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ABSTRACT

Using wireless communication infrastructure
to recognize human behaviors has achieved great
success over the last decade. This article presents
the opportunities and challenges posed by a novel
class of antennas referred to as DMA for wireless
sensing. In contrast to conventional solutions that
rely on either frequency diversity or spatial diver-
sity for sensing, the proposed system exploits the
antenna pattern diversity and software program-
mability of the DMA to achieve high-performance
wireless sensing. We present a general framework
for DMA-based wireless sensing, and demonstrate
the feasibility and benefits of the DMA in sens-
ing using custom hardware. We identify several
research challenges and future directions to fully
realize this new concept.

INTRODUCTION

In the Internet of Things (loT) era, the pervasive-
ness of mobile devices has facilitated the use
of wireless communication signals (RF signals)
to sense dynamics in the environment [1]. For
example, in the smart home scenario, RF-sens-
ing applications have been designed to discern
coarse-grained daily human activity [2, 3], as
well as fine-grained vital sign monitoring [4] and
elderly fall detection [5]. To achieve high sens-
ing accuracy, the fundamental issue is to obtain
a high-dimensional measurement of the wireless
channel that captures sufficient details of the
sensing subject. In existing solutions, such high-di-
mensional measurements are obtained by having
enough spatial or frequency diversity (e.g., lever-
aging multiple loT devices or using a wide sensing
signal band).

For instance, in WiFi-based human activity
sensing and elderly fall detection systems, mul-
tiple WiFi-enabled loT devices are leveraged to
capture human motion [2, 4, 6]. The devices are
placed at independent locations, where the local
wireless channels are affected by the same human
movement differently. Thus, one can aggregate
the channel measurements provided by different
loT devices to obtain a high-dimensional sensing
signal. Moreover, 802.11n/ac WiFi radios lever-
age orthogonal frequency-division multiplexing
(OFDM) for data transmission. On a 20 MHz fre-
quency band, the channel consists of 64 subcarri-
ers. Thus, with a pair of WiFi-enabled loT devices,
a WiFi-based sensing system can obtain 64-dimen-

sional input for recognition [4]. Each signal dimen-
sion corresponds to the channel state information
of a specific subcarrier.

An alternative to WiFi-based solutions is the
radar-based system. Earlier works have demon-
strated the use of micro-Doppler signatures for
elderly fall detection [7] in the smart home. More
recently, frequency modulated carrier wave
(FMCW) radar is used for the same purpose [3,
5]. Similar to their WiFi-based peers, radar-based
methods rely on spatial diversity (a total band-
width of 1.69 GHz [3, 5]) to minimize the multi-
path effect and exploit the frequency diversity to
achieve good sensing resolution. We encourage
the reader to refer to a detailed survey [1] for a
comprehensive review of the state of the art.

In practice, however, reliance on either fre-
quency diversity or spatial diversity can be difficult
and costly. For radar-based systems, their wide fre-
quency band requirement makes radio frequency
components (e.g., amplifiers and oscillators) more
complex and expensive than those of a narrow-
band device. Moreover, increasing the number
of antennas not only makes the system cumber-
some, but also increases the complexity in digital
processing. In contrast, WiFi-based solutions are
more pervasive and widely deployed. However,
they are known to degrade in performance due
to the multi-path issues at the 2.4 GHz and 5 GHz
bands [2, 4].

In contrast to existing efforts, we ask the ques-
tion: how can fine-grained wireless sensing with a
single antenna pair that works at a single carrier
be achieved? Our solution is a radically different
approach that exploits antenna pattern diversi-
ty to ensure high sensing performance. The key
enabler is the dynamic metasurface antenna
(DMA), a novel class of antennas that can effec-
tively and rapidly change their radiation pattern
in a software-programmable manner [8, 9]. By
fusing the channel profiles measured from various
radiation patterns, we can still obtain a high-di-
mensional channel measurement for sensing
without the need for a wide frequency band or
multiple sensing devices. In this article, we pres-
ent the opportunities and challenges posed by
DMA-based wireless sensing. In the following
section we introduce the basic concepts of the
DMA, followed by our design and implementa-
tion of a two-dimensional custom DMA. Then we
present a general framework for a DMA-based
wireless sensing system. Specifically, we introduce

Guohao Lan, Mohammadreza F. Imani, David R. Smith, and Maria Gorlatova are with Duke University;
Philipp del Hougne is with the Université Cdte d’Azur; Wenjun Hu is with Yale University.

