
J. Fluid Mech. (2020), vol. 894, A16. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.282

894 A16-1

Dynamics of laminar and transitional flows over
slip surfaces: effects on the

laminar–turbulent separatrix

Ethan A. Davis1 and Jae Sung Park1,†
1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln,

NE 68588-0526, USA

(Received 15 October 2019; revised 25 February 2020; accepted 6 April 2020)

The effect of slip surfaces on the laminar–turbulent separatrix of plane Poiseuille
flow is studied by direct numerical simulation. In laminar flows, the inclusion of the
slip surfaces results in a drag reduction of over 10 %, which is in good agreement
with previous studies and the theory of laminar slip flows. Turbulence lifetimes,
the likelihood that turbulence is sustained, is investigated for transitional flows with
various slip lengths. We show that slip surfaces decrease the likelihood of sustained
turbulence compared to the no-slip case, and the likelihood is further decreased
as slip length is increased. A more deterministic analysis of the effects of slip
surfaces on a transition to turbulence is performed by using nonlinear travelling-wave
solutions to the Navier–Stokes equations, also known as exact coherent solutions.
Two solution families, dubbed P3 and P4, are used since their lower-branch solutions
are embedded on the boundary of the basin of attraction of laminar and turbulent
flows (Park & Graham, J. Fluid Mech., vol. 782, 2015, pp. 430–454). Additionally,
they exhibit distinct flow structures – the P3 and P4 are denoted as core mode and
critical-layer mode, respectively. Distinct effects of slip surfaces on the solutions are
observed by the skin-friction evolution, linear growth rate and phase-space projection
of transitional trajectories. The slip surface appears to modify the transition dynamics
very little for the core mode, but quite considerably for the critical-layer mode.
Most importantly, the slip surface promotes different transition dynamics – an early
and bypass-like transition for the core mode and a delayed and H- or K-type-like
transition for the critical-layer mode. We explain these distinct transition dynamics
based on spatio-temporal and quadrant analyses. It is found that slip surfaces promote
the prevalence of strong wall-toward motions (sweep-like events) near vortex cores
close to the channel centre, inducing an early transition, while long sustained ejection
events are present in the region of the Λ-shaped vortex cores close to the critical
layer, resulting in a delayed transition. This should motivate flow control strategies
to fully exploit these distinct transition dynamics for transition to turbulence.
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1. Introduction
In the last few decades, the allure of slip surfaces for use in a multitude of

flow applications has grown (Golovin et al. 2016). Of particular interest is the
demonstrated ability of slip surfaces in reducing frictional resistance, or drag, in
many different configurations for both laminar and turbulent flows. Many studies
have achieved significant drag reduction via slip by placing hydrophobic surfaces
at the walls (Luchini, Manzo & Pozzi 1991; Watanabe, Okido & Mizunuma 1996;
Min & Kim 2004; Ou, Perot & Rothstein 2004; Davies et al. 2006; Truesdell et al.
2006; Bocquet & Lauga 2011; Seo & Mani 2018). However, a smaller number
of studies have been performed on the effect of slip surfaces on the transition to
turbulence with most limited to linear stability analysis of the linearized Navier–Stokes
equations. Two-dimensional (Spille, Rauh & Buehring 2000; Yu, Teo & Khoo 2016)
and three-dimensional (Lauga & Cossu 2005; Min & Kim 2005; You, Zheng &
Jing 2007) analyses on the stability of flows have been carried out. While most of
these studies have shown a stabilizing effect of slip surfaces leading to a delayed
transition, others have found that these surfaces can induce or amplify instabilities
and, subsequently, trigger early transition (Chu 2004; Chai & Song 2019). Studies
on a bluff body with a superhydrophobic coating have shown different results on
the flow separation – delayed separation (Gruncell, Sandham & McHale 2013) and
promoted separation (Castagna, Mazellier & Kourta 2018). Furthermore, a recent
study by Picella, Robinet & Cherubini (2019) found that slip surfaces may be
effective at delaying transition for near-wall perturbations similar to ones observed in
H-/K-type transition scenarios (Klebanoff, Tidstrom & Sargent 1962) but are rendered
ineffectual for free-stream, or non-modal, perturbations similar to ones observed in a
bypass transition scenario (Morkovin 1985). As such, there exists no strict consensus
on the effects of slip surfaces on the transition to turbulence, or in which particular
transition scenarios slip surfaces may be considered effective.

Interestingly, there have been doubts on the validity of the no-slip boundary
conditions at the microscopic scale, showing that under certain circumstances, fluids
can slip against solid surfaces (Granick, Zhu & Lee 2003; Squires & Quake 2005).
Various factors including wettability, surface roughness, presence of gaseous layers
and impurities can facilitate a non-zero fluid velocity at solid surfaces (de Gennes
2002; Neto et al. 2005; Quéré 2005). The idea of slip was first introduced by Navier,
quantifying the slip velocity by the idea of a slip length (Navier 1823). The slip
length relates the velocity of the fluid at the wall to the wall shear rate as

us = b
∂u
∂y

∣∣∣∣
w

, (1.1)

where b is the slip length or Navier’s slip coefficient. The slip at the solid surface
tends to increase the velocity at the wall, leading to skin-friction reduction. Min &
Kim (2005) investigated temporal transition to turbulence, where the linear stability
analysis was applied to the linearized Navier–Stokes equations for a two-dimensional
case, showing that the critical Reynolds number increases with the streamwise slip
length and decreases with spanwise slip length. A combination of the two results in
a critical Reynolds number between the no-slip and limiting streamwise cases. More
recently, superhydrophobic surfaces, which are a combination of surface chemistry
and surface roughness at micro- and/or nano-scales, have been introduced for drag
reduction (Rothstein 2010). These surfaces appear to lower the free energy of an
air–water interface, producing a very high contact angle at the surface. There have
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Effects of slip surfaces on turbulent transition 894 A16-3

been, of course, many studies on the effects of superhydrophobic surfaces on skin-
friction reduction in laminar and turbulent flows (Park, Sun & Kim 2014; Lee, Jelly
& Zaki 2015; Jung, Choi & Kim 2016; Lee, Choi & Kim 2016; Ling et al. 2016;
Gose et al. 2018; Seo & Mani 2018; Fairhall, Abderrahaman-Elena & García-Mayoral
2019). Thorough reviews of the effect of slip and superhydrophobic drag reduction on
laminar and turbulent flows are given by Rothstein (2010), Abdulbari et al. (2013) and
Lee et al. (2016). It is worth noting that there is a recent study that performs direct
numerical simulations of a turbulent channel flow to predict the effective slip length
and drag reduction with a lubricated micro-groove surface (Chang et al. 2019).

