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The accurate computation of Hamiltonian ground, excited, and thermal states on quantum computers stands
to impact many problems in the physical and computer sciences, from quantum simulation to machine learning.
Given the challenges posed in constructing large-scale quantum computers, these tasks should be carried out in
a resource-efficient way. In this regard, existing techniques based on phase estimation or variational algorithms
display potential disadvantages; phase estimation requires deep circuits with ancillae, that are hard to execute
reliably without error correction, while variational algorithms, while flexible with respect to circuit depth, entail
additional high-dimensional classical optimization. Here, we introduce the quantum imaginary time evolution
and quantum Lanczos algorithms, which are analogues of classical algorithms for finding ground and excited
states. Compared to their classical counterparts, they require exponentially less space and time per iteration,
and can be implemented without deep circuits and ancillae, or high-dimensional optimization. We furthermore
discuss quantum imaginary time evolution as a subroutine to generate Gibbs averages through an analog of
minimally entangled typical thermal states. Finally, we demonstrate the potential of these algorithms via an
implementation using exact classical emulation as well as through prototype circuits on the Rigetti quantum
virtual machine and Aspen-1 quantum processing unit.

An important application for a quantum computer is to
compute the ground-state ¥ of a Hamiltonian H [1,2]. This
arises in simulations, for example, of the electronic structure
of molecules and materials, [3—6] as well as in more general
optimization problems. While efficient ground-state determi-
nation cannot be guaranteed for all Hamiltonians, as this is a
QMA-hard problem [7], several heuristic quantum algorithms
have been proposed, including adiabatic state preparation with
quantum phase estimation [8, 9] (QPE) and quantum-classical
variational algorithms, such as the quantum approximate op-
timization algorithm [10—12] and variational quantum eigen-
solver [13—15]. Despite many advances, these algorithms also
have potential disadvantages, especially in the context of near-
term quantum computing architectures with limited quantum
resources. For example, phase estimation produces a nearly
exact eigenstate, but appears impractical without error correc-
tion, while variational algorithms, though somewhat robust to
coherent errors, are limited in accuracy by a fixed Ansatz, and
involve high-dimensional noisy classical optimizations [16].

In classical simulations, different strategies are employed to
numerically determine nearly exact ground-states. One pop-
ular approach is imaginary-time evolution, which expresses
the ground-state as the long-time limit of the imaginary-
time Schrodinger equation —d3|®(3)) = H|®(B)), |¥) =
limg oo i (for (9(0)[W) # 0). Unlike variational al-
gorithms with a fixed Ansatz, imaginary-time evolution al-
ways converges to the ground-state, as distinguished from
imaginary-time Ansatz optimization [17]. Another family of
approaches are variants of the iterative Lanczos method [18].
The Lanczos iteration constructs the Hamiltonian matrix H in
a Krylov subspace {|®), H|®), H2|®) . ..}; diagonalizing H
yields a variational estimate of the ground-state which tends to
| W) for a large number of iterations. For an N-qubit Hamilto-

nian, the classical complexity of imaginary time evolution and
Lanczos algorithm scales as ~ exp (O(NV)) in space and time.
Exponential space comes from storing ® () or the Lanczos
vector, while exponential time comes from the cost of Hamil-
tonian multiplication H|®), as well as, in principle, though
not in practice, the N-dependence of the number of propaga-
tion steps or Lanczos iterations. Thus it is natural to consider
quantum versions of these algorithms that can overcome the
exponential bottlenecks.

Here we describe the quantum imaginary time evolution
(QITE), the quantum Lanczos (QLanczos) and the quan-
tum analog of the minimally entangled typical thermal states
(QMETTS) algorithm, to determine ground-states, ground
and excited states and thermal states on a quantum computer.
Under the assumption of finite correlation length, these meth-
ods rigorously use exponentially reduced space and time per
propagation step or iteration, compared to their direct clas-
sical counterparts. Even when such assumptions do not hold,
the inexact versions of the QITE and QLanczos algorithms re-
main valid heuristics that can be applied within a limited com-
putational budget, and offer advantages over existing ground-
state quantum algorithms, as they do not use deep circuits and
converge to their solutions without non-linear optimization.
A crucial common component is the efficient implementa-
tion of the non-Hermitian operation of an imaginary-time step
e~ 27H (for small A7) assuming a finite correlation length
in the state. Non-Hermitian operations are not natural on a
quantum computer and are usually achieved using ancillae
and postselection, but we describe how to implement imag-
inary time evolution on a given state without these resources.
The lack of ancillae and complex circuits make our algorithms
potentially suitable for near-term quantum architectures. We
demonstrate the algorithms on spin and fermionic Hamiltoni-
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ans using exact classical emulation, and demonstrate proof-of-
concept implementations on the Rigetti quantum virtual ma-
chine (QVM) and Aspen-1 quantum processing units (QPUs).
Quantum Imaginary Time Evolution. Define a geometric
k-local Hamiltonian H = 3" h[m] (where each term h[m]
acts on at most k neighboring qubits on an underlying graph)
and a Trotter decomposition of the corresponding imaginary-
time evolution,
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applied to a state |¥). After a single Trotter step, we have
|\I//> — e*A‘rfAz[m] |\I/> (2)

The basic idea is that the normalized state |¥') = [¥') /|| /||
is generated from |¥') by a unitary operator e—iATA[m] acting
on a neighborhood of the qubits acted on by h[m], where A[m]
can be determined from tomography of |¥) in this neighbor-
hood up to controllable errors. This is illustrated by the sim-
ple example where |¥) is a product state. The squared norm
c= <\Il|e_2AT’5[m] | ) can be calculated from the expectation
value of fz[m], requiring measurements over k qubits,

c=1—2A7(U|h[m]|¥) + O(AT?) . 3)

Because |¥) is a product state, |U’) is obtained applying the
unitary operator e~ *A74[™] also on k qubits. A[m] can be
expanded in terms of an operator basis, e.g. the Pauli basis
{5:} on k qubits,

Alm] = Z almliy iy Giy - - 04y, = Za[m]l&p 4)

i1..0 I

Up to O(AT), the coefficients a[m]; are defined by the lin-
ear system Sa[m] = b where the elements of S and b are
expectation values over k qubits,
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In general, S has a null space; to ensure a[m] is real, we
minimize ||[U’ — (1 — iA7A[m])¥||2 w.rt. real variations in
a[m] (see SI). Because the solution is determined from a lin-
ear problem, there are no local minima.

In this simple case, the normalized result of the imaginary
time evolution step could be represented by a unitary update
over k qubits, because | W) had correlation length zero. After
the initial step, this is no longer the case. However, for a more
general |U) with finite correlations over at most C' qubits (i.e.
correlations between observables separated by distance L are
bounded by exp(—L/C)), |¥’) can be generated by a unitary
acting on a domain of width at most O(C') qubits surrounding
the qubits acted on by A[m]. This follows from Uhlmann’s
theorem [ 1 9], which states that two pure states with marginals
close to each other must be related by a unitary transformation

on the purifying subsystem (see SI). The unitary e—iATA[m]

Spp = (W|gl6, ), by (U6 Thm)[T) . (5)

can then be determined by measurements and solving the least
squares problem in this domain (Fig. 1). For example, for a
nearest-neighbor local Hamiltonian on a d-dimension cubic
lattice, the domain size D is bounded by O(C?). In many
physical systems, we expect the maximum correlation length
throughout the Trotter steps to increase with /3 and saturate
for Chnax << IV [20]. Fig. 1 shows the mutual information be-
tween qubits ¢ and j as a function of imaginary time in the
1D and 2D ferromagnetic transverse field Ising models com-
puted by tensor network simulation (see SI), demonstrating a
monotonic increase and clear saturation.

The above replacement of imaginary time evolution steps

by unitary updates can be extended to more general Hamilto-
nians, such as ones with long-range interactions and fermionic
Hamiltonians. For fermions, in particular, the locality of the
corresponding qubit Hamiltonian depends on the qubit map-
ping. In principle, a geometric k-local fermionic Hamil-
tonian can be mapped to a geometric local qubit Hamilto-
nian [21, 22], allowing above techniques to be applied di-
rectly. Alternatively, we conjecture that by constructing
Eq. (4) with a local fermionic basis, the unitary update can
be constructed over a domain size D ~ O(C?), C being the
fermionic correlation length (see SI).
Cost of QITE. The number of measurements and classical
storage at a given time step (starting propagation from a prod-
uct state) is bounded by exp(O(C?)) (with C the correlation
length at that time step), since each unitary at that step acts
on at most O(C?) sites; classical solution of the least squares
problem has a similar scaling exp(O(C?)), as does the syn-
thesis and application as a quantum circuit (composed of two-
qubit gates) of the unitary e ~*A7Al™] Thus, space and time
requirements are bounded by exponentials in C¢, but are poly-
nomial in N when one is interested in a local approximation
of the state (or quasi-polynomial for a global approximation);
the polynomial in N comes from the number of terms in H
(see SI for details).