0163-6804/20/$25.00 © 2020 IEEE

IEEE Communications Magazine ® June 2020



the learning-assisted transmitter and the end-to-
end sensing pipeline that take advantage of the
unique features of the DMA, such as antenna
pattern diversity and programmability, to achieve
high sensing accuracy. Following that, we demon-
strate the benefits of the DMA in a non-line-of-
sight fine-grained sensing task using our custom
hardware. We then discuss challenges and future
directions, and conclude in the final section.

DYNAMIC METASURFACE ANTENNA

BACKGROUND OF THE DMA

The DMA is a novel class of antennas that offers
controllable radiation pattern diversity from a sim-
plified hardware platform [9]. The key enablers
are the metamaterial elements. Metamaterials
were initially proposed as artificial media that
were engineered to allow the manipulation of
electromagnetic waves in a deliberate and con-
trolled manner [10]. This notion was later adapted
to planar counterparts, metasurfaces. In brief, a
DMA is an antenna with a single-port waveguide
exciting a set of sub-wavelength-sized metama-
terial elements integrated into its top layer. Each
of the embedded metamaterial elements radiates
a portion of the energy from the waveguide into
free space, and therefore, the overall radiation
pattern of the DMA is the superposition of the
radiations from all the excited elements. The elec-
tromagnetic response of each metamaterial ele-
ment can be altered to control the amplitude and
the phase of the radiated signal. The operation
of each element is programmable using simple
external electronic controls. Thus, by varying the
electromagnetic features of the metamaterial ele-
ments and switching different sets of elements
to radiate, the DMA provides dynamic radiation
pattern diversity in a software-programmable way.
In recent years, DMAs have been proposed as an
attractive tool for computational microwave imag-
ing systems [8, 91, as they considerably simplify
the hardware complexity of conventional systems.
In wireless communication, the DMA has been
used to provide software control of the wireless
environment [11].

DMA DESIGN AND IMPLEMENTATION

The hardware design and implementation of our
DMA prototype are given in Fig. 1. The device
has a form-factor of 11 x 11 x 5.5cm3. As shown
in Fig. 1a, the front-end of the device is embed-
ded with 150 randomly placed irises (slots) to
radiate the waves. The back-end is incorporated
with a tunable-impedance plate (i.e., the dynamic
metasurface highlighted in the dotted rectangle).
The plate is made from the 1.5-mm-thick Rogers
4003C substrate with a dimension of 8 x 8 cm?.
As shown in Fig. 1c, the dynamic metasurface is
a 4 x 4 matrix of binary tunable-impedance “pix-
els.” Each of the pixels is again a 4 x 4 metama-
terial elements array, which contains a varactor
diode to ensure continuous capacitive tuning.
Figure 1d shows the details for one of the pixels.
The metamaterial element is an octagon inscribed
in a 2-mm-diameter circle and has a via of 0.5
mm diameter connecting to the ground plane. As
shown in Fig. 1b, each of the 16 tunable pixels is
controlled externally by the DC voltage provided
by an Arduino micro-controller. The tuning states
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Figure 1. DMA design: a) front view: the front-end is separated from the

device; b) back view: the tunable-impedance “pixels” are controlled by an

Arduino; c) the 4 x 4 tunable-impedance pixels’ matrix; d) close-up of a

metamaterial elements array that corresponds to a tunable pixel.

of the pixels determine the impedance state of
the back-end metasurface. Thus, by binary tuning
the DC voltage (i.e.,, 0 V or 5 V) applied to the
pixels, the DMA allows 216 = 65,536 distinct sur-
face impedance states.