In addition to laminar and turbulent flows, a classical problem in wall-bounded shear
flows is the transition to turbulence (Avila et al. 2011; Barkley 2016; Sano & Tamai
2016). The fundamental question of what causes a flow to undergo a change from a
highly ordered laminar state in space and time to a highly disordered turbulent state
in space and time has been puzzled over since Osborne Reynolds in 1883 (Reynolds
1883). There have been several approaches to explore the nature of transition. The
directed percolation has been proposed to conjecture the spatio-temporal intermittency
observed in a transitional flow (Pomeau 1986; Sipos & Goldenfeld 2011; Allhoff &
Eckhardt 2012; Lemoult et al. 2016). The theoretical and experimental studies based
on puffs and slugs have also been explored to study the dynamics of transition to
turbulence (Wygnanski & Champagne 1973; Nishi et al. 2008; Barkley 2011; Barkley
et al. 2015; Shih, Hsieh & Goldenfeld 2016). Recently, the dynamical systems
idea has emerged, enabling computation of non-trivial invariant solutions to the
Navier–Stokes equations (Kawahara, Uhlmann & Van Veen 2012). These solutions,
considered as the building blocks of turbulence, have advanced our understanding of
chaotic spatio-temporal flows (Park & Graham 2015; Suri et al. 2017; Tithof et al.
2017; Park, Shekar & Graham 2018). These spatially and temporally well-organized
solutions have been observed in all turbulent shear flows, both in experiments and
simulations (Hof et al. 2004; Gibson, Halcrow & Cvitanović 2009), and have been
used to help provide qualitative and quantitative information about the transition to
turbulence.

We focus here on the dynamical systems approach, which has greatly advanced the
understanding of the nature of the transition to turbulence (Kerswell 2005; Eckhardt
et al. 2007a; Lustro et al. 2019). Specifically, the discovery of three-dimensional fully
nonlinear travelling-wave (TW) solutions to the Navier–Stokes equations has enabled
a priori study of the transition to turbulence. These solutions are also denoted as
exact coherent states (ECS) since they capture the essential structural and statistical
features of a turbulent flow, featuring the near-wall self-sustaining process (Waleffe
2001). They primarily arise in pairs from a saddle-node bifurcation at a particular
Reynolds number, consisting of upper- and lower-branch solutions – both of which
are unstable. These lower- and upper-branch TW solutions can, thus, be thought of
as saddle points in the state space and the turbulent trajectory moves dynamically
between these saddle points (Park & Graham 2015). More interestingly, the onset
Reynolds number for TW solutions to come into existence is quantitatively in good
agreement with the Reynolds number for transition to turbulence, corresponding to a
spanwise period of 100 wall units (Carlson, Widnall & Peeters 1982). Interestingly,
the subcritical nature of these bifurcations of TW solutions has shed light on some
features of subcritical turbulent transition such as patterned turbulence (Tuckerman
et al. 2014). Most of these ECSs have been found in so-called minimal flow units –
they are spatially periodic in the unbounded dimensions of the domain with periods
that roughly correspond to the smallest length scales at which turbulence can persist
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894 A16-4 E. A. Davis and J. S. Park

(Jiménez & Moin 1991). In addition, localized ECSs in extended domains have
also been found to show flow structures resembling the observed spatio-temporal
intermittency and the laminar–turbulent patterning that are a common feature of
turbulence near transition (Avila et al. 2013; Brand & Gibson 2014). Avila et al.
(2013) found a particular family of localized ECSs for pipe flow that shows features
similar to puffs, which resemble localized turbulent regions in a transitional pipe
flow. Zammert & Eckhardt (2014) also found a family of localized ECSs for a plane
Poiseuille flow. However, their connections to turbulence transition are still unclear.

Another important issue regarding ECSs is their connection to the laminar–turbulent
boundary, or separatrix. This boundary separates the basins of attraction of laminar
and turbulent flows (Schneider, Eckhardt & Yorke 2007; Duguet, Willis & Kerswell
2008), and this boundary is inherently unstable. Initial conditions on the turbulent
side of the boundary become turbulent, while those on the laminar side laminarize.
Initial conditions on this boundary stay on it – they neither become turbulent nor
do they relaminarize. There are theoretical arguments that the stable manifold of the
lower-branch ECS forms a part of this boundary (Kawahara 2005; Wang, Gibson &
Waleffe 2007). If an ECS on the basin boundary has a single unstable eigenvalue and
many stable eigenvalues, there are many ways in which trajectories can approach it,
but there is only one way to leave. Such ECS has been called an edge state (Skufca,
Yorke & Eckhardt 2006). Some of the lower-branch ECSs are also found to lie on
the basin boundary, but they have multiple unstable eigenvalues so are not edge states
(Park & Graham 2015). The dynamics of trajectories on or near the basin boundary
is intermediate between laminar and turbulent flows and thus thought to play an
important role in the dynamics of transition to turbulence.

Because of the clear importance of the lower-branch ECSs for the transition to
turbulence and proximity to the basin boundary, the present work focuses on the
effects of slip surfaces on these ECSs embedded on the laminar–turbulence boundary.
It will provide an excellent simplified, yet still exact, model flow for studying the
nature of the transition to turbulence. The leading-order effect of the slip surfaces
on the ECS is one important focus of the present study for identifying dynamics of
the transition. The connection between ECSs and slip surfaces has yet to be fully
explored and will be investigated in the present study. The nature of turbulence
transition will be identified with respect to ECSs on the laminar–turbulent separatrix
found by Park & Graham (2015).

We focus here on a channel flow of an incompressible Newtonian fluid with
dynamic viscosity µ, density ρ and kinematic viscosity ν = µ/ρ in a channel of
half-height h. In this geometry, the critical Reynolds numbers are Re=Uch/ν ≈ 1000
and Reτ = uτh/ν ≈ 45 based on the laminar centreline velocity Uc and friction
velocity uτ , respectively (Carlson et al. 1982; Pope 2000). The laminar and transition
flow regimes in a range of 120 < Re < 1800 (8 < Reτ < 85) will be considered
in the present study. Two lower-branch ECSs (labelled P3 and P4 below) will be
considered as they are on the basin boundary – P3 is indeed an edge state as it
has only one unstable eigenvalue. It is worth noting that, to our knowledge, there
have been only two modes of the exact coherent solutions (Waleffe 2001; Gibson
et al. 2009; Viswanath 2009; Nagata & Deguchi 2013; Gibson & Brand 2014; Park
& Graham 2015), namely core mode and critical layer mode. P3 and P4 solutions
display characteristics of each mode, respectively. Therefore, by examining the P3
and P4 solutions, it is believed that the essential effects of slip surfaces on transition
dynamics will be encapsulated.

This paper is organized as follows: § 2 presents the problem formulation for
the current study. A validation of the current simulations is given in § 3.1 by
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Effects of slip surfaces on turbulent transition 894 A16-5

comparing drag reduction of laminar flows. To better understand the effect of the
slip on the transition, the effect of slip on turbulence lifetimes is presented in § 3.2.
Additionally, the effect of slip surfaces on the transition to turbulence is studied using
travelling-wave solutions to the Navier–Stokes equations in § 3.3. Finally, a summary
and implications of the present investigation are given in § 4.