The exponential dependence on C¢ can be greatly reduced
in many cases, for example if A[m] has a locality structure,
e.g. if it is (approximately) a p-local Hamiltonian (i.e. all
a[mli, ..i, in Eq. (4) are zero except for those where at most p
of the 6; operators differ from the identity) then the cost of to-
mography becomes only C©(%P) | while the cost of finding and
implementing the unitary is O(pC?T.), T. being the cost of
computing one entry of A[m] [23]. If we assume further that
A[m] is geometric local, the cost of tomography is reduced
further to O(pC?). However, it is important to note that even
if C'is too large to construct the unitaries exactly, we can still
run the algorithm as a heuristic, truncating the unitary updates
to domain sizes that fit the computational budget. This gives
the inexact QITE algorithm, described and studied in detail
below.

Compared to a direct classical implementation of imaginary
time evolution, the cost of a QITE time-step (for bounded cor-
relation length C) is linear in N in space and polynomial in
N in time, thus giving an exponential reduction in space and
time. Note that a finite correlation length Cy in the ground-
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FIG. 1: Physical foundations of the quantum imaginary time evolution algorithm. (a) Schematic of the QITE algorithm. Top: imaginary-
time evolution under a geometric k-local operator fL[m] can be reproduced by a unitary operation acting on D > k qubits. Bottom: exact
imaginary-time evolution starting from a product state requires unitaries acting on a domain D that grows with correlations. (b,c) Left: mutual
information 1 (%, j) between qubits ¢, 7 as a function of distance d(i, j) and imaginary time (3, for a 1D (b) and a 2D (c) FM transverse-field
Ising model, with h = 1.25, 50 qubits and h = 3.5, 21 x 31 qubits respectively. I (i, j) saturates at longer times. Right: relative error in the
energy AL and fidelity F' = |(®(3)|¥)|? between the finite-time state ®(3) and infinite-time state ¥ as a function of 3. The noise in the 2D
fidelity error at large [ arises from the approximate nature of the algorithm used (see SI for details).

state does not generally imply an efficient classical strategy.
In the SI, we analyze multiple classical heuristics under the as-
sumption of finite ground-state correlations, including: trun-
cating the problem size at the ground-state correlation length
Cy, classical simulation in the Heisenberg representation, and
tensor network calculations [24-27].

Inexact QITE. Given limited resources, for example on near-
term devices, we can choose to measure and construct the uni-
tary over a domain D smaller than induced by correlations, to
fit the computational budget. For example, if D = 1, this
gives a mean-field approximation of the imaginary time evo-
lution, and larger D gives successively better approximations
to the ground-state. Importantly, while the unitary is no longer
an exact representation of the imaginary time evolution, there
is no issue of a local minimum in its construction, although
the energy is no longer guaranteed to decrease at every step.
In this case, one can apply inexact imaginary time evolution
until the energy stops decreasing; the energy will still be a
variational upper bound. One can also use the quantum Lanc-
zos algorithm, described later.

Illustrative QITE calculations. To illustrate the QITE algo-
rithm, we have carried out exact classical emulations (assum-
ing perfect expectation values and gates) for several Hamil-
tonians (see SI): short-range 1D Heisenberg (with and with-
out a field); 1D AFM transverse-field Ising; long-range 1D
Heisenberg with spin-spin coupling .J;; = (|i —j|+1)~%; 1D
Hubbard at half-filling; a 6-qubit MAXCUT [10-12] instance,
and a minimal basis 2-qubit dihydrogen molecular Hamilto-
nian [28]. To assess the feasibility of implementation on near-
term quantum devices, we have carried out noisy classical em-
ulation (sampling expectation values and with an error model)
using the Rigetti quantum virtual machine (QVM) and a phys-

ical simulation using the Rigetti Aspen-1 QPUs, for a single-
qubit field model (X +Z)/+/2 [29] and a 1D AFM transverse-
field Ising model. We also carried out measurement resource
estimates for QITE on the short-range 1D Heisenberg (with
field) model studied in Ref. [5] with VQE, and the 1D AFM
transverse-field Ising model; we compared with resource es-
timates using the publicly available VQE implementation in
IBM’s Qiskit. We carried out QITE using different fixed do-
main sizes D for the unitary or fermionic unitary (see SI for
descriptions of simulations and models).

Fig. 2a-2f and 3 show the energy obtained by QITE as a
function of 3 and D for the various models. As we increase
D, the asymptotic (5 — oo) energies rapidly converge to the
exact ground-state. For small D, the inexact QITE tracks the
exact QITE for a time until the correlation length exceeds D.
Afterwards, it may go down or up. The non-monotonic behav-
ior is strongest for small domains; in the MAXCUT example,
the smallest domain D = 2 gives an oscillating energy; the
first point at which the energy stops decreasing is a reason-
able estimate of the ground-state energy. In all models, in-
creasing D past a maximum value (less than V) no longer
affects the asymptotic energy, showing that the correlations
have saturated (this is true even in the MAXCUT instance).
Figs. 2g, 2h show an estimate from classical emulation of the
number of Pauli string expectation values to be measured in
the QITE algorithm as well as the hardware-efficient VQE
ansatz (using the optimization protocol in Ref. [5]) to obtain
an energy accuracy of 1% in the 1D Heisenberg model with
field J = B = 1 (Fig. 2g) and 1% or 2% in the 1D AFM
transverse-field Ising model (Fig. 2h, the looser threshold was
chosen to enable convergence of VQE). QITE is competi-
tive with VQE for the 4-site model and requires significantly
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FIG. 2: Classical simulation and experimental implementation of QITE and QLanczos algorithms. Column 1: (a) QITE energy F(f)
and (b) fidelity F' between finite-time state ®(3) and exact ground state ¥ as function of 3, for a 1D 10-site Heisenberg model, showing
convergence with increasing D. Column 2: QITE (dashed lines) and QLanczos (solid lines) energies as function of /3, for a 1D Heisenberg
model with N = 20 qubits, using domains of D = 2 (c) and 4 qubits (d), showing improved convergence of QLanczos over QITE. Column
3: QITE and QLanczos energy as a function of /3 for () a 1-qubit model and (f) a 2-qubit AFM transverse field Ising model using QVMs and
QPUs. Black lines denote the exact ground-state energy or maximum fidelity. Column 4: Estimate of the number of Pauli string expectation
values (Pyotq1) needed for QITE and VQE to converge within (g) 1% of the exact energy for a 4-site (left) and 6-site (right) 1D Heisenberg
model with magnetic field, and (h) 1% (2%) of the exact energy for a 4-site (6-site) 1D AFM transverse-field Ising model. Error bars represent

standard deviations computed from multiple runs.

fewer measurements in the 6-site model. While the number of
measurements could potentially be reduced in VQE by differ-
ent optimizers and Ansitze, the data suggests that QITE is a
promising alternative to VQE on near-term devices.

Figs. 2e and 2f show the results of running the QITE al-
gorithm on Rigetti’s QVM and Aspen-1 QPUs for 1- and 2-
qubits, respectively. The error bars are due to gate, readout,
incoherent and cross-talk errors. Sufficient samples were used
to ensure that sampling error is negligible. Encouragingly for
near-term simulations, despite these errors it is possible to
converge to a ground-state energy close to the exact energy for
the 1-qubit case. This result reflects a robustness that is some-
times informally observed in imaginary time evolution algo-
rithms in which the ground state energy is approached even
if the imaginary time step is not perfectly implemented. In
the 2-qubit case, although the QITE energy converges, there
is a systematic shift which is reproduced on the QVM using
available noise parameters for readout, decoherence and de-
polarizing noise [30]. Remaining discrepancies between the
emulator and hardware are likely attributable to cross-talk be-
tween parallel gates not included in the noise model (see SI).
However, reducing decoherence and depolarizing errors in the
QVM or using different sets of qubits with improved noise
characteristics (see SI) all lead to improved convergence to
the exact ground-state energy.

