low over the time period. If dSST strength and
ENSO variability were high or low at the same time, the
two parameters were said to positively covary. If dSST was
high while ENSO was low, or vice versa, they were said to
negatively covary. ENSO variability was considered high if
the analysis window standard deviation was higher than
the standard deviation for the entire time series. dSST was
considered high if the analysis window average was higher
than the average for the entire time series.
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