2. Problem formulation
We consider an incompressible Newtonian fluid in the plane Poiseuille (channel)

geometry, driven by a constant volumetric flux Q. The x, y and z coordinates
are aligned with the streamwise, wall-normal and spanwise directions, respectively.
Periodic boundary conditions are imposed in the x and z directions with fundamental
periods Lx and Lz, and streamwise Navier slip conditions are imposed at the walls
y = ±h, where h = Ly/2 is the half-channel height. The laminar centreline velocity
for a given volumetric flux is given as Uc = (3/4)Q/h. Using the half-height h of
the channel and the laminar centreline velocity Uc as the characteristic length and
velocity scales, respectively, the non-dimensionalized Navier–Stokes equations are
then given as

∇ · u= 0,
∂u
∂t
+ u · ∇u=−∇p+

1
Rec
∇

2u. (2.1a,b)

Here, we define the Reynolds number for the given laminar centreline velocity as
Rec = Uch/ν, where ν is the kinematic viscosity of the fluid. Characteristic inner
scales are the friction velocity uτ = (τ̄w/ρ)

1/2 and the near-wall length scale or wall
unit δν = ν/uτ , where ρ is the fluid density and τ̄w is the time- and area-averaged
wall shear stress. As usual, quantities non-dimensionalized by these inner scales are
denoted with a superscript ‘+’. The friction Reynolds number is then defined as
Reτ = uτh/ν = h/δν . Streamwise Navier slip conditions are prescribed as equation
(1.1) at both top and bottom walls by an effective homogeneous slip length, Ls= b/h.
To verify that the slip length can be realistically obtained by practical slip surfaces
with roughness features, the length scale L+ of the micro-roughness can be calculated
using equation (2.4) of Picella et al. (2019), enabling a direct comparison with
ones in the literature. Using the largest slip length studied (Ls = 0.02) and the solid
fraction φs = 0.25 used in Min & Kim (2005), the largest texture size of the current
study is L+ ≈ 7, which ensures that the homogeneous slip surface employed in the
present study would provide virtually the same outcomes resulting from employing a
heterogeneous microtextured slip surface (Ybert et al. 2007; Seo, García-Mayoral &
Mani 2018; Picella et al. 2019).

Simulations are performed using the open source code ChannelFlow written and
maintained by Gibson (2012). In this study, we focus on the domains of Lx×Ly×Lz=

2π × 2 × π and Lx × Ly × Lz = π × 2 × π/2, which are the same box sizes as
the TW solution families dubbed P3 and P4, respectively (Park & Graham 2015).
A numerical grid system is generated on Nx×Ny×Nz (in x, y, and z) meshes, where
a Fourier–Chebyshev–Fourier spectral spatial discretization is applied to all variables.
A typical resolution used is (Nx, Ny, Nz) = (48, 81, 48). The numerical grid spacing
in the streamwise and spanwise direction are 1x+min ≈ 8.2(4.7), 1z+min ≈ 4.1(2.3) for
the P3 and (P4) cases. The non-uniform Chebyshev spacing used in the wall-normal
direction results in 1y+min≈ 0.05 at the wall and 1y+max≈ 2.5 at the channel centre for
both P3 and P4 cases. For simulations, a range of 120< Re< 1800 (8< Reτ < 85) is
considered to cover laminar and transition flow regimes. For exact coherent solution,
Reτ = 62.52 and 71.72 are considered for P3 and P4, respectively, as these are the
inherent Reynolds numbers at which the P3 and P4 solutions emerge.
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0

5

10
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FIGURE 1. (a) Friction factor and (b) drag reduction percentage as a function of Reynolds
number for various Ls values. In (a) laminar flow (solid line) corresponds to f = 9/Re
(Pope 2000). In (b) the dashed lines are shown for readability.

3. Results and discussion
3.1. Laminar drag reduction: a validation

For the sake of testing the code, the effect of the slip surfaces on laminar flows was
investigated. Drag reduction percentage (DR %) was calculated to compare to previous
studies and is given by

DR %=
f0 − f

f0
× 100, (3.1)

where f is the friction factor for the slip surface and f0 is the friction factor for the
no-slip surface at the same Reynolds number: f = τ̄w/(1/2ρU2

b), where Ub is the
bulk velocity. Figure 1(a,b) show the friction factor and drag reduction percentage
as a function of Reynolds number for various slip lengths, respectively. As seen in
figure 1(a), the friction factor is shifted downward when slip length is increased,
while maintaining the same slope as laminar case. Therefore, the relative change in
wall shear stress or pressure drop with Reynolds number remains constant and the
drag reduction from (3.1) is constant for each slip length. Figure 1(b) confirms that
DR % is almost constant at each slip length regardless of Reynolds number. The
same trend of constant drag reduction percentage in the laminar regime has also been
observed previously (Ou et al. 2004), where an increase in drag reduction resulted
from increasing slip length, alone, and was not a function of flow rate.

To further validate the present study, drag values ( f /f0) were compared to those of
previous studies using superhydrophobic surfaces in laminar flows. Figure 2 shows
the results for the drag value observed in the laminar regime for previous studies
(closed symbols) and the current study (open symbols) along with a curve for the
theory for the superhydrophobic surfaces on both walls. As expected, the drag values
decrease with increasing slip length. Notably, the current study is in great agreement
with the theory proposed by Choi & Kim (2006) for superhydrophobic surfaces on
both channel walls.
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Jung & Bhushan (2010)
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Theory: both walls,
Choi & Kim (2006)

1.0
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FIGURE 2. Drag ( f /f0) corresponding to the friction factor ( f ) normalized by that of the
no-slip surface ( f0) as a function of slip length Ls normalized by the channel half-height,
h:@, present study;q, Choi & Kim (2006);p, Maynes et al. (2007);f, Jung & Bhushan
(2010);u, Park, Park & Kim (2013); ——, theory for superhydrophobic surfaces on both
walls (Choi & Kim 2006).

3.2. Turbulence lifetimes: statistical insight into transition to turbulence over slip
surfaces

A common approach used in the study of flow control and its effect on the transition
to turbulence is to compute the turbulence lifetime of the flow. This lifetime gives
a more physical interpretation of the effects of the flow control on the flow and
on the modified distance between the turbulent state and the edge of turbulence in
phase space. Ibrahim et al. (2018) showed that opposition control in both Couette
and Poiseuille flows plays a role in increasing the probability of escaping from the
chaotic saddle of turbulence in phase space. In this regard, the effect of slip surfaces
on altering turbulence lifetime statistics was investigated. Similar to the procedure
used by Ibrahim et al. (2018), 100 different turbulent flow fields were created by
running simulations at an elevated Reynolds number. These 100 flow fields were
then used as the initial conditions for the turbulence lifetime study at the nominal
Reynolds number (i.e. flow fields created at Rec= 1900 were used as initial conditions
for the turbulence lifetime study at Rec = 1800). The temporal evolution of the wall
shear stress was tracked up to t = 5000 for four different slip lengths: Ls = 0.00,
0.008, 0.01 and 0.02. Note that the slip length for the current study is already in
dimensionless form Ls= b/h, where h is the channel half-height. If a flow laminarizes,
the time it takes for the wall shear stress to become its laminar value is considered
the turbulence lifetime. Probability of turbulence can then be computed as a function
of time for each value of Ls by defining it as the fraction of the 100 turbulent flow
fields that remain turbulent up to a given time t.