Overall, we can consider the DMA as an elec-
trically large disordered cavity with partially con-
trollable boundary conditions. The impedance
state of the back-end metasurface determines the
boundary conditions of the cavity and decides the
overall radiation pattern that will leak out from
the front-end. In other words, by simply tuning
the on/off states of the 16 tunable-impedance pix-
els, we can program the electromagnetic feature
of the back-end metasurface and create diverse
antenna patterns in a software-programmable
way. Moreover, as our device can change the tun-
ing state at megahertz rate, when different DMA
antenna patterns are used for sensing, the chang-
es in the monitoring motion are almost negligible
within the time duration of a few hundred pattern
switches.

DMA-BASED WIRELESS SENSING

In this section we present a general sensing
framework that takes advantage of the unique
features of the DMA to enable high-performance
wireless sensing in the smart home scenario. Fig-
ure 2 shows the general design of the end-to-end
system. The transmitter uses a DMA as the anten-
na, while the receiver is equipped with a simple
monopole antenna. Overall, the system can be
separated into two parts: the learning-assisted
transmitter where the DMA is programmed with
different antenna patterns to send the wireless
signal, and the sensing pipeline where variations in
the wireless signal are captured by the receiver to
sense the motion of interest (e.g., human activity
and elderly falling).

Learning-Assisted DMA: Extensive program-
mability is a unique advantage of the DMA, as
with the DMA we have access to a large number
of antenna patterns that we can select to sense
the context of interest. However, in the sensing
system, we need an intelligent mechanism to
decide the set of antenna patterns that is needed
for different tasks and configure the DMA accord-
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Figure 2. The end-to-end design of the DMA-based wireless sensing system.
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Figure 3. a) 2D layout of the experimental environment; b) illustration of the
two objects.

ingly to generate those patterns. One can imag-
ine, for example, having a simple setup process,
where, during the installation of the system, the
users are asked to perform activities in different
locations of the smart home, and different sets of
DMA patterns are then selected by the intelligent
controller to maximize the activity recognition
accuracy for different locations. Moreover, the
configuration can also be adapted at runtime: we
can activate different sets of DMA patterns for dif-
ferent sensing tasks (e.g., respiration monitoring,
gesture recognition, and elderly fall detection), or
activate additional patterns as needed to augment
the accuracy of a previously selected DMA con-
figuration. For instance, we may need fewer pat-
terns for binary fall detection, but we may require
additional patterns for a fine-grained respiration
monitoring task. The ability to select the right set
of patterns, and to do so adaptively at runtime,
makes the DMA more versatile than existing wire-
less sensing solutions.

We introduce a learning-assisted controller to
manage the DMA at runtime. As shown in Fig.
2, the learning-assisted controller includes a feed-
back learning unit and a software controller. The
feedback learning unit takes the information (i.e.,
the activity recognition results and the extracted
features) provided by the receiver as the input,
and outputs an optimized control policy. The con-
trol policy selects a subset of antenna patterns
from the 65,536 options. Based on the control
policy, the software controller configures the
tuning states of the 16 pixels to generate corre-
sponding antenna patterns. Finally, the generated
patterns are used to transmit the wireless signal.

Sensing Pipeline: As shown in Fig. 2, the pipe-
line includes several modules: data collection,

signal processing, feature extraction, and classi-
fication. The data collection module collects the
raw channel measurements from the receiving
antenna. The challenge is to align the measured
signal with the corresponding DMA pattern con-
figuration. In our current implementation, we
leverage a central controller to synchronize the
measurements with the transmissions of different
DMA patterns. After data collection, the signal
processing module is used to prepare the raw
wireless signal for feature extraction and classifi-
cation. Techniques such as the Butterworth filter
and the discrete wavelet transform (DWT) can be
applied to clean the raw signal. Then we segment
the signals into classification windows before feed-
ing to the feature extraction and the classification
models. One can use conventional machine learn-
ing, such as support vector machines (SVMs), or
more advanced deep learning techniques [6] for
recognition. Finally, both the sensing results and
the extracted features are sent back to the DMA
as the feedback to optimize its pattern configu-
ration.