Quantum Lanczos algorithm. Given the QITE subroutine,
we now consider how to formulate a quantum Lanczos al-
gorithm, which is an especially economical realization of a
quantum subspace method [31, 32]. An important practical
motivation is that the Lanczos algorithm typically converges
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FIG. 3: Application of QITE to long-range spin and fermionic
models, and a combinatorial optimization problem. (a) QITE en-
ergy as a function of 3 for a 6-site 1D long-range Heisenberg model,
for unitary domains D = 2 — 6; (b) a 4-site 1D Hubbard model with
U/t = 1, for unitary domains D = 2,4. (c) Probability of MAX-
CUT detection, P(C' = Chnaz) as a function of imaginary time S,
for the 6-site graph in the panel. (d) QITE energy for the H> molecule
in the STO-6G basis as a function of bond-length R and 3. Black line
is the exact ground-state energy/probability of detection.

much more quickly than imaginary time evolution, and often
in physical simulations only tens of iterations are needed to
converge to good precision. In addition, Lanczos provides a
natural way to compute excited states. Consider the sequence

of imaginary time vectors |®;) = e 'A7H|®), 1 = 0,1,...n,
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FIG. 4: Classical simulation and experimental implementation of the QMETTS algorithm. Left: Thermal (Gibbs) average (f[ ) at
temperature 8 from QMETTS for a 1D 6-site Heisenberg model (exact emulation). Black line is the exact thermal average without sampling

error. Middle, Right: Thermal average (H) at temperature 3 from QMETTS for (b) a 1 qubit field model using QVMs and QPUs, and (c) 2
qubit AFM transverse field Ising model using QVM. Error bars represent (block) standard deviations computed from multiple samples/runs.

where ¢; = ||®;||. In QLanczos, we consider the vectors af-
ter even numbers of time steps |Po), |P2) ... to form a ba-
sis for the ground-state. (SI describes the equivalent treat-
ment in terms of normalized imaginary time vectors). These
vectors define an overlap matrix whose elements can be com-
puted entirely from norms, S;;r = (9;|®;) = C%ZH,)/Q, where
C(1+17)/2 is the norm of another integer time step vector, and
the overlap matrix elements for n/2 vectors can be accumu-
lated for free after n steps of time evolution. The Hamilto-
nian matrix elements satisfy the identity Hy; = (&;|H|®;) =
<<I>(l+l/)/2|ﬁ|<1>(l+l/)/2>. Although the Hamiltonian has ~ n?
matrix elements in the basis of the ®; states, there are only
~ nunique elements, and importantly, each is a simple expec-
tation value of the energy during the imaginary time evolution.
This economy of matrix elements is a property shared with
the classical Lanczos algorithm. Whereas the classical Lanc-

zos iteration builds a Krylov space in powers of H, QLanczos

builds a Krylov space in powers of e 227 in the limit of

small A7 these Krylov spaces are identical. Diagonalization
of the QLanczos Hamiltonian matrix is guaranteed to give a
ground-state energy lower than that of the last imaginary time
vector ®,, (while higher roots approximate excited states).

With a limited computational budget, we can use inexact
QITE to generate ¢, <I>2 . However, in this case the above
expressions for Sy and Hyys in terms of expectation values no
longer exactly hold, which can create numerical issues (e.g.
the overlap may no longer be positive). To handle this, as well
as errors due to noise and sampling in real experiments, the
QLanczos algorithm needs to be stabilized by ensuring that
successive vectors are not nearly linearly dependent (see SI).

We demonstrate the QLanczos algorithm using classical
emulation on the 1D Heisenberg Hamiltonian, as used for the
QITE algorithm in Fig. 2 (see SI). Using exact QITE (large
domains) to generate matrix elements, exact quantum Lanczos
converges much more rapidly than imaginary time evolution.
Convergence of inexact QITE (small domains), however, can
both be faster and reach lower energies than inexact quantum
Lanczos. We also assess the feasibility of QLanczos in pres-
ence of noise, using emulated noise on the Rigetti QVM as
well as on the Rigetti Aspen-1 QPUs. In Fig. 2, we see that
QLanczos also provides more rapid convergence than QITE
with both noisy classical emulation as well as on the physical

device for 1 and 2 qubits.

Quantum thermal averages. The QITE subroutine can be
used in a range of other algorithms. For example, we discuss
how to compute thermal averages Tr[Oe~##] /Tr[e =] us-
ing imaginary time evolution. Several procedures have been
proposed for quantum thermal averaging, ranging from gen-
erating the finite-temperature state explicitly by equilibration
with a bath [33], to a quantum analog of Metropolis sam-
pling [34] that relies on phase estimation, as well as meth-
ods based on ancilla based Hamiltonian simulation with post-
selection [35] and approaches based on recovery maps [36].
However, given a method for imaginary time evolution, one
can generate thermal averages of observables without any
ancillae or deep circuits. This can be done by adapting to
the quantum setting the classical minimally entangled typical
thermal state (METTS) algorithm [37, 38], which generates
a Markov chain from which the thermal average can be sam-
pled. The QMETTS algorithm can be carried out as follows (i)
start from a product state, carry out imaginary-time evolution
(using QITE) up to time /3 (ii) measure the expectation value
of Oto produce its thermal average (iii) measure a product op-
erator such as Zl ZQ 7 N, to collapse back onto a random
product state (iv) repeat (i). Note that in step (iii) one can mea-
sure in any product basis, and randomizing the product basis
can be used to reduce the autocorrelation time and avoid er-
godicity problems in sampling. In Fig. 4 we show the results
of quantum METTS (using exact classical emulation) for the
thermal average (ﬁ ) as a function of temperature /3, for the
6-site Heisenberg model for several temperatures and domain
sizes; sufficiently large D converges to the exact thermal aver-
age at each [3; error bars reflect only finite QMETTS samples.
We also show an implementation of quantum METTS on the
Aspen-1 QPU and QVM with a 1-qubit field model (Fig. 4b),
and using the QVM for a 2-qubit AFM transverse field Ising
model (Fig. 4c).

Conclusions In summary, the quantum analogs of imaginary-
time evolution, Lanczos and METTS algorithms we have pre-
sented enable a new class of eigenstate and thermal state quan-
tum simulations, that can be carried out without ancillae or
deep circuits and that, for bounded correlation length, achieve
exponential reductions in space and time per iteration relative
to known classical counterparts. Encouragingly, these algo-



rithms appear useful in conjunction with near-term quantum
architectures, and serve to demonstrate the power of quantum
elevations of classical simulation techniques, in the continu-
ing search for quantum supremacy.
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SUPPLEMENTAL INFORMATION
Representing imaginary-time evolution by unitary maps

In this section, we discuss how to emulate imaginary time
evolution by measurement-assisted unitary circuits acting on
suitable domains. As discussed in the main text, we map the
scaled non-unitary action of e ~27"[!l on a state W to that of a

—iATA[l)

unitary e ,i.e.

@/) — 12 e—mﬁ[l”\m _ e—mTA[l]|\I,> _ (6)

where ¢ = (U|e=2A7hU| W), h[1] acts on k qubits; A is Her-
mitian and acts on a domain of D qubits around the support
of ﬂ[l], and is expanded as a sum of Pauli strings acting on the
D qubits,

A[l] = Z a[l]ilig,..i[}&il&iz e &iD = Za[l]n}] )
i1in...ip I
(7
where I denotes the index 7145 ...7p. Define
v’y — | .
a0 = ) iy = idny . )
T

Our goal is to minimize the difference [[Ag — Al[. If the uni-
tary e *A7Al is defined over a sufficiently large domain D

(related to the correlation length of |¥'), see Section ) then this
error minimizes at ~ 0, for small A7. Minimizing for real a[l]
corresponds to minimizing the quadratic function f(a[l])

flalll) = fo+>_bralllr +> alll1Srsalll;  (9)
1 1J

where
fo=(Ao]Ag) | (10)
Sty = (V|&}6,]T) (11)
by =i (0|61 A0) — i (Ao|67|W) (12)

whose minimum obtains at the solution of the linear equation
(S+s")all] = -b (13)

In general, S +S” may have a non-zero null-space. Thus, we
solve Eq. (13) either by applying the generalized inverse of
S-+S7 or by an iterative algorithm such as conjugate gradient.

Note that the above results for geometric local Hamiltoni-
ans can be extended to Hamiltonians with long-range terms.
The primary difference is a modification of the domain over
which the unitary acts. For example, for a spin Hamiltonian
with long-range pairwise terms, the scaled action of e ~27"l!]
(if h[l] acts on qubits i and ) can be emulated, to within accu-
racy €, by a unitary constructed in the neighborhoods of ¢ and
7, with the domain size given by the result in Eq. (34), see also
discussion below). For fermionic Hamiltonians, we replace
the Pauli operators in Eq. (7) by fermionic field operators, i.e.
o € {1,f, fT, f1 £}, and conjecture that the analogous result
holds for the domains for the fermionic operators as for spin
operators. For a number conserving Hamiltonian, such as the
fermionic Hubbard Hamiltonian treated in Fig. 3 in the main
text, we retain only those terms with an equal number of cre-
ation and annihilation operators, to conserve particle number.

Real Hamiltonians and states

As the cost to construct the quantities S, b and to solve the
linear system (13) increases exponentially with D, it is natural
to seek out simplifications that can be made rigorously. For
example, as described above, to emulate the non-unitary ac-
tion of a number-conserving fermionic Hamiltonian, we can
consider A[l] to contain only fermionic operator strings that
also conserve particle number. In the main text, we also con-
sidered the case where A[l] is itself approximately p-local,
which removes the exponential dependence on D.

