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Twisted Trilayer Graphene: A Precisely Tunable Platform for Correlated Electrons
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We introduce twisted trilayer graphene (tTLG) with two independent twist angles as an ideal system for
the precise tuning of the electronic interlayer coupling to maximize the effect of correlated behaviors. As
established by experiment and theory in the related twisted bilayer graphene system, van Hove singularities
(VHS) in the density of states can be used as a proxy of the tendency for correlated behaviors. To explore
the evolution of VHS in the twist-angle phase space of tTLG, we present a general low-energy electronic
structure model for any pair of twist angles. We show that the basis of the model has infinite dimensions
even at a finite energy cutoff and that no Brillouin zone exists even in the continuum limit. Using this
model, we demonstrate that the tTLG system exhibits a wide range of magic angles at which VHS merge
and that the density of states has a sharp peak at the charge-neutrality point through two distinct
mechanisms: the incommensurate perturbation of twisted bilayer graphene’s flatbands or the equal
hybridization between two bilayer moiré superlattices.
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Introduction.—Electronic properties in stacked graphene
layers can be tuned by a small twist angle that modifies the
interlayer interaction strength, an effect referred to as
“twistronics” [1]. As the twist angle approaches a critical
“magic angle” (~1.05° in twisted bilayer graphene), the two
van Hove singularities (VHS) in the density of states (DOS)
of each monolayer merge, resulting in a sharp peak
associated with flatbands, leading to the emergence of
strongly correlated electronic phases [2]. The small twist
angle gives rise to large-scale repeating patterns known as
moiré patterns. Unconventional correlated states have now
been observed in many van der Waals (vdW) hetero-
structures with one twist angle, e.g., twisted bilayer
graphene (tBLG) and twisted double bilayer graphene
[3-15]. In these systems, electrons responsible for the
correlation effects localize at the moiré scale [16-18].

The addition of a third layer introduces a new degree of
freedom, the second twist angle, allowing for the further
tuning of electron correlations. In twisted trilayer graphene
(tTLG) with two consecutive twist angles, 6, and 0,3, the
beating of two bilayer moiré patterns leads to higher-order
patterns (moiré of moiré). The length scale of these is
orders of magnitude larger than the bilayer moiré [Fig. 1(a)]
[19-21]. Unlike in tBLG where only the lowest-order
moiré pattern dominates in the continuum limit, the
dominant harmonic is twist-angle dependent in tTLG.
For a given moiré of moiré harmonic labeled by (m,n),
the primitive reciprocal lattice vectors are given as the
column vectors of GH, = mG,, — nG,3, where the matrix
G;; spans the bilayer moiré reciprocal space between layers
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i (Li) and j (Lj). The real space moiré of moiré supercell
AH s obtained by A%, = (1/27)(GH,)~T, with the norm
of its column vectors being the moiré of moiré length.
Figure 1(b) shows the dominant moiré of moiré length as a
function of twist angles in which each lobe corresponds to

Dominant moiré of moiré length (

FIG. 1. [Illustration of moiré of moiré pattern in tTLG for
0, =2.6°% 6,3 =2.8°. (a) Red and blue points represent the
lattice points of the bilayer moiré supercells between L1-L2 and
L2-L3, respectively. Black arrows represent dominant moiré of
moiré supercell lattice vectors. A blowup of the small boxed area
is shown below, with points representing monolayer lattice
points, for L1 and L2 on the left half and for L2 and L3 on
the right half. The moiré lattice vectors (red and blue arrows) are
slightly rotated and have different lattice constants. (b) The
dominant moiré of moiré length on a logarithmic color scale. The
black star corresponds to the twist angle in (a), and (m, n) labels
the dominant moiré of moiré harmonic in the nearby lobe. Black
dashed line represents 01, = 6,3.
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the region where a different harmonic (m,n) dominates.
The moiré of moiré patterns can be discerned visually only
near the (N,1) or (1,N) lobes for N € Z. Generally,
multiple harmonics have competing length scales (see
Supplemental Material [22], Sec. I). Therefore, tTLG
cannot be approximated by two aligned tBLG and a general
expression for the trilayer supercell does not exist, making
it fundamentally different than multilayered vdW hetero-
structures with a single twist angle [25-28]. The lack of a
supercell approximation and the large length scale pose
many computational challenges to the theoretical modeling
of tTLG. While there have been some theoretical studies of
tTLG [19,29,30], including an accurate treatment of any
twist angles by Amorim and Castro [29], an electronic
structure model incorporating both accuracy and efficiency
is lacking; this severely restricts our ability to investigate its
electronic properties and the potential for correlated phases,
which have been observed recently in tTLG at the moiré of
moiré scale [31].