CASE STUDY

EXPERIMENTAL SETUP

As shown in Fig. 3a, we consider the smart home
scenario and perform the experiment in a disor-
dered L-shaped environment. The DMA is used as
the transmitter, while a monopole antenna is used
as the receiver. The DMA is configured to oper-
ate at f = 19.4 GHz to ensure high sensitivity to
small motions. To mimic the reflectivity character-
istics of human body in the K-band, we deliberate-
ly work with two metallic objects. We place them
at the corner of the environment to generate
motions. The L shape of the environment ensures
that the moving objects are clearly out of the line
of sight of the probing antenna pair. Such settings
mimic the practical sensing scenario where the
DMA is used to detect an elderly person falling
or an intrusion event that happens in the corner
of the room. As shown in Fig. 3b, Object 1 is an
aluminium block (with a form-factor of 14 cm x
7 cm x 3 ¢cm) mounted on a rotating stage. It
rotates in a circle with a radius of 5 cm. Object
2 is an aluminium corner (with a form-factor of 5
cm x 5 cm x 5 cm) mounted to a rail. The dimen-
sions of both objects are only a few wavelengths
of the probing signal, and are small compared to
the size of the environment enclosure.

We control Object 1 to rotate at four differ-
ent angular speeds A8 to mimic different human
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motions. We deliberately introduce two types of
interference to the motion of Object 1. As shown
in Fig. 4, the first type of interference is intro-
duced by adding noise to AB4, such that Object
1 is not rotating at a constant speed. This simu-
lates the practical case where a subject performs
the same activity in similar but varying ways. The
second type of interference is created by moving
Object 2 randomly along its rail, while Object 1 is
rotating. This simulates the scenario in which an
adjacent subject’s motion causes interference on
the monitored subject. We configure the DMA
with 150 random patterns as the transmitter,
which is sufficient to achieve perfect classification
accuracy for our sensing task. We measure the
received signal at the monopole antenna, which
is a 150-dimensional complex-valued time-se-
ries, where each dimension corresponds to the
received signal of a particular DMA pattern.

SENSING PERFORMANCE

In the evaluation, we aim to recognize the exact
status of Object 1 from the four motion states
with different angular speeds, and from the
non-motion state. The metric accuracy is used
to measure the performance. We use a sliding
window to separate the 150-dimensional time
series into data segments, and label them with the
actual status of Object 1. For each segment, we
calculate the variances in both signal phase and
amplitude, and feed them as features to the SVM
for classification. The final classification results are
obtained using 10-fold cross-validation. We ran-
domly select an m-dimensional measurement (m
< 150) from the original 150-dimensional input to
study how the accuracy is affected by the num-
ber of DMA patterns being used. Moreover, we
also apply different sliding-window lengths (win)
during the segmentation to examine how the
accuracy trades off with the sensing latency.

The results are given in Fig. 5. We are interest-
ed in the classification accuracy one can achieve
with different levels of antenna pattern diversity.
First, limited diversity leads to poor accuracy. For
instance, in the amplitude only scenario, given a
window size of 3 s, with single- and three-anten-
na patterns, we achieve only 84 and 88 percent
accuracy, respectively. These settings are similar
to the cases where a single-antenna device and a
triple-antenna device are used for sensing. Indeed,
with both amplitude and phase information, a sin-
gle-antenna pattern can achieve over 94 percent
accuracy in recognizing four movement patterns
(i.e., an aluminum object rotates at four angular
speeds). However, in scenarios where the “activ-
ities of interest” are more complex, for example,
fine-grained and miniature human activity rec-
ognition, the pattern diversity of the DMA has a
unique advantage. As shown for all the scenarios,
the sensing accuracy increases with the number
of antenna patterns used. Second, the antenna
pattern diversity of DMA is helpful when both low
sensing latency (i.e., small win) and high recogni-
tion accuracy are required. As indicated in Fig.
5, with a minimum window length of 3, we can
achieve 100 percent accuracy by fusing the signal
from the 150 DMA patterns. This demonstrates
the advantage of the proposed DMA-based solu-
tion in practical application scenarios, for exam-
ple, elderly fall detection and intruder detection,
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Figure 4. Object 1 is controlled to rotate at four different angular speeds A8. In
some periods, interference is introduced by adding noise to A8 or by mov-