Figure 3 shows the probability of turbulence lifetimes for various Reynolds
numbers at slip lengths of Ls = 0.00, 0.01 and 0.02. The probability is found to
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FIGURE 3. Probability of turbulence lifetime for slip lengths Ls=0.00 (@), 0.008 (C), 0.01
(6) and 0.02 (E) at Rec = 1800 on semi-logarithmic axes. The dashed lines are shown
for readability to help illustrate the exponentially decaying trend. Inset: dependence of
Reynolds number on turbulence lifetime at Rec = 1600 (p), 1800 (q) and 2000 (u) at
Ls = 0.02.

approximately follow an exponential distribution that is characteristic of turbulence
lifetimes (Eckhardt et al. 2007b). It should be noted that the probability of turbulence
does decrease for the no-slip case in the transitional flow regime. Given sufficient
time and domain size and the nature of initial conditions, it has been shown that
there is a tendency for turbulence to decay as a result of a transient process in shear
flows (Schmiegel & Eckhardt 1997; Bottin & Chaté 1998; Hof et al. 2006; Schneider
& Eckhardt 2008). As intuition might suggest, the probability of sustained turbulence
at a given time decreases as slip length is increased, indicating a stabilizing effect on
the flow. As was investigated by Min & Kim (2005), the addition of a streamwise
slip velocity stabilizes a flow by which it is likely that the probability of turbulence
persisting decreases as streamwise slip length is further increased. While this trend
holds for the three Reynolds numbers studied here – Rec = 1600, 1800 and 2000 –
the effectiveness of a given slip surface decreases with increasing Reynolds number.
In other words, as Reynolds number increases, larger slip lengths are needed to
obtain the same effect. Notably, the slip lengths studied here have little effect on
the flow at Rec = 2000, with a final reduced probability of sustained turbulence
of ∼94 % at the largest slip length examined. Note that the effect of slip surfaces
on turbulence lifetime may be interpreted as a reduction of the Reynolds number,
which was observed by Min & Kim (2004) and Fukagata, Kasagi & Koumoutsakos
(2006). These results suggest that the phase space of turbulence may be altered by
slip surfaces in such a way to facilitate transition back to the laminar state. This
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same trend in turbulence lifetime was also observed when using increasing levels of
opposition control in channel flow (Ibrahim et al. 2018).

3.3. Exact coherent solutions: a deterministic analysis of the laminar–turbulent
separatrix over slip surfaces

We now discuss the effect of slip surfaces on the laminar–turbulent separatrix
using exact coherent solutions or travelling-wave solutions to the Navier–Stokes
equations. Two travelling-wave solution families, dubbed P3 and P4, were used as the
lower-branch solutions for these two families are embedded in the laminar–turbulent
separatrix (Park & Graham 2015). The P3 lower-branch solution is indeed an edge
state as it has only one unstable eigenvalue in the symmetric subspace, while the
P4 lower-branch solution has two unstable eigenvalues in its symmetric subspace.
The edge state is particularly important because as defined, it has only one negative
eigenvalue, or only one unstable direction, which implies somehow the weakest most
marginal structure of the basin boundary. In addition, these two solutions were chosen
due to their distinct flow structures – the P3 and P4 families are denoted as core
and critical-layer modes, respectively. This implies that the flow structures for these
solutions propagate in either the core, or bulk, of the flow or centred about the
critical layer. As aforementioned, to our best knowledge, the exact coherent solutions
that have been found thus far have exhibited flow structures that belong to either
the core or critical mode. These modes are also analogous to the modal/non-modal
perturbations that have been examined in the classical transition scenarios (Wu
& Moin 2009; Picella et al. 2019). Recently, the P4 solution is found to display
hairpin-like vortex structures (Shekar & Graham 2018). Additionally, a recent study
by Picella et al. (2019) found that by using linear stability analysis, slip surfaces have
distinct effects on different transition scenarios defined by the initial perturbations
applied to the base flow, namely, modal, near-wall perturbations and non-modal,
free-stream perturbations. Thus, it is anticipated that the effect of slip surfaces on
these solution families exhibit distinct transition dynamics.

Here, we ran simulations using the P3 and P4 lower-branch solutions as initial
conditions to investigate the effects of slip surfaces on the separatrix and to elucidate
the transition dynamics. Using an exact coherent solution (i.e. a travelling-wave
solution), a more deterministic approach can be taken in analysing the effects of slip
surfaces. The P3 and P4 lower-branch solutions used are Rec = 1760 (Reτ = 62.52)
and Rec= 1800 (Reτ = 71.72), respectively. These Reynolds numbers were chosen, in
particular, because it is close to their bifurcation Reynolds numbers but far enough
to ensure that they are embedded within the laminar–turbulent boundary.

3.3.1. Skin-friction evolution
Figure 4 illustrates the temporal behaviours of the skin-friction coefficient

Cf = τ̄w/(1/2ρU2
c ) normalized by initial values of each case using various Ls values.

Despite their distinct characteristics, the early-time behaviour of the skin friction of
the P3 and P4 solutions is similar: (i) an initial stable period, (ii) a sharp increase,
or a strong turbulent burst, following the stable period and (iii) transition to a
fully turbulent flow (for P4, a flow is relaminarized beyond Ls > 0.0105). This
temporal behaviour indeed resembles a typical scenario observed in transition to
turbulence (Schmid & Henningson 2012). The strong turbulent burst, as it shall be
called presently (Park et al. 2018), is the process of escape out of the exact coherent
solution along its most unstable manifold, comprising of the so-called linearly unstable
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FIGURE 4. Early-time skin-friction coefficient profiles when using the (a) P3 and (b) P4
lower-branch travelling-wave solutions as initial conditions. Profiles are normalized by the
initial skin-friction coefficient value for each case. The P3 and P4 lower-branch solutions
are on the laminar–turbulent separatrix.

stage followed by the nonlinear evolution stage (Itano & Toh 2001). The end of this
strong turbulent burst is then defined as the time when the skin friction reaches its
maximum. It is evident that distinct transition scenarios are observed between the P3
and P4 solutions by the evolution of the skin friction due to inclusion of the slip
surfaces.