Here, we present tTLG as a platform to precisely tune
twistronic correlations, using the VHS intensity as a proxy
for strong correlations. We derive a general momentum-
space model to study the electronic properties of the two-
independent-twist-angle tTLG system using a low-energy k -
p model that provides computational efficiency and removes
the constraint on the twist angle in atomistic calculations with
supercells. Using this model, we explore the tTLG phase
space. We find that the two bilayer moiré superlattices
hybridize when the two twist angles are equal, minimizing
the separation between the two lowest VHS at a critical angle.
At general twist angles, there exists a wide range of values at
which the VHS merge and the DOS is sharply peaked at the
charge-neutrality point (CNP). These magic angles can be
understood as a tBLG magic angle modified by an incom-
mensurate perturbative potential from the third layer. Our
analysis is well suited to guide experimental searches for
correlation effects and enables the interpretation of otherwise
unclear experimental findings [31].

Momentum-space Hamiltonian.—To obtain the elec-
tronic structure model for tTLG, we employ a momen-
tum-space method by taking the Fourier transform of the
real-space tight-binding model. At a momentum k (referred
to as the center site), the model can be formally represented
by a 3 x 3 block matrix:

H'(k) T 0
Hk)= | T*" H*k) T |. (1)
0 3" H3 (k)

The diagonal blocks are the monolayer graphene tight-
binding Hamiltonians in the rotated basis [32] representing
the intralayer hopping. The off-diagonal blocks represent
the interlayer hopping. The interlayer terms that connect
two momentum degrees of freedom k) and k) in Li and
L;j are given as

P . . 1 . i 3 ~i i . . _i ] T(’)
T;J/}[k(l),k(l)] - elG<>-zf,>l({ﬁ[k+k<l) +G(’)]e 61l

| | G .GgY)

X )G k) —GU) s (2)

where [I'| is the monolayer unit cell area, 7, (z4) is the
position of the sublattice a (), G) is a reciprocal space
lattice vector in LZ, and f;’ﬁ(p) is the momentum-space
hopping parameter between sublattice « in Li and sublattice
pin Lj. The 6 function imposes the constraint on the values
of k¥), dictating the interlayer scattering selection rule.
The above expressions are equivalent to a real-space tight-
binding model in the Bloch basis (see Supplemental
Material [22], Sec. IT A, for derivation).

Unlike tBLG [33-37], the momentum-space basis in tTLG
is infinitely dimensional and lacks a Brillouin zone even in
the continuum limit. In bilayers, coupled momentum states
satisfy the selection rule k(1) — k?) = G1) — G?) [35]. Note

that for a given G\ = mb(ll) + nbgl) form,n € Z, we also

have G?) = mbgz) + nbgz) for the same m, n, where bl(»f) is
the ith component of the primitive reciprocal lattice vector of
L7, since other hopping processes are much higher in energy.
As |G| increases, the scattered momentum k' becomes
farther away from the Dirac point. Therefore, to implement a
finite cutoff, we can simply constrain the magnitude of the
scattered momentumk’ = G for# = 1, 2. Physically, k' is
a monolayer reciprocal lattice vector that can scatter to a
nearby momentum in the other layer. In contrast, in
trilayers, the momentum states that form the basis of the
Hamiltonian are connected in a more complicated way. A
given k1) can couple to a momentum state k) that satisfies
k2 =k + G? — GV, same as in bilayers. Each k*) can
then couple to a momentum state k) through the second
selection rule [Eq. (2)], resulting in the following final
momentum:

kB3 = k() [G<2> — G(l)] + [G(3) — G’(2>], (3)

where the reciprocal lattice vectors satisfy G2 — G() =
mb\"? + nb{" and G® -G = mB® + b7 for
m,n,n’,m' € Z, with b,ﬁij) = b,((j) —b,ii) being the bilayer
moiré reciprocal space lattice vectors. Equation (3) suggests
that L1 and L3 are coupled through L2, even though a direct

interlayer hopping is not allowed. Unlike the simple 2D
momentum crystal in bilayers, here the incommensuration

between b,(:z) and b,((23) creates for k) a 4D structure that is
projected onto 2D.