ing Object 2 along its rail.

(a) Amplitude
15 97.12 | 99.52 |100.00 |100.00 |100.00
10 96.55 | 98.91 |100.00 |100.00 |100.00
25 95.75 | 98.30 | 99.45 |100.00 |100.00
3 9480 | 98.10 | 99.25 | 99.80 |100.00
1 3 5 10 20 50 100 150
m
(b) Amplitude + Phase
15| 97.92 | 98.65 | 98.75 | 99.35 |100.00 |100.00 | 100.00 | 100.00
10| 96.45 | 96.65 | 98.22 | 98.72 | 99.92 |100.00 |100.00 |100.00
2 5|9481 | 9542 | 9795 | 9821 | 9945 | 99.95 |100.00 | 100.00
319415 | 9491 | 97.35 | 97.55 | 99.25 | 99.85 | 99.85 |100.00
1 3 5 10 20 50 100 150
m

Figure 5. Classification accuracy (%) given the different number of DMA pat-
terns m and different sliding-window lengths win. The accuracy increases

with m and win.

where a near-zero false positive rate and a short
response time are required.

CHALLENGES AND DIRECTIONS

CHALLENGES IN DMA DESIGN AND IMPLEMENTATION

A fundamental limitation of the DMA used in
this study is its form factor: it is 3D printed with
a printed circuit board (PCB) attached to it man-
ually. For a more practical implementation, one
could envision an entirely PCB-based device: a
planar 2D DMA where the cavity is implemented
using a deformed via cage. Another shortcoming
of the current design is its ability to generate sole-
ly random patterns. While random patterns sim-
plify the design and fabrication process, in some
cases, it is beneficial to generate patterns with
sculpted characteristics. To reach such capabil-
ities, one needs to develop analytical modeling
of the 2D DMA and study the characteristics of
different DMA configurations.

CHALLENGES IN DMA CONTROL AND OPTIMIZATION
Adaptive and Optimal Configuration: The anten-
na pattern diversity of the DMA provides a high-di-
mensional channel measurement to improve the
sensing performance. Intrinsically coupled to this
capability is the challenge in ensuring high sys-
tem efficiency and low measurement redundancy.
For instance, instead of using all possible DMA
configurations to probe the wireless channel, is

IEEE Communications Magazine ® June 2020




DMA's capability also
allows pushing the
performance bound-
ary of fine-grained
classification systems
that require a higher
resolution in separating
the channel variations
due to multi-subjects
or multi-body parts
movements. Given this
potential, we envision
using the DMA as
a basis for a set of
advanced applications,
such as 3D body move-
ment recognition and
3D facial expression
recognition.

it possible to adaptively tune and select the most
efficient ones? A possible solution is to develop
learning-assisted real-time configuration control.
For instance, the system can incorporate rein-
forcement learning [12] to learn an optimal con-
trol policy from observed DMA measurements,
and thus it can learn and select the most useful
configurations at runtime.

Dynamic Signal Aggregation: Another asso-
ciated challenge is the design of a processing
mechanism that can properly assess and compare
the sensing quality of different DMA patterns, and
can dynamically aggregate them based on the
estimated quality in runtime. This is essential as
different antenna patterns are unequal in signal
resolvability and sensing performance. Moreover,
the performance changes dynamically with the
sensing conditions and is hard to pre-estimate
without actual channel measurements. A possi-
ble direction is to design a metric to quantify the
sensing quality of individual patterns and design a
quality-aware framework to aggregate the high-di-
mensional channel measurements dynamically
based on the metric.