Notably, as shown in figure 4, the duration of the initial stable period decreases
with slip length for the P3 solution, while the duration of this period increases with
slip length for the P4 solution. It suggests that the P3 and P4 solutions experience
early transition and delayed transition due to slip surfaces, respectively. For the
P3 solution, the slip length appears to have a negligible effect on the reduction in
maximum skin friction during the strong turbulent burst as the slip length is further
increased. However, the behaviour of the strong turbulent burst for the P4 solution is
quite different. The maximum skin friction reached during the strong turbulent burst
following the initial stable period decreases with increasing slip length. This trend
continues until a critical slip length (Ls = 0.0105) after which there is no turbulent
burst and the flow starts to laminarize after an initial stable period. If slip length is
further increased, the initial stable period starts to reduce in duration and eventually
the flow immediately laminarizes with negligible initial stable period for very large
slip lengths. These observations for the P4 solution suggest that a slip surface appears
to stabilize a flow and promote a return to the stable laminar state beyond the critical
value (Ls = 0.0105). Thus, it is evident that the slip surfaces provide distinct effects
on the laminar–turbulent separatrix of the P3 and P4 solutions.

To further characterize the temporal dynamics observed in the behaviours of the skin
friction, figure 5(a,b) shows the maximum skin friction achieved during the turbulent
bursting period and the duration of the initial stable period, respectively. Here, we
define the bursting skin-friction coefficient as Cf ,b = Cf ,max − Cf ,0, where Cf ,max is the
maximum skin friction at the end of the bursting period and Cf ,0 is skin friction
at the initial time. The stable period, T , is defined as the duration for which skin
friction continues to stay between ±10 % of the initial skin-friction value depending
on the direction of the trajectories: 10 % for bursting direction and −10 % for
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FIGURE 5. (a) Maximum skin-friction coefficient Cf in turbulent burst and (b) duration
of initial stable period. The duration of stable period is defined by the time for which Cf
is between ±10 % of Cf ,0 and normalized by the duration of the initial stable period for
the no-slip case. Lower and upper error bars correspond to values when using ±5 % and
±15 % of Cf ,0, respectively.

laminarization direction. Both quantities are normalized by the associated values of
the no-slip case. For the P3 solution, the magnitude of the turbulent burst remains
relatively constant with slip length – the slip surface has a negligible effect on
skin-friction reduction during the strong burst phase of the transition. The stable
period slightly decreases with slip length and for a very substantial slip length of
Ls = 0.02, the stable period is reduced by approximately 10 % of the no-slip case.
This observation indicates that slip surfaces cause the turbulent burst to occur sooner
with almost same magnitude, promoting an early transition to turbulence. For the P4
solution, on the other hand, the magnitude of the turbulent burst decreases almost
asymptotically with slip length up to a critical value of Ls= 0.0105. After the critical
slip length, there are no turbulent burst events because the flow becomes laminarized.
Interestingly, the stable period of the P4 solution shows a non-trivial behaviour. It
increases until reaching a critical value at Ls = 0.0105 and starts to decrease because
laminarization occurs sooner with slip length. Before the critical slip length, the slip
length appears to play a role in delaying the transition to turbulence, as opposed
to the P3 solution. It is worth noting that the dependence of the Reynolds number
was tested by using different values of the Reynolds number in the transitional
regime, where almost identical trends were produced for the P3 and P4 solutions
(not shown).

3.3.2. Linear growth rate in transition
We estimate the growth rate of the linearly stable stage along the turbulent burst

trajectories for the P3 and P4 solutions by introducing a time-dependent variable s(t)=
‖u(t)‖ − ‖u(t0)‖, where ‖u(t)‖ and ‖u(t0)‖ are the L2-norm of the velocity field at
time t and initial time t0, respectively. Given the definition of the turbulent burst as an
escape from the exact coherent solutions consisting of linearly unstable and nonlinear
unstable stages, the linear growth rate can be estimated by fitting the linear portion
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FIGURE 6. Growth rates for the P3 (a,b) and P4 (c,d) solutions for various slip lengths.
The growth rate can be approximated for short time during which the system behaves like
exp(σ t), where σ is the linear growth rate.

of a bursting trajectory observed in s(t) to an exponential function Aeσ t, where A is a
constant related to the magnitude of the unstable eigenvector and σ is the associated
growth rate (Gibson, Halcrow & Cvitanović 2008).

Figure 6 shows the evolution of s(t) and the growth rate of the P3 and P4 solutions
for various slip lengths. The growth rate for the P3 solution tends to increase linearly
with slip length, which is not all surprising given the trend seen in the skin friction
in figure 4(a). Conversely, the growth rate for the P4 solution decreases almost
asymptotically with slip length. This same trend was observed in the turbulent burst
value in figure 5(a). Again, the escape from the P3 solution occurs earlier with
increasing slip length, while the escape is delayed for the P4 solution. It should
also be noted that the values of the growth rate for the P3 solution are lower than
those for the P4 solution as the P3 is believed to be closer to laminar state (Park &
Graham 2015). In addition, since the escape process from an exact coherent solution
follows closely its unstable manifold associated with the most unstable eigenvalue,
those growth rate values are comparable to the most unstable eigenvalues of these
solutions (Park & Graham 2015; Park et al. 2018).
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FIGURE 7. The phase-space projection of turbulent trajectories onto the energy input rate
(I) and energy dissipation rate (D) for various Ls at (a) Rec = 1760 and (b) Rec = 1800.
The black dashed line shows an equilibrium line (D = I). P3 lower (6) and upper (f)
and P4 lower (B) and upper (r) solutions are also shown (Park & Graham 2015). The
contour shows the probability density function (PDF) of the I − D state for the no-slip
case at (a) Rec = 1760 and (b) Rec = 1800. Inset: the mean states of long-time flows at
each respective Rec for Ls = 0.00 (@), Ls = 0.01 (A) and Ls = 0.02 (E) overlaid on the
no-slip PDF.

3.3.3. Phase-space dynamics with slip surfaces
Here, we investigate the phase-space dynamics for the P3 and P4 solutions over slip

surfaces by projecting the dynamics onto the I–D space, where I and D are the energy
input rate and energy dissipation rate, respectively. For the current study (Poiseuille
flow), the energy input rate is given as

I =
1

2Lz

∫ Lz

0

∫ 1

−1
(pu|x=0 − pu|x=Lx) dy dz, (3.2)

and the energy dissipation rate is given as

D=
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0
(|∇u|2 + |∇v|2 + |∇w|2) dx dy dz. (3.3)

The total energy of the flow is defined by

E=
1

2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0
(u2
+ v2
+w2) dx dy dz (3.4)

and, thus, the rate of change in energy for the flow is equal to dE/dt = I − D. For
exact coherent solutions, D= I.