Another common scenario concerns Hamiltonians and
states that only have real matrix elements and coefficients in
the Z computational basis. Then, since (¥| and |A) are real
in the computational basis and

b = —21m [(¥[5][A0)] . (14)



br = 0 unless the matrix elements of 6} have non-zero imagi-
nary part. When the Pauli basis is used, this means thatb; = 0
unless &; contains an odd number of ¥’ operators.

The number of such operators for a domain size D, y(D),
is 27 % ~ %. This can be shown by induction over D.
For D = 1, one has

y(D=1)=1 5)

Pauli strings with an odd number of Vs (ie. just V). For
D = 2, one has

y(D=2)=6 (16)
such strings, namely
IV, XY, 2V, YI.YX,YZ . (17)

For D = 3, the number grows to

y(D =3) =28 (18)
with strings

Iy, ..., Ivz

XIy, ..., Xyz

PO NN 19

YIil, ..., YZZ (19)

ZIYy, ..., ZYZ

and so on. Pauli strings of length D + 1 containing an odd
number of Y’ operators are obtained either by attaching a Y
operator to a length-D string containing an even number of Y
operators, or by attaching a I, X, 7 operator to a length-D
string containing an odd number of Y operators. Therefore,
O(D) obeys the recursion relation

y(D+1) =3y(D)+ (4° —y(D)) . (20)

This recursion relation is solved, with the initial condition
y(D=1)=1,by

2P 1

y(D) = 2" —

21

This result means that both b and S + S can be assembled
from y(D) Pauli string expectation values, roughly half the
number of measurements needed if one did not assume real
Hamiltonians and states. Further, the dimension of b and S +
ST is y(D) and y(D) x y(D) respectively. Asymptotically,
this reduces the cost of solving the linear system Eq. (13) by
a factor of 1/8, assuming dense matrix techniques.

Rigorous run time bounds

Here we present a more detailed analysis of the running
time of the algorithm. Consider a k-local Hamiltonian

H=> hl, (22)

=1

acting on a d-dimensional lattice with ||h;|| < 1, where || * ||
is the operator norm.  Note that, if a quantum chemistry
system is studied with an orthonormal basis of spatially lo-
calized states, such states can be approximately positioned
on a lattice, and the results of this section apply on length
scales larger than the size of the employed basis functions. In
imaginary-time evolution one typically applies Trotter formu-
lae to approximate

(e—mﬁm o

H ( ATh

for an initial state |¥o) (which we assume to be a product
state). This approximation leads to an error which can be
made as small as one wishes by increasing the number of time

steps n. Let | W) be the state (after renormalization) obtained
—ATh[i] —-Arh[1] e—mﬁ[m])";

e—A‘rE[m])n |\I/0>

e arin) g

e PH|w,)
le=BH Do) || —

(23)

by applying s terms e from (e
with this notation |¥,,,,) is the state given by Eq. (23). In
the QITE algorithm, instead of applying each of the operators
e~ ATh o |¥o) (and renormalizing the state), one applies lo-
cal unitaries U, which should approximate the action of the
original operator. Let |®,) be the state after s unitaries have
been applied.

Let C be an upper bound on the correlation length of | )
for every s: we assume that for every s, and every pair of ob-
servables A and B acting on domains separated by dist(A, B)
sites,

Cs(A, B) = (U|A@ B|W,) — (U] A|W,)(W,|B|W,)
< [[AJ||| Blle~ > AEE,
(24)

Theorem 1. For every € > 0, there are unitaries Ug each
acting on

N, = k(20)¢ 1n* (2\/§nm 5—1) 25)
qubits, such that
1%mn) = )l < € - (26)
Proof. We have
11w0) = @) = [|1%.) - Ol

< [lwa - Own| + 1) - 20l @

To bound the first term we use our assumption that the corre-
lation length of |¥s_1) is smaller than C'. Consider a region
R, of all sites that are a distance at most v (in the Manhat-
tan distance on the lattice) of the sites in which h;, acts. Let
tr\r, (|¥s)(Vs|) be the reduced state on R, obtained by par-
tial tracing over the complement of R, in the lattice. Since

e~ ATh[is] W,_y)
lle=Amhlil @, )|

|\IJS> = I (28)



it follows from Eq. (24) and Lemma 9 of [39] that

Htr\Ru(|\IJS><\IJS|) - tr\Ru(|\IJS—1><\IJS—1|)H1

KR

- . (29)
< ”eATh[zS]H—le—é <2 €

)

where we used that for n > 24,
le=A7hlisl | > |1 — Arh[iy)| > 1— Ar >1/2.  (30)

Above, || x| is the trace norm. The key result in our analysis
is Uhlmann’s theorem (see e.g. Lemmas 11 and 12 of [39]).
It states that two pure states with nearby marginals must be
related by a unitary on the purifying system. In more detail,
if |n) ap and |v) o are two states with partial traces |1) 4 and
|v) 4 over the complement of A, such that ||[n) 4 —|v) a1 < 0,
then there exists a unitary 1% acting on B such that

Y as — (I @ V)|v)ap| < 2vV0. (31

Applying Uhlmann’s theorem to [W) and [¥;_1), with B =
R, and using Eq. (29), we find that there exists a unitary Uy
acting on R, s.t.

[1w0) = 0w, )| < 2v3e 3, (32)
which by Eq. (27) implies

1 m) = [ @)l < 2vV2mne 20, (33)

Choosing v = 2C' In(2v/2nme ") as the width of the sup-
port of the approximating unitaries, the error term above is €.
The support of the local unitaries is kv qubits (as this is an
upper bound on the number of qubits in R,). Therefore each
unitary l}s acts on at most

N, = k(20)%1n? (2\/5 nm 5—1) (34)

qubits. O

Finding UAS: In the algorithm we claim that we can find the
unitaries Us by solving a least-square problem. This is indeed
the case if we can write them as Uy = e n with Als] a
Hamiltonian of constant norm. Then for sufficiently large n,
Uy, =1+ z’% +0 (-%) and we can find A[s] by performing
tomography of the reduced state over the region where U, acts

and solving the linear problem given in the main text. Because
we apply Uhlmann’s Theorem to

efATh[iS]

qjs—l)
[le=Amhlil [T )

|Ws-1) and ; (35)

using e~ A7hl = [ — Arhli,] + O () and following the
proof of the Uhlmann’s Theorem, we find that the unitary can
indeed be talfen to be close to the identity, i.e. Us can be
written as ¢/ n .

Total Run Time: Theorem 1 gives an upper bound on the max-
imum support of the unitaries needed for a Trotter update,
while tomography of local reduced density matrices gives a
way to find the unitaries. The cost for tomography is quadratic
in the dimension of the region, so it scales as exp(O(Nj)).
This is also the cost to solve classically the linear system
which gives the associated Hamiltonian A[s] and of finding

a circuit decomposition of U, = ¢ in terms of two-qubit
gates. As this is repeated mn times, for each of the mn terms
of the Trotter decomposition, the total running time (of both
quantum and classical parts) is

O( O(k (QC)dlnd(Q\/inmsfl)) . (36)

T = mne®WNd) = mne

This is exponential in C, with C' the correlation length, and
quasi-polynomial in n (the number of Trotter steps) and m
(the number of local terms in the Hamiltonian. Note that typ-
ically m = O(N), with N the number of sites). While this an
exponential improvement over the exp(O(N)) scaling clas-
sically, the quasi-polynomial dependence on m can still be
prohibitive in practice. Below we show how to improve on
that.

Local Approximation: 1f one is only interested in a local ap-
proximation of the state (meaning that all the local marginals
of |®,,,,,) are close to the ones of e “#| W), but not neces-
sarily the global states), then the support of the unitaries be-
comes independent of the number of terms of the Hamiltonian
m (while for global approximation we have a polylogarithmic
dependence on m):

Theorem 2. For every € > 0, there are unitaries Ug each
acting on

N, = k(20)? In* (2\/§n (|S| +Cn? (8nC(2C)d+ls_1)))
(37)
qubits such that, for every connected region S of size at most

5],

Proof. Consider the unitaries U, obtained in the proof of The-
orem | satisfying Eq. (32).

Consider the replacement of the local term of the Trotter
expansion by the unitary U, for all local terms which are
more than 2C'log(1/4) sites away from the region S. Be-
cause the correlation length is always smaller than C', we find
by Lemma 9 of [39] that the total error 7 on the reduced den-
sity matrix in region .S can be bounded as

n=n / e"2C1d] < anC(2C)4FYS . (39)
2C'In(1/6)

For the local terms which are at most a distance 2C log(1/6)
from the region S, in turn, the total error is bounded by the
sum of each individual term, giving

n= (S| 4+ Clog(1/6))%n2v/2e~2c . (40)



Choosing
§— =
~ (8nC(2C)d+1)
v =2C1n (2v2n (IS| + Cln (3nC(2C) e 1))
(41)
gives the result. O

Non-local Terms: Suppose the Hamiltonian has a term hg]
acting on qubits which are not nearby, e.g. on two sites ¢ and
j. Then e~ 27719 can still be replaced by a unitary, which
only acts on sites ¢ and j and qubits in the neighborhoods of
the two sites. This is the case if we assume that the state has a
finite correlation length and the proof is again an application
of Uhlmann’s theorem (we follow the same argument from
the proof of Theorem 1 but define R,, in that case as the union
of the neighborhoods of 7 and j). Note however that the as-
sumption of a finite correlation length might be less natural
for models with long range interactions.