Feature Generalization: Another research
challenge is to effectively capture a set of general-
ized features from the high-dimensional measure-
ments of the DMA. One approach is to exploit
convolutional neural networks (CNNs) to extract
a set of generalized time-frequency domain fea-
tures from the measurements of different DMA
configurations. CNNs are well known for their
ability and robustness in learning data represen-
tation from high-dimensional input [13], and
recently have been applied in wireless sensing
[6]. Moreover, by using transfer learning [14]
together with CNNs, we can adopt the low-level
features learned from an old environment (user)
to augment the learning task for a new environ-
ment (user). Thus, we can improve the classifier
for diverse environments and users.

CHALLENGES IN END-TO-END SYSTEM DESIGN

Robustness to Environment and User Changes:
An intrinsic challenge in RF sensing is to address
the performance variations that result from the
environment and user changes. The pre-trained
patterns may change if the DMA is deployed in
a new environment or used by a different user.
Thus, the system will degrade in performance
without frequent retraining and updates. Accord-
ing to wireless communication theory, changes in
both environment and antenna pattern will lead
to changes/diversity in the receiving signal. From
the machine learning perspective, it is impractical
to collect a large training dataset that covers all
possible environmental dynamics (e.g., collect-
ing wireless signals at many physical locations).
Instead, a potential solution is to leverage the
antenna pattern diversity of the DMA to generate
prolific, high-dimensional channel measurements
that mimic the impact of environmental dynamics
on the receiving signal. In other words, for a given
sensing application (e.g., human activity recogni-
tion), one can learn a set of common features that
is shared among different DMA antenna patterns.
The learned features should be robust against the
signal diversity due to the changes in either the
antenna pattern or the environment.

Different Configurations of the Antenna Pair:

A promising future direction is to study how dif-
ferent antenna combinations affect the sensing
performance. It is possible to use the DMA as
both a transmitter and a receiver, and by com-
bining their radiation pattern diversities, we can
further improve the measurement diversity and
system performance. Another research question
that needs to be answered is how different anten-
na deployments (i.e., antenna positioning) affect
performance. For instance, we need to establish
how to deploy the antenna pair to achieve the
largest sensing coverage without sacrificing the
performance. Moreover, we will study how the
relative position of the antenna pair affects the
sensing performance. If we can have the transmit-
ter and the receiver on a single device, we can
potentially reduce the manufacturing cost and
deployment complexity.

NEW APPLICATIONS

DMA has a unique advantage in improving the
performance of multi-object sensing and fine-
grained classification systems. Existing solutions in
object tracking usually rely on complex antenna
arrays to improve the tracking resolution [15].
In contrast, by spatially combining the diverse
radiation patterns provided by a pair of M-pat-
tern DMA transceivers, we can probe the wire-
less channel in M x M different ways. Thus, by
extracting the uncorrelated channel measure-
ments captured by different DMA configurations,
we can decompose the signal variations due to
different paths. Similarly, DMA’s capability also
allows pushing the performance boundary of fine-
grained classification systems that require a higher
resolution in separating the channel variations due
to multi-subjects or multi-body-part movements.
Given this potential, we envision using the DMA
as a basis for a set of advanced applications, such
as 3D body movement recognition and 3D facial
expression recognition.

CONCLUSION

In this article, dynamic metasurface antenna-based
sensing is envisioned to pave the way for future
low-complexity and low-cost wireless sensing sys-
tems. Leveraging the antenna pattern diversity
and programmability of a custom DMA, we have
demonstrated the feasibility of fine-grained RF
sensing without spatial and frequency diversities.
To fully realize our concept, we identify several
challenges and future directions. We believe that
the radiation pattern diversity gives the DMA a
unique advantage for multi-object tracking and
fine-grained classification systems.
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