Figure 7(a,b) shows the I–D phase diagrams of transition and turbulent trajectories
starting from P3 and P4 lower-branch solutions, respectively, along with their
corresponding upper-branch solutions. A joint probability density function (PDF)
of turbulent trajectories for no-slip case is also plotted. In figure 7(a), all trajectories
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894 A16-14 E. A. Davis and J. S. Park

from the P3 lower-branch solution with different slip lengths exhibit a qualitatively
similar trend. Starting from the lower-branch solution, they approach the upper-branch
solution, make a turn around the equilibrium line (D = I), and move toward a core
region of PDF. However, as slip length is increased, the trajectory tends to approach
the equilibrium line earlier and then move toward the core region. Therefore, larger
slip lengths allow a flow to approach a turbulent state faster, promoting an earlier
transition to turbulence, as seen in figure 4(a). Figure 7(b) shows the trajectories
starting from the P4 lower-branch solution, exhibiting similar trends to those seen
in the P3 solution up to the critical slip length Ls = 0.0105 – the trajectory gets
closer to the equilibrium line as slip length is increased. Around the critical slip
length, however, trajectories are altered drastically, bypassing the P4 upper-branch
solution and approaching the P3 upper-branch solution before laminarizing. Beyond
Ls = 0.0105, the trajectories immediately approach the laminar state with no bursting
trajectories, as seen in figure 4(b).

It is evident that slip surfaces lead to modifications of the turbulent trajectories in
the I–D phase space. The core region of the turbulent trajectories with slip surfaces
deviates from that of the no-slip case – it gets closer to the lower-branch solutions.
These observations suggest that the distance between the turbulent state and the
laminar–turbulent separatrix is reduced with the inclusion of slip surfaces. This is
illustrated by the insets in figure 7(a,b) showing the mean state of the system for
Ls = 0.00, 0.01 and 0.02. As slip length is increased, the mean state of the system
shifts closer to the lower-branch solutions. This reduced distance indicates a greater
likelihood for the flow to approach the separatrix and, thus, a greater likelihood
that the flow will laminarize. Similar behaviour has also been observed by applying
opposition control schemes to wall-bounded turbulent flows (Ibrahim et al. 2018).

3.3.4. Flow structures
We investigate the effects of slip surfaces on flow structures for which the swirling

strength λci, the imaginary part of the complex conjugate eigenvalues of the velocity
gradient tensor (Zhou et al. 1999), are calculated. Figures 8 and 9 show contours of
the swirling strength for the lower half of the channel for the P3 and P4 solutions,
respectively, at the end of the turbulent bursting trajectory. The contours represent
isosurfaces of 50 % of the maximum swirling strength for each solution, which is also
given in the figure. The wall-normal velocity is represented by the colour contours
flooding the isosurfaces. These colour contours provide insights into the effect of slip
surface on the vertical motion of these vortical structures.

As seen in Park & Graham (2015), the P3 lower-branch solution displays large
vortex cores near the channel centre – this solution is called the core mode. As the
bursting process proceeds, the large vortices appear to be broken into smaller ones,
move toward the wall and spread across the span of the domain. Eventually, there is
a large population of small vortex cores across the channel, as shown in figure 8. It
appears that the general shape and position of the structures is mostly unchanged for
all slip lengths studied, while the maximum swirling strength is slightly reduced with
slip length. The majority of the wall-normal velocities associated with these vortex
structures are close to zero at this instant, while a very strong negative wall-normal
velocity is located around vortex structures during bursting trajectories.

In figure 9, the vortical structures of the P4 solution are presented. As shown by
Park & Graham (2015), the P4 lower-branch solution displays vortices of Λ-like
structures without a head connecting the legs. The vortex cores are located near the
critical layer where the local streamwise velocity matches the wave speed – this
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FIGURE 8. Vortical structures of the P3 lower-branch solution at Rec = 1760 for slip
lengths (a) Ls = 0.00, (b) Ls = 0.008, (c) Ls = 0.01 and (d) Ls = 0.02. The maximum
swirling strength for each case is presented in parentheses. The multicoloured tubes are
isosurfaces of 1/2 of maximum swirling strength. The contours flooding the isosurfaces
represent the wall-normal velocity. Minimum and maximum values of wall-normal velocity
represented by the contours correspond to −0.1 (blue) and 0.1 (red), respectively. The
grey isosurface represents the critical layer, where local streamwise velocity is equal to
the wave speed of the travelling-wave solution.

solution is called critical-layer mode. Recently, this solution family was continued at
higher Reynolds numbers, showing hairpin-like vortex structures (Shekar & Graham
2018). With slip surfaces, there still appear to be leg structures with slightly upward
side branches, which is also observed in a trajectory along the most unstable manifold
of the P4 lower-branch solution (Park et al. 2018). Its structures are significantly
longer than ones of the P3 solution and are accompanied by a small number of
smaller vortex cores around these long vortex structures. Vortex cores of the P4
solution seem to not extend into the channel centre but remain mostly streamwise
oriented. As slip length is increased, the maximum swirling strength is drastically
reduced (i.e. 50 % at Ls = 0.0105). In particular, from the colour contours of the
wall-normal velocity associated with long vortex structures, the vortex structures are
shifted upward from the wall as slip length is increased, leaving a quiescent region
near the wall.

To quantitatively investigate the effect of the slip surfaces on the vertical shifting
of vortical structures, the wall-normal location for the maximum value of the
area-averaged swirling strength is plotted in figures 10(a) and 10(c) for P3 and
P4 solutions, respectively. Bulk swirling strength is also shown for the P3 and P4
solutions in figures 10(b) and 10(d), respectively. The wall-normal location of the
maximum of the average swirling strength for the P3 solution is almost constant
for all slip lengths studied, as shown in figure 10(a). Figure 10(b) also shows that
the effect of slip length on the bulk swirling strength is minimal, suggesting the slip
surfaces have a minimal effect on the vortex structures associated with the P3 solution.
However, the vortex structure dynamics for the P4 solution is quite different than that
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FIGURE 9. Vortical structures of the P4 lower-branch solution at Rec = 1800 for slip
lengths (a) Ls = 0.00, (b) Ls = 0.004, (c) Ls = 0.008 and (d) Ls = 0.0105. The maximum
swirling strength for each case is presented in parentheses. The multicoloured tubes are
isosurfaces of 1/2 of maximum swirling strength. The contours flooding the isosurfaces
represent the wall-normal velocity. Minimum and maximum values of wall-normal velocity
represented by the contours correspond to −0.1 and 0.1, respectively. The grey isosurface
represents the critical layer, where local streamwise velocity is equal to the wave speed
of the travelling-wave solution.

of the P3 solution. There are much larger deviations in height of maximum swirling
strength as slip length is increased. Beyond Ls = 0.004, the vortex structures are
significantly shifted upward away from the wall, moving toward the channel centre.
The bulk swirling strength is also significantly decreased as slip length increases
as seen in figure 10(d). The trend appears to be asymptotic with slip length. Slip
surfaces seem to have a profound weakening effect on the P4 vortex structures. These
observations for the P4 solution are in good agreement with the experimental study
(Zhang et al. 2015), where the mechanisms for drag reduction over superhydrophobic
surfaces were investigated for a turbulent boundary layer flow. They performed
experiments to show that the drag reduction is caused by a combination of slip at
the surface and modifications to the turbulent structures – vortices are weakened and
lifted away from the surfaces. The combination of these modifications to the vortical
structures (i.e. weakened and shifted vortices) of the P4 solution help to explain why,
beyond the critical slip length, there is no turbulent burst and flow laminarizes. It
appears that slip surfaces modify the turbulent structures such that the self-sustaining
cycle of near-wall turbulence is disrupted and turbulence can no longer be sustained.