Scaling with temperature and increase of correlation length:
Our discussion has been based on the assumption that the cor-
relation length C'is small on all intermediate states. Here we
discuss the range of validity of the assumption.

Let us begin with an example where the correlation length
can increase very quickly with number of local terms applied
(this was communicated to us by Guang Hao Low). Con-
sider a projection on two qubits H)H_l = 10,0)(0,0[;,i+1 +
|1, 1><1, 1|i,i+l- Then

P1,2P2,3---Pn71,n|+>®na (42)

with |[+) = (|0) + [1))/1/(2), is the GHZ state (|0...0) +
|1...1))/v/2, which has correlation length C' = n. While
the projector ]31-7i+1 cannot appear as a local term e =277 in
the Trotter decomposition, this example show that we cannot
expect a speed-of-sound bound on the spread of correlations
for a circuit with non-unitary gates; indeed the example shows
a depth two circuit can already create long range correlations.

However, we expect that generically the correlations do
grow ballistically. Consider the state

(e—m;}m N 'e—mﬁ[m])” W)

[ (equ-iz[l] o efA‘rlAz[m])n [To) | .

|thn) = (43)

after n rounds have been applied. Let us assume the Hamil-
tonian acts on a line, is translation invariant and has nearest-
neighbor interactions. Then the state is a matrix product state
of bond dimension at most 2. For matrix product states we
can bound the correlations as follows (see e.g. Lemma 22 of
[39D)
Co(A, B) = (Ws|A @ B|W,) — (U, A[W,)(¥,|B|V,)
< HAHHBH22n€7Adist(A,B) )
(44)

where we define the gap of the matrix-product-state as A :=
1 — )\, with X the second largest eigenvalue of the transfer ma-
trix of the matrix product state (normalized so that the largest
eigenvalue is one). In the GHZ example above, the gap A = 0
and that is the reason for the fast build up of correlations. Typ-
ically we expect the gap to be independent of n or decrease
mildly as 1/poly(n).

From the above, we can replace a non-unitary local Trotter
term applied to [t¢,,) by an unitary acting on O(n/A) qubits.
Taking n = O(3) to reach temperature S in the imaginary
time evolution, the support of the unitaries would scale as
O(/A). Assuming A is a constant, we find a linear increase
in temperature.

We also expect the linear growth of correlations/unitary
support with inverse temperature also to hold generically in
two dimensions, although there the analysis is more subtle as
rigorous results for the expected behavior of the transfer oper-
ator (which becomes a one-dimensional tensor product oper-
ator) and its gap are not available.

Spreading of correlations

In the main text, we argued that the correlation volume V' of
the state e ~## | ¥} is bounded for many physical Hamiltonians
and saturates at the ground-state with V' < IV where N is the
system size. To numerically measure correlations, we use the
mutual information between two sites, defined as

I(i,j) = S(i) + S(j) = 5(. 4) (45)

where S(i) is the von Neumann entropy of the density matrix
of site i (p(4)) and similarly for S(j), and S(, j) is the von
Neumann entropy of the two-site density matrix for sites 7 and
3 (i, 3)).

To compute the mutual information in Fig. 1 in the main
text, we used matrix product state (MPS) and finite projected
entangled pair state (PEPS) imaginary time evolution for the
spin-1/2 1D and 2D FM transverse field Ising model (TFI)

Hrpr ==Y ZiZj—h»_X; (46)
(i) i

where the sum over (i, j) pairs are over nearest neighbors.
We use the parameter i = 1.25 for the 1-D calculation and
h = 3.5 for the 2-D calculations as the ground-state is gapped
in both cases. It is known that the ground-state correlation
length is finite.

MPS. We performed MPS imaginary time evolution (ITE) on
a 1-D spin chin with L = 50 sites with open boundary condi-
tions. We start from an initial state that is a random product
state, and perform ITE using time evolution block decimation
(TEBD) [40, 41] with a first order Trotter decomposition. In
this algorithm, the Hamiltonian is separated into terms oper-
ating on even and odd bonds. The operators acting on a single
bond are exponentiated exactly. One time step is given by
time evolution of odd and even bonds sequentially, giving rise



to a Trotter error on the order of the time step A7. In our
calculation, a time step of A7 = 0.001 was used.

We carry out ITE simulations with maximum bond dimen-
sion of D = 80, but truncate singular values less than 1.0e-8
of the maximum singular value. In the main text, the ITE re-
sults are compared against the ground state obtained via the
density matrix renormalization group (DMRG)). This should
be equivalent to comparing to a long-time ITE ground state.
The long-time ITE (5 = 38.352) ground state reached an en-
ergy per site of -1.455071, while the DMRG ground-state en-
ergy per site is -1.455076. The relative error of the nearest
neighbor correlations is on the order of 10~ to 1072, and
about 10~2 for correlations between the middle site and the
end sites (a distance of 25 sites). The error in fidelity between
the two ground states was about 5 x 1074,

PEPS. We carried out finite PEPS [42-45] imaginary time
evolution for the two-dimensional transverse field Ising model
on a lattice size of 21 x 31. The size was chosen to be large
enough to see the spread of mutual information in the bulk
without significant effects from the boundary. The mutual in-
formation was calculated along the long (horizontal) axis in
the center of the lattice. The standard Trotterized imaginary
time evolution scheme for PEPS [46] was used with a time
step A7 = 0.001, up to imaginary time S = 6.0, starting
from a random product state. To reduce computational cost
from the large lattice size, the PEPS was defined in a transla-
tionally invariant manner with only 2 independent tensors [47]
updated via the so-called “simple update” procedure [48]. The
simple update has been shown to be sufficiently accurate for
capturing correlation functions (and thus (4, j)) for ground
states with relatively short correlation lengths (compared to
criticality) [49, 50]. We chose a magnetic field value h = 3.5
which is detuned from the critical field (h ~ 3.044) but still
maintains a correlation length long enough to see interesting
behavior.

Accuracy: Even though the simple update procedure was used
for the tensor update, we still needed to contract the 21 x 31
PEPS at at every imaginary time step J for a range of corre-
lation functions, amounting to a large number of contractions.
To control the computational cost, we limited our bond di-
mension to D = 5 and used an optimized contraction scheme
[51], with maximum allowed bond dimension of xy = 60 dur-
ing the contraction. Based on converged PEPS ground state
correlation functions with a larger bond dimension of D = 8§,
our D = 5 PEPS yields I(i,i + r) (where r denotes hori-
zontal separation) at large 8 with a relative error of ~ 1% for
r=1—4,5% orless forr =5 — 8, and 10% or greater for
r > 8. At smaller values of 3 (< 0.5) the errors up to r = 8
are much smaller because the bond dimension of 5 is able to
completely support the smaller correlations (see Fig. 1, main
text). While error analysis on the 2D Heisenberg model [49]
suggests that errors with respect to D = oo may be larger,
such analysis also confirms that a D = 5 PEPS captures the
qualitative behavior of correlation in the range » = 5 — 10
(and beyond). Aside from the bond dimension error, the pre-
cision of the calculations is governed by x and the lattice size.
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Using the 21 x 31 lattice and x = 60, we were able to con-
verge entries of single-site density matrices p(#) to a precision
of +107° (two site density matrices p(i, j) had higher pre-
cision). For § = 0.001 — 0.012, the smallest eigenvalue of
p(i) fell below this precision threshold, leading to significant
noise in I (4, 7). Thus, these values of 3 are omitted from Fig.
1 (main text) and the smallest reported values of I are 109,
although with more precision we expect [ — 0 as r — oo.

Finally, the energy and fidelity errors were computed with
respect to the PEPS ground state of the same bond dimension
at § = 10.0 (10000 time steps). The convergence of the quan-
tities shown in Fig. 1 (main text) thus isolates the convergence
of the imaginary time evolution, and does not include effects
of other errors that may result from deficiencies in the wave-
function Ansatz.

Comparison to classical algorithms

In the main text, we noted that QITE provided an exponen-
tial speedup per iteration over the direct classical implemen-
tation of imaginary time evolution algorithm, given bounded
correlation length C' during the evolution. We now compare
to some other possible classical algorithms.