3.3.5. Spatio-temporal dynamics
We now attempt to illuminate the mechanisms behind early or delayed transition to

turbulence observed in the P3 and P4 solutions. It has been shown that at the onset
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FIGURE 10. (a,c) The wall-normal location corresponding to the maximum of the
area-averaged swirling strength for the P3 and P4 solutions, respectively. The dashed line
corresponds to the channel centre for the P3 and P4 solutions. (b,d) The bulk swirling
strength as a function of slip length for the P3 and P4 solutions, respectively. All values
are calculated at the time at which the maximum L2-norm of velocity is reached.

of turbulence, the spatio-temporal dynamics provides a coherent mechanistic basis for
the dynamics of transition to turbulence (Avila et al. 2011; Barkley et al. 2015; Shih
et al. 2016) – puffs and slugs or directed percolation have been explored in this regard.
Similarly, the spatio-temporal dynamics of the exact coherent solutions also appears
to provide a coherent mechanistic basis for effects of slip surfaces on the transition
observed in the P3 and P4 solutions.

For spatio-temporal dynamics, we incorporate a Fourier decomposition of the
velocity field. Similar to Wang et al. (2007), the velocity field of the travelling-wave
solutions can be Fourier decomposed in the x direction as

u(x, y, z, t)= u0(y, z, t)+
∞∑

n=1

(einθun(y, z)+ c.c.), (3.5)

where α is the fundamental wavenumber in the streamwise direction, θ = α(x − ct),
c is the constant wave speed and c.c. denotes complex conjugates. For this study,
we define the 0-mode as u0(y, z, t) = (u0, v0, w0). The streamwise fluctuation u′ can

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

28
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f N

eb
ra

sk
a 

Li
nc

ol
n,

 o
n 

04
 M

ay
 2

02
0 

at
 1

4:
45

:3
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.282
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


894 A16-18 E. A. Davis and J. S. Park

0 100 200 300
t

y+

y+

y+

(a)

(b)

(c)

(d)

(e)

(f)

t
400 500

0 100 200 300 400 500

0 0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

20

40

60

20

40

60

20

40

60

20
40
60

20
40
60

0

20
40
60

-0.10 -0.05 0
u� u�

0.05 0.10 -0.10 -0.05 0 0.05 0.10

P3-core mode

Ls = 0

Ls = 0.01 Ls = 0.01

Ls = 0.02 Ls = 0.0105

Ls = 0

P4-critical layer mode

100 200 300 400 500

FIGURE 11. The streamwise-averaged streamwise velocity fluctuations u′ at z+ = L+z /4
as a function of wall-normal distance for the P3 solution (a–c) and the P4 solution
(d–f ) for various slip lengths. The dashed white line corresponds to time of transition
(Cf = 1.1Cf ,0). The symbols E and @ are indicated for the minimum and maximum u′
at their wall-normal locations, respectively. For the P3 solution, (u′min, u′max) = (−0.0981,
0.0461) for (a), (−0.1110, 0.0569) for (b), (−0.1223, 0.0643) for (c). For the P4 solution,
(u′min, u′max) = (−0.0665, 0.1259) for (d), (−0.0248, 0.0917) for (e), (−0.0262, 0.1008)
for ( f ). Note that these values remain almost constant before the time of transition.

then be calculated by u0(y, z, t) − u(y), where u(y) is the time- and area-averaged
mean velocity. Note that the wall-normal velocity fluctuation v′(y, z, t) = v0(y, z, t)
because v(y) = 0. These 0-mode velocity fluctuations u′ and v′ provide information
about streaky flow and rolls, respectively (Wang et al. 2007). Although u′ and v′

represent streamwise-averaged fluctuations, these quantities still enable identifying the
sweep and ejection events based on the quadrant analysis (Picella et al. 2019).

Figures 11 and 12 show the spatio-temporal dynamics of streamwise and
wall-normal velocity fluctuations at a spanwise location (z+ = L+z /4) for different slip
lengths, respectively, along with the dashed line corresponding to time of transition.
This spanwise location is chosen because it is the location where the core of vortex
structures is located – the other location (z+ = 3L+z /4) where the core of vortex
structures is also located was studied, giving essentially identical results.

Both solutions exhibit similar behaviours on the streamwise fluctuations. For the
P3 solution, as shown in figure 11(a–c), the near-wall low-speed streak (negative
u′) appears to be enhanced as slip length is increased (u′min decreases from −0.0981
to −0.1223), while for the P4 solutions, the near-wall low-speed streak is slightly
extended upward but remains relatively quiescent (u′min ≈ −0.025 with slip surfaces)
compared to the P3, as seen in figure 11(d–f ). Near the channel centre, there are
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FIGURE 12. The streamwise-averaged wall-normal velocity fluctuations v′ at z+ = L+z /4
as a function of wall-normal distance for the P3 solution (a–c) and the P4 solution (d–f )
for various slip lengths. The dashed white line corresponds to time of transition (Cf =

1.1Cf ,0). The symbolsE and@ are indicated for the minimum and maximum v′ at their
wall-normal locations, respectively. For the P3 solution, (a) v′min = −0.0107, (b) v′min =

−0.0139, (c) v′min = −0.0158. For the P4 solution, (d) v′max = 0.0181, (e) v′max = 0.0131,
( f ) v′max = 0.0147. Note that these values remain almost constant before the time of
transition.

positive streamwise fluctuations for both solutions. In particular, a height of peak
streamwise fluctuations for the P3 solution corresponds to the region where the core
of the vortex structures is localized.

Most interestingly, the wall-normal fluctuations show the opposite behaviours. In
figure 12(a–c), the wall-normal fluctuations of the P3 solution are all negative across
the channel height and become more negative in the buffer layer with increasing
slip length (v′min decreases from −0.0107 to −0.0158). The combination of increased
streamwise velocity near the channel centre and strong negative wall-normal velocity
in the buffer layer seems to promote an instability to the vortex structures at the
channel centre. Specifically, this instability causes the large vortex structures to
propagate toward the wall much sooner where they break up as the slip length is
increased. These effects seem to lead to an early transition for the P3 solution. On
the other hand, for the P4 solution, figure 12(d–f ) show all positive wall-normal
fluctuations across the channel height and peak values are located around y+= 20–40,
where the core of the vortex structures is localized. As slip length increases, the peak
value decreases as opposed to the P3 solution (from v′max = 0.0181 to 0.0147). The
combination of the very quiescent flow and positive wall-normal velocity around the
vortex structures appears to allow the the vortex structures to be more stable and
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persist for a longer time before transition to turbulence occurs. Those effects appear
to delay the transition. It is interesting to note that based on the quadrant analysis,
slip surfaces are likely to promote stronger wall-toward motions (Q4-like) at the
channel centre and inward interactions (Q3) in the buffer layer for the P3 solution,
while for the P4 solution, the surfaces tend to promote longer ejection events (Q2)
near the critical layer and wall-away motion (Q1-like) at the channel centre. This
quadrant analysis may help to elucidate distinct transition dynamics for the P3 and
P4 solutions – the combination of the core mode and strong sweep events seems
to promote early transition, while the combination of the critical-layer mode and
extended ejection events seems to delay the transition.