We first note that a finite correlation length Cj in the
ground-state does not itself imply an efficient classical strat-
egy. For example, a simple heuristic is to solve the problem lo-
cally, e.g. to truncate the problem size at correlation length Cy
of the ground-state and solve by exact diagonalization, which
can be done in time exp(O(Cyd)) in d spatial dimensions. But
this will not generally converge to the correct ground-state in
a frustrated Hamiltonian, as this would efficiently solve NP-
hard classical satisfiability problems even though these have
Cy = 0; physical examples include glassy models.

Similarly, as QITE defines a quantum circuit for the imag-
inary time evolution, we might attempt to use it for a faster
classical simulation. If we are only interested in local observ-
ables, we can apply the circuit in the Heisenberg picture in a
classical emulation. However, this gives an extra exponen-
tial dependence on the number of previous time-steps: af-
ter the unitaries associated to (e~ 27"HUe=ATh2l )l have
been applied, the cost of applying the next unitary scales as
exp(O(ID)), with D the domain size of the unitaries, instead
of exp(O(D)) in QITE.

Alternatively, if | V) is represented by a tensor network in

a classical simulation, then e~27"|¥) can be represented
as a classical tensor network with increased bond dimen-
sion [24, 25]. However, the bond dimension will scale as
exp(O(ID)). Further, apart from the extra exponential depen-
dence on [, another potential drawback in the tensor network
approach is that we cannot guarantee contracting the result-
ing classical tensor network for an observable is efficient; it
is a #P-hard problem in the worst case in 2D (and even in the
average case for Gaussian distributed tensors) [24—27].



Simulation models

We here define, and give some background on, the models
used in the QITE and QLanczos simulations.

1 qubit field model

H=aX + 82 47

This Hamiltonian has previously been used as a model for
quantum simulations on physical devices in Ref. [29].We used
a = % and § = % In simulations with this Hamiltonian,
the qubit is assumed to be initialized in the Z basis.

1D Heisenberg and transverse field Ising model

The 1D short-range Heisenberg Hamiltonian is defined as

H=>S;-S; | (48)

the 1D short-range Heisenberg Hamiltonian in the presence of
a field as

H=7)"§;- S+BZZ , (49)
(i7)

the 1D long-range Heisenberg Hamiltonian as

. 1 A
H = —S;-S; 50
i#]
and the 1D AFM transverse-field Ising Hamiltonian as
H=1JY ZZj+hY X, . (51)
1D Hubbard model

The 1D Hubbard Hamiltonian is defined as
=Y al b+ U Z Rty (52)

(ij)o

where 7,y = a)_ai,, 0 € {1,1}, and () denotes summation
over nearest-neighbors, here with open-boundary conditions.
We label the n lattice sites with an index ¢ = 0...n — 1,
and the 2n — 1 basis functions as |¢g) = [0 1), |¢1) = [0 |

s o2y = |1 1), |¢3) = |1 1) .... Under Jordan-Wigner
transformation, recalling that
. 1-2,
Tlp 2 y
N (53)
A A X X Hk q+1 (1 - Zqu)
ap,Qq + ay0p = 5 s
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withp = 0...2n — 2 and ¢ < p, the Hamiltonian takes the
form
N Xpo+2Zp+1 (1 - Zp2p+2)
H=-
2
P A (54)
(1 — Z5i)(1 — Z3i41) (1-2p)

Ho molecule minimal basis model

We use the hydrogen molecule minimal basis model at the
STO-6G level of theory. This is a common minimal model
of hydrogen chains [52, 53] and has previously been stud-
ied in quantum simulations, for example in [28]. Given a
molecular geometry (H-H distance R) we perform a restricted
Hartree-Fock calculation and express the second-quantized
Hamiltonian in the orthonormal basis of RHF molecular or-
bitals as [54]

. 1
H=Ho+ ) hpgifiy+ 5 Y Vprgsithilisdr  (55)

Pgq prgs

where a, a are fermionic creation and annihilation operators
for the molecular orbitals. The Hamiltonian (55) is then en-
coded by a Bravyi-Kitaev transformation into the 2-qubit op-
erator

H = go+ 9121+ g2Z2+9321 Zo+ 92 X1 Xo+g5Y1Ya , (56)

with coefficients g; given in Table I of [28].

MAXCUT Hamiltonian

The MAXCUT Hamiltonian encodes the solution of the
MAXCUT problem. Given a graph I' = (V| E), where V
is a set of vertices and ¥ C V x V is a set of links between
vertices in V', a cut of I' is a subset S C V of V. The MAX-
CUT problem consists in finding a cut S' that maximizes the
number of edges between S and S¢ (the complement of .S).
We denote the number of links in a given cut S as C(.5).

In Figure 3 of the main text, we consider a graph I' with
vertices and links

vV ={0,1,2,3,4,5},

E ={(0,3),(1,4), (2, 7)

3)7 (27 4)7 (27 5)7 (47 5)} )

respectively. It is easy to verify that S = {0, 2,4}, {0, 1, 2},
{3,4} and their complements S¢ are solutions of the MAX-
CUT problem, with weight C', 4, = 5.

The MAXCUT problem can be formulated as a Hamilto-
nian ground-state problem, by (i) associating a qubit to every
vertex in V/, (ii) associating to every partition S = an element
of the computational basis (here assumed to be in the z direc-
tion) of the form |zg...z,—1), where z; = 1if i € S and



z; = 0if ¢ € S¢, and finding the minimal (most negative)
eigenvalue of the 2-local Hamiltonian

R 1—2:%;
C=— Z — . (58)
(ij)eE

The spectrum of (' is a subset of numbers C' € {0,1...|E|}.

In the present work, we initialize the qubits in the state
|®) = |+)®", where |+) = %, and evolve ® in imag-
inary time. Measuring the evolved state at time 5 |®(5)) will
collapse it onto an element |zg . . . z,,—1) of the computational
basis, which is also an eigenfunction of C with eigenvalue
C. In Figure 3 in the main text, we illustrate the probabil-
ity P(|C| = Cpas) that such measurements yield a MAX-
CUT solution. Note that, even in the presence of oscillations
(with the smallest domain size D = 2) this probability re-
mains above 60%.

Numerical simulation details
QITE stabilization

Sampling noise in the expectation values of the Pauli oper-
ators can affect the solution to Eq. (13) that sometimes lead
to numerical instabilities. We regularize S 4+ S”" against such
statistical errors by adding a small ¢ to its diagonal. To gener-
ate the data presented in Figures 2 and 4 of the main text, we
used & = 0.01 for 1-qubit calculations and § = 0.1 for 2-qubit
calculations.

QLanczos stabilization

In quantum Lanczos, we generate a set of wavefunctions
for different imaginary-time projections of an initial state | '),
using QITE as a subroutine. The normalized states are

—IATH
\Ij A
ﬁ =Ny eilATH|\I/T> 0 S l < Lmax
e T T
(59

where n; is the normalization constant. For the exact
imaginary-time evolution and [, I’ both even (or odd) the ma-
trix elements

Sy = (P Py)

|®y) =

Hy o = (9| H|®) (60)

can be computed in terms of expectation values (i.e. exper-
imentally accessible quantities) only. Indeed, defining 2r =
1+ 1, we have

niny

Sl,l’ =nny <\I/T|€7IATH87ZIAT}AI|\I/T> = 3 , (61)
nT
and similarly
Hl,l/ = nynyp <\I/T|e—lA‘rﬁﬁe—l'ATﬁ|\IJT> _
niny (62)

= n2 <q>r|ﬁlq)r> = Sl,l’ <(I)T|E[|(I)T>
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The quantities n,- can be evaluated recursively, since

1

2
nrJrl

_ <\I/T|€_(T+1)ATH€_(T+1)ATH|\I/T> _

N 63
<(I)T|e—2ATH|(I)T> ( )

2 I
n’l‘

For inexact time evolution, the quantities n,. and (®,.|H|®,.)
can still be used to approximate .S; ;, H; ;r.

Given these matrices, we then solve the generalized eigen-
value equation Hx = ESx to find an approximation to the
ground-state |®") = 3", x;|®;) for the ground state of H. This
eigenvalue equation can be numerically ill-conditioned, as S
can contain small and negative eigenvalues for several reasons
(i) as m increases the vectors |®;) become linearly dependent;
(i) simulations have finite precision and noise; (iii) S, H are
computed approximately when inexact time evolution is per-
formed.

To regularize the problem, out of the set of time-evolved
states we extract a better-behaved sequence as follows (i) start
from |®Ppg) = |Po) (ii) add the next |®;) in the set of time-
evolved states s.t. [(D;|Piast)| < s, where s is a regularization
parameter 0 < s < 1 (iii) repeat, setting the |Ppy) = P;
(obtained from (ii)), until the desired number of vectors is
reached. We then solve the generalized eigenvalue equation
Hx = FSx spanned by this regularized sequence, remov-
ing any eigenvalues of S less than a threshold e. The ex-
act emulated QLanczos calculations reported in the main text
were stabilized with this algorithm (the source of error here
is primarily (iii)) using stabilization parameter s = 0.95 and
€ = 10!, The stabilization parameters used in the QVM
and QPU QLanczos calculations were s = 0.75 and € = 102
(the main source of error in the simulations was (ii)). Note
that the stabilization procedure is unlikely to fix all possible
numerical instabilities, but was sufficient for all models and
calculations performed in this work.

METTS algorithm

The METTS (minimally entangled typical thermal state) al-
gorithm [55, 56] is a sampling method to calculate thermal
properties based on imaginary time evolution. Consider the
thermal average of an observable O

A 1 . L 3
(0) = ZTrle P10 = > (ile 27 Oe 3 11)i) , (64)
where {|é)} is an orthonormal basis set, and Z is the parti-

tion function. Defining |¢;) = Pfl/ze_gﬁﬁ) with P, =
(ile=PH|i), we obtain

(0) = %ZR‘@HOAWQ : (65)

The summation in Eq. (65) can be estimated by sampling |d:)
with probability P;/Z, and summing the sampled {(¢;|O|¢;).



In standard Metropolis sampling for thermal states, one
starts from |¢;) and obtains the next state |¢;) from ran-
domly proposing and accepting based an acceptance proba-
bility. However, rejecting and resetting in the quantum analog
of Metropolis [57] is complicated to implement on a quantum
computer, requiring deep circuits. The METTS algorithm pro-
vides an alternative way to sample |¢;) distributed with prob-
ability P;/Z without this complicated procedure. The algo-
rithm is as follows:

1. Choose a classical product state (PS) 7).

2. Compute |¢;) = P[l/Qe_gHH) and calculate observ-
ables of interest.

3. Collapse the state |¢;) to a new PS |i’) with probability
p(i — i') = |{i’|¢;)|* and repeat Step 2.

In the above algorithm, |¢;) is named a minimally entangled
typical thermal state (METTS). One can easily show that the
set of METTS sampled following the above procedure has
the correct Gibbs distribution [55]. Generally, {|i)} can be
any orthonormal basis. For convenience when implementing
METTS on a quantum computer, {|i)} are chosen to be prod-
uct states. On a quantum emulator or a quantum computer, the
METTS algorithm is carried out as following:

1. Prepare a product state ).

2. Imaginary time evolve |i) with the QITE algorithm to

|oi) = Pi_l/2e*§H|i>, and measure the desired ob-

servables.

3. Collapse |¢;) to another product state by measurement.

In practice, to avoid long statistical correlations between sam-
ples, we used the strategy of collapsing METTS onto alternat-
ing basis sets [55]. For instance, for the odd METTS steps,
|;) is collapsed onto the X -basis (assuming a Z computa-
tional basis, tensor products of |[+) and |—)), and for the even
METTS steps, |¢;) is collapsed onto the Z-basis (tensor prod-
ucts of |0) and |1)). The statistical error is then estimated by
block analysis [58].

Implementation on emulator and quantum processor

We used pyQuil, an open source Python library, to express
quantum circuits that interface with both Rigetti’s quantum
virtual machine (QVM) and the Aspen-1 quantum processing
units (QPUs).

pyQuil provides a way to include noise models in the QVM
simulations. Readout error can be included in a high-level
API provided in the package and is characterized by pgo (the
probability of reading |0) given that the qubit is in state |0))
and p11 (the probability of reading |1) given that the qubit is
in state |1)). Readout errors can be mitigated by estimating
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the relevant probabilities and correcting the estimated expec-
tation values. We do so by using a high level API present in
pyQuil. A general noise model can also be applied to a gate in
the circuit by applying the appropriate Kraus maps. Included
in the package is a high level API that applies the same deco-
herence error attributed to energy relaxation and dephasing to
every gate in the circuit. This error channel is characterized
by the relaxation time 7} and coherence time 75. We also
include in our emulation our own high-level API that applies
the same depolarizing noise channel to every single gate by
using the appropriate Kraus maps. The depolarizing noise is
characterized by p;, the depolarizing probability for single-
qubit gates and po, the depolarizing probability for two-qubit
gates. We do not include all sources of error in our emula-
tion. We applied the same depolarizing and dephasing chan-
nels to each gate operation for all qubits, when in reality, they
can vary from qubit to qubit. In addition, noise due to cross-
talk between qubits cannot be modeled using the QVM and
is another source of discrepancy between the QVM and QPU
results.

We investigate the influence of noise on the 2-qubit results
obtained via the QVM using different noise parameters;

e Noise model 1:

Poo = 0.95 P11 = 0.95
Ty =10.5us To =14.0 us
p1 =0.001  py =0.01

e Noise model 2:
poo =099  p1; =0.99
T, =10.5pus Tr =14.0pus
pP1 = 0.001 P2 = 0.01

e Noise model 3:
Poo = 0.99 P11 = 0.99

T, =20.0pus T =40.0pus
p1 = 0.0001 p2 = 0.001

Noise model 1 reflects realistic parameters that characterize
the Aspen-1 QPUs we run our calculations on; poo, p11, 11,
and 75 are reported values whereas p; and p, are values typi-
cally used to benchmark error mitigation algorithms [59]. We
repeated 10 calculations for each noise model and note there
is practically no variation from run to run. Fig. 5(a) shows
that reducing the readout error does not greatly affect the con-
verged ground state energy after readout error mitigation has
been performed. However, reducing the other sources of error
does improve the converged energy. Note that sufficient mea-
surement samples are used such that the sampling variance is
smaller than that due to noise.

We also ran 2-qubit simulations on different pairs of qubits
on Aspen-1, with Q1 consisting of qubits 14, 15 and Q2 con-
sisting of qubits 0,1. These two pairs are reported to have
different noise characteristics,

e QlI:
poo = 0.95  p11 =0.95
T, =10.5pus To =14.0pus



e Q2:
poo = 0.90 p11 =0.90
Ty =65us To =8.0us

Based on this, we expect simulations on Q2 to be worse. Note
that in contrast to our QVM calculations, the results from the
actual devices varied from run to run. Thus, we present the
mean and standard deviation for 10 different runs on each
pair. (Similarly, sufficient samples are taken when running
the QVM such that the sampling variance is smaller than that
due to noise). Fig. 5(b) indeed demonstrates that Q2 provides
a less faithful implementation of the quantum algorithm.
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FIG. 5: Comparison of energies obtained using different noise mod-
els(NM) for (a) QITE and (b) QLanczos. Comparison of energies
obtained using different pair of qubits for (c) QITE and (d) QLanc-
zos. The performance of QITE and QLanczos improves as noise is
reduced, indicating the potential of the algorithms.

Parameters used in QVM and QPUs simulations

In this section, we include the parameters used in our QPU
and QVM simulations. Note that all noisy QVM simulations
(unless stated otherwise in the text) were performed with noise
parameters from noise model 1. We also indicate the number
of samples used during measurements for each Pauli operator.

TABLE I: QPUs: 1-qubit QITE and QLanczos.
Trotter stepsize|nSamples| 6 | s | ¢
02 7100000 [0.01]0.75]10~2

TABLE II: QPUs: 2-qubit QITE and QLanczos.
Trotter stepsize|nSamples| 5 | s | ¢
05 7100000 [0.1]0.75[10~7

TABLE III: QPUs: 1-qubit METTS.
| Trotter stepsize| nSamples nMETTs| 4§

1.5 0.15 1500 70 0.01
2.0 0.20 1500 70 0.01
3.0 0.30 1500 70 0.01
4.0 0.40 1500 70 0.01

TABLE IV: QVM: 2-qubit QITE and QLanczos.
Trotter stepsize|nSamples| § | s | ¢
05 7100000 [0.1]0.75]10 2

TABLE V: QVM: 1-qubit METTS.
B | Trotter stepsize nSamples|nMETTs| ¢

1.0 0.10 1500 70 0.01
1.5 0.15 1500 70 0.01
2.0 0.20 1500 70 0.01
3.0 0.30 1500 70 0.01
4.0 0.40 1500 70 0.01

TABLE VI: QVM: 2-qubit METTS.

B | Trotter stepsize| nSamples nMETTs| §

1.0
1.5
2.0
3.0
4.0

0.10
0.15
0.20
0.30
0.40

30000
30000
30000
30000
30000

100
100
100
100
100

0.1
0.1
0.1
0.1
0.1
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Comparison of QITE and VQE

To address the feasibility of running QITE for larger sys-
tems on near-term devices, we compared the total number of
Pauli string measurements needed for both VQE and QITE
to obtain the ground state of two different spin models; (a) a
1D Heisenberg chain in a magnetic field with the parameters
J = B = 1; the 4-site instance of this model was studied
in Ref. [60], and (b) 1D AFM transverse-field Ising model
(J = h = 1/+/2). Specifically, we estimated how many ex-
pectation values of Pauli strings would need to be measured
to obtain the ground state of a 4-site and 6-site instance. The
state under the evolution of QITE or in VQE was said to be
converged to the ground state if its energy was within 1% of
the exact ground state energy for the Heisenberg model, and
1% or 2% for the Ising model (the relaxed criterion for the
Ising model was chosen so that the VQE optimization could
complete in a reasonable number of steps). The following sec-
tion describes how we counted the total number of Pauli string
measurements in VQE and QITE.