Finally, we can make the link between transition dynamics and flow structures,
as the latter can be thought of as different disturbances in a receptivity process
of transition (Kachanov 1994). Flow structures associated with the core mode
(P3 solution) seem to resemble those found in free-stream turbulence (i.e. more
densely located at the centre of the channel or the edge of the boundary layer)
as seen in figure 8 – they can be considered external perturbations. On the other
hand, the P4 solution (critical-layer mode) exhibits Λ-shaped vortical structures,
confined near the wall, resembling three-dimensional flow structures developed
from Tollmien–Schlichting waves – they can be considered internal perturbations.
Depending on different disturbances, transition scenarios appear to be very different.
Sayadi, Hamman & Moin (2013) compared the dynamics of different transition
scenarios, namely, H-type, K-type and bypass transition. In the H- and K-type
transitions, characterized by Λ-shaped vortical structures, a large overshoot in the
skin-friction coefficient was observed when transition starts to occur. However, for the
bypass transition, this overshoot was absent, giving a smooth transition to turbulence.
This distinct overshoot is present in the skin-friction coefficient profile for the P4
solution and absent in that for the P3 solution as shown in figure 4. It is worth noting
that, similar to the P3 solution, Wu & Moin (2009) introduced free-stream turbulence
to a boundary layer and showed that the bypass transition was triggered. They
showed that the typical near-wall Tollmien–Schlichting waves were not the initiating
mechanism for transition and in this case was attributed to a bypass route triggered
from the free stream. The evolution of the P3 solution is similar in that the structures
originate in the centre of the channel (i.e. free stream) and propagate downward
toward the near-wall region before breaking down, subsequently triggering transition.
In addition, the shape of the vortical structures for the P4 solution are similar to
those found in H- and K-type transitions. A similar observation for the effects of slip
surfaces on the H- and K-type transitions was also made by Picella et al. (2019),
where the overshoot in skin friction was present and transition was delayed by the slip
surface with the modal perturbation. However, they also showed that the non-modal
perturbation, similar to those perturbations that cause bypass transition, was unaffected
by the slip surfaces, contrary to the early transition behaviour observed in the P3
solution of the current study. Differences in the transition behaviour of the non-modal
perturbation of Picella et al. (2019) and the P3 solution of the current study could
stem from assumptions made in the linearization of the Navier–Stokes equations or,
possibly, differences between the non-modal perturbation and the P3 solution. The
differences in the skin-friction coefficient and vortical structures between the P3
and P4 solutions may provide clear and plausible mechanisms responsible for early
transition for P3 and delayed transition for P4 due to slip surfaces, for which further
investigation is yet needed.
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4. Conclusion
Direct numerical simulations were performed to investigate the effect of slip

surfaces on transition in plane Poiseuille (channel) geometry. For the purpose
of validations, laminar drag reduction values were calculated and compared to
the previous studies. Levels of over 10 % drag reduction were observed and
in good agreement with previous numerical and experimental studies. The drag
reduction percentage remains almost constant regardless of the Reynolds number. In
particular, our results are in great agreement with the theory for drag reduction of
superhydrophobic surfaces on both walls in a laminar channel flow.

Turbulence lifetime analysis (i.e. the probability that turbulence will persist) was
investigated for transitional flows at Rec = 1600, 1800 and 2000 (Reτ = 77, 85 and
93). Flows with slip surfaces were significantly less likely to maintain turbulence
compared to the no-slip case. Additionally, the slip flows were more likely to
laminarize at earlier times as slip length is further increased. As Reynolds number
is increased, this trend still holds, while a larger slip length is needed to obtain the
same likelihood of laminarization found at lower Reynolds numbers. Phase-space
projection of transitional trajectories on the energy input and dissipation rates showed
a reduced distance between the laminar and turbulent states, which helps explain the
increased likelihood of laminarization due to slip surfaces.

Exact coherent solutions, specifically nonlinear travelling-wave solutions, to the
Navier–Stokes equations were used to investigate the effects of slip surfaces on the
laminar–turbulent separatrix. The P3 and P4 solution families were chosen as their
lower-branch solutions are shown to lie on the basin boundary between laminar and
turbulent flow (Park & Graham 2015). The skin-friction evolution and linear growth
rate from the lower-branch solutions were calculated. For slip flows, the strong
turbulent burst associated with the P3 lower-branch solution was induced at earlier
times while the bursting magnitude and growth rate were mostly unaffected. For
the P4 solution, however, the strong turbulent burst was delayed with the reduced
magnitude and growth rate for slip flows. Beyond a critical slip value, the turbulent
burst was completely eliminated as a flow is immediately laminarized after a short
stable period. Effects of slip surfaces on vortex structures of the P3 and P4 solutions
were examined to elucidate mechanisms responsible for the difference in transition
behaviours between the solutions. It appears that structures associated with the
P3 solution were largely unaffected by the slip surfaces. Overall structure and
strength remained relatively constant. However, the strength of P4 vortex structures
was weakened by ∼50 %, and they were shifted away from the wall. Based on
the quadrant analysis and the spatio-temporal dynamics, it was suggested that slip
surfaces promote the prevalence of strong wall-toward motions (Q4-like events) in
the area of the P3 vortex cores close to the channel centre. This results in instability,
which promotes the propagation of the vortex structures down into the wall where
they break up and induce transition, similar to the bypass transition (Saric, Reed
& Kerschen 2002). However, sustained ejection events (Q2) were present in the
region of the P4 vortex cores (which resemble the Λ-shaped structures in H- and
K-type transitions) resulting in a shift of the vortex structures away from the wall
allowing them to remain intact and propagate downstream for a longer time. It can
be suggested that the slip surfaces tend to affect core-mode structures (P3 solution) or
non-modal perturbations via inward interactions (Q3) near the wall and wall-toward
motions (Q4-like events) near the channel centre, subsequently leading to bypass-type
early transition. On the other hand, the slip surfaces tend to affect critical-layer
structures (P4 solution) or modal perturbations via ejection events (Q2) near the wall
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and wall-away motions (Q1-like events) near the channel centre, subsequently leading
to H- and K-type delayed transitions. These distinct transition dynamics of the P3 and
P4 solutions due to slip surfaces could suggest that different flow control techniques
could be used to delay or promote a transition to turbulence, which will be a subject
of interesting future work.
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