Counting Pauli strings in VOQE

To perform the VQE calculations, we used the hardware-
efficient variational Ansatz as described in [60]. This consists
of first applying rotation unitaries represented by U%%(0) =
Rzeg,i Rxeg,i RZeg,i to all qubits before applying layers of a
certain depth d; each layer begins by applying C'Z gates
between nearest-neighbors followed by applying U%¢(0) =
Rzeg,i Rl’eg,i Rzeg,i to all qubits again. Details of the circuit
can be seen in Fig. 6.

As in [60], we also used the simultaneous perturbation
stochastic approximation (SPSA) algorithm as the optimiza-
tion protocol. The SPSA algorithm is commonly used because
(1) it performs well in the presence of stochastic fluctuations
and (ii) it requires only evaluating the objective function twice
to update the variational parameters regardless of the number
of parameters involved. The performance of the optimizer de-
pends on the hyperparameters o and y as described in [60]
and we found that their reported values of &« = 0.602 and
v = 0.101 also gave the best results for us. Numerical evi-
dence of this is provided later on.

Evaluating the objective function involves estimating the
expectation value of the Pauli strings that appear in the Hamil-
tonian. To prevent sampling errors from influencing the com-
parison, we evaluated the expectation values exactly. We con-
ducted the VQE calculations using Qiskit, a quantum emula-
tor Python package provided by IBM. The package provides
both the SPSA algorithm and a variational Ansatz which we
modified to reproduce the exact Ansatz used in [60].

To count the number of Pauli strings needed for conver-
gence, we ran VQE using different layer depths and deter-
mined the number of iterations /N needed for the algorithm to
converge to a state with an energy within a certain percent-
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age (1% or 2%) of the exact ground state energy. Examples
of converged VQE calculations for the 1D Heisenberg model
are given in Fig. 7(a) and (b). In each iteration, the objective
function was evaluated twice, and the evaluation of the objec-
tive function required measuring the expectation value of the
M Pauli strings that appear in the Hamiltonian. Therefore, the
total number of Pauli strings Py is given as

Ptotal:2XN><M (66)

We note that the results from one VQE trajectory can differ
slightly from the next. For our VQE calculations, we always
performed 10 trajectories and analyzed our data using the av-
erage trajectory. We summarize the VQE parameters that we
found gave the lowest number of total Pauli measurements to
converge to the ground state in Table VII. For the 6-site 1D
AFM transverse field Ising model, VQE could not converge
to within 1% and we instead used the 2% convergence crite-
rion. We found that for ¢ = 0.602,y = 0.101, our simula-
tion results for the 6-site 1D Heisenberg model indicates that
using a circuit depth of 20 requires the least number of to-
tal Pauli measurements. We also ran some tests to determine
what values of o and v gave the best result for the 6-site 1D
Heisenberg model; the VQE calculation for the 6-site model
conducted using o = 0.602, v = 0.101 and a circuit depth
of 20 converged within 8400 optimization steps. We ran VQE
calculations for different o and +y using the same circuit depth
of 20 and a total of 9000 optimization steps. The data in table
VIII clearly shows that & = 0.602 and v = 0.101 produced
the best result for us.

Counting Pauli strings in QITE

To implement QITE, we used the second-order Trotter de-
composition given by

67[31{[ _ (efm/w}u] o efAT/Qfl[Kfl]efArfz[K] (67)

—A7/2h[K—1] —ATh[1]\n 2\ . . ﬁ
e ...e ) +O(AT)’n_AT
to carry out the real time evolution. We initialized our
state as: (a) |0101...) for the 1D Heisenberg model and (b)
maximally-mixed state for the 1D AFM transverse-field Ising
model. We converged to the ground state using a time step
of A7 = 0.1 and a domain size D of 4, as seen in Figs. 7(c)
and (d). To count the number of Pauli strings, we note that a
domain size of 4 implies that to evaluate e ~27/2"[1 involves
measuring 4* = 256 Pauli strings (without using the real-
valued nature of the Hamiltonian). Therefore, with a total
number of Trotter steps 7', the total number of Pauli strings
Pyo1q1 1s given as

Piotar = (2K — 1) x T x 256 (68)

We summarize the parameters that we used for QITE to ob-
tain the ground state in table IX. We had no trouble converg-
ing our ground state to arbitrary accuracy using QITE but we
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(b)

FIG. 6: (i) VQE Ansatz that is composed of a sequence of interleaved single-qubit rotations U%*(0) and entangling operations. (ii) The
entangling operations consist of applying C'Z gates between nearest neighbours.

5.0 ik i 4.0
v | T = a)l | c
550 4 0% (a) : (c) .
6op % d=12 i = D=4 ’
:S—e\ - \“| convergence ! = convergence 6\
5 6.5 \?-‘ exact 'I — exact 6.0 =
-7.0 i i
Y 1 -7.0
=75 Y i
A i
8.0 -8.0
00 05 1.0 15 20 25 3000 4.0 8.0 12.0 16.0
k(10%) B
157 5.5
O d=16 b) | i d
350 =2 ® i @
d=24 ! - D=4 75
= 5.5 \ convergence : — convergence =
EJ/ 75 exact, l — exact E/
1 _
: 9.5
-9.5 \
o \
115 — -11.5

00 03 06 09 12 1500 4.0 8.0 12.0 16.0

FIG. 7: VQE calculations for (a) 4-site and (b) 6-site 1D Heisenberg
model. k is the number of optimization steps, and d is the number
of layers. QITE calculations for (c) 4-site and (d) 6-site for the same
model. D is the domain size.

used the same convergence criterion as for VQE to facilitate
comparison.

VOE and QITE

Data from Table X suggests that QITE is competitive with
VQE with respect to the number of Pauli string measure-
ments. In fact, for the 6 qubit system, the number of measure-
ments needed in QITE was significantly less than in VQE,
due largely to the SPSA iterations needed to reach conver-
gence when optimizing the VQE energy. While it is likely
that the VQE costs could be lowered by using a better opti-
mizer, or a better VQE Ansatz, we also note that the counts
for QITE can also be reduced by using the methods outlined
in the main text and earlier sections that discussed how one
can economize measurements in QITE. The widespread cur-
rent implementation of VQE and the observed performance of

QITE suggest that it will be practical to implement the QITE
protocol for intermediate system sizes on near-term devices.

TABLE VII: VQE simulation parameters for (a) 1D Heisenberg with
applied field and (b) 1D AFM transverse field Ising. Conv. refers to
the convergence criterion used. We note for the last case, the VQE
optimization could not reach within 1% of the ground state energy,
so we set the convergence criterion to 2 %
model |nsite|conv.| a | v |d| N | Piota
a 4 1% [0.602(0.101| 8 | 800 | 25,600
a 6 1% 10.602(0.101 |20 | 8400 {403,200
b 4 1% 10.602(0.101|12| 800 | 12,800
b 6 | 2% [0.602]|0.101(12]|2890| 69,360

TABLE VIII: Hyperparameters sweep for 6-site 1D Heisenberg
model using a circuit depth of 20 for a total of 9000 optimization
steps. The step at which the calculation converged is recorded under
column 7. -’ indicates that VQE failed to converge.

«

0.400
0.400
0.400
0.602
0.602
0.602
0.800
0.800
0.800

v
0.066
0.101
0.133
0.066
0.101
0.133
0.066
0.101
0.133




TABLE IX: QITE simulation parameters for (a) 1D Heisenberg with
applied field and (b) 1D AFM transverse field Ising. Conv. indicates
the convergence criterion used. We used 2% for the final calculation
to facilitate comparison with VQE which failed to converge to within
1%.
model | n-site|conv. | AT| D| T |K| Piotal
a 4 [ 1% (01|47 [4]12,544
a 6 | 1% [0.114|17|6|47,872
b 4 | 1% |02]4|7|4]12,544
b 6 | 2% |0.2|4|8]6(22,528

TABLE X: Total Pauli string expectation values in VQE and QITE
for (a) 1D Heisenberg with applied field and (b) 1D AFM transverse
field Ising. The total number of Pauli strings to be measured in QITE
can be further reduced by using only Pauli strings with only an odd
number of Y operators due to the real nature of the Hamiltonian. We
show this reduced number in brackets.
model |n-site|  VQE] QITE
a 4 25,600 12,544(5,880)
a 6 1403,200|47,872(22,440)
b 4 12,800 12,544(5,880)
b 6 69,360 (22,528(10,560)
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