Equation (3) suggests that in LZ of tTLG, k’ is given by
kK =G 4+ GUY) for £ # i, j. To implement a cutoff, we
should impose |k'| < k. for some cutoff value k.. However,
the incommensurability of twisted trilayers suggests that
|k'| can be arbitrarily small and imposing [k'| < k. still
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FIG. 2. Momentum degrees of freedom for tTLG at 6, = 2.2°,
6,3 = 2°. Red, blue, and green are the reciprocal lattice vectors of
L1, L2, and L3, respectively. The origin is the Dirac point of L2.
(a) Extended zone scheme, with the orange circle indicating the
cutoff in |k’|. k' = G» + GO falls within the cutoff radius
10 A~! despite both |G )| and |G| being large. The momenta
of L3 are centered at G@). (b) Reduced zone scheme folded back
to the monolayer Dirac points, ¢'*) = k¥) — K ,. This basis
corresponds to the same twist angle as (a) but with an additional
constraint |G)| < k, = 6[b")

leads to an infinite basis. For example, in Fig. 2(a), even
though G lies outside of the cutoff, the resulting k' is still
a relevant low-energy degree of freedom due to the two-
step scattering process. A similar construction can be made
for all other G outside of the cutoff radius, which means
within a finite cutoff, there are infinitely many coupled
momentum states. In practice, another set of cutoff
conditions needs to be implemented, namely |G| < k,.
With the constraint on |G')|, the k" in Fig. 2(a) is no longer
allowed. In this way, we ignore the cases where |G| is
large but |k’| is small, leading to the neglect of some low-
energy degrees of freedom and hence convergence is not
guaranteed, which merits future work (see Supplemental
Material [22], Sec. IID, for convergence study). In this
work, we choose k., = 4|b(f )|, with ~5600 momenta,
such that the properties of interest (e.g., DOS maximum
and the VHS location) do not change significantly as k.
increases.

We take the low-energy limit by expanding around the
Dirac point of each layer, K; ,, letting k) = ¢©) + K1 ,,
which simplifies the model proposed by Amorim and
Castro [29]. The intralayer Hamiltonian becomes the
rotated Dirac equation, H’ = vpq - (aif , —65” ), where
ol = 0,c0s, — o, sin6, and agf =o0,8inf, + 6,c086,
are rotated Pauli matrices with 6; =6,,,0,=0,0; =—0,3,
vp=0.8x10%cm/s is the Fermi velocity [38], and
g=k+k9 -K,,. For the interlayer hopping, we make
the approximation that ta/, k+ kD + GV~ 7Y [G( )+ Ky,
since k|, |g"| < |Ky],|GY)
to the rapid decay of ?;jﬁ(p) as p increases [2,38,39], we keep

only the first shell in the summation in Eq. (2):

(1/1' q ). qY) Z Tn aﬁ —qi/> (4)
where qij = Ky,
R(21/3)q}
R(6). We include out-of-plane relaxation by letting t;{ =
fy=wy=007eV and 1/, =1], =w =0.11eV
[34,40]. In the matrix form,

Ti — Wy T — wy ¢
1= ’ 2 =
Wy Wy w1 wy

~ Ky, ¢f =R7'(2x/3)q], and ¢ =
using a counterclockwise rotation matrix

} Ti=Ti. (5)

where ¢ = exp(i2z/3) and 7 indicates the complex con-
jugate of z. In tBLG, with the low-energy expansion,
momenta ¢(") and ¢(® form a hexagonal lattice with the
neighboring hexagon corners representing states from alter-
nating layers (a moiré momentum lattice) [2,35]. In tTLG, on
top of each lattice point of the L.1-L.2 moiré momentum
lattice, the additional scattering process creates a copy of the
L2-L3 moiré momentum lattice [Fig. 2(b)], suggesting the
absence of a Brillouin zone.

Density of states.—We use Gaussian smearing to obtain
the total DOS, summing over the two bilayer moiré
Brillouin zones, each discretized using a 22 x 22 grid
[41] (see Supplemental Material [22], Sec. IIC, for the
expression). For normalization, we first calculate the DOS
of only the intralayer Hamiltonian, which reduces to three
independent copies of monolayer graphene [32]. We then
obtain the normalization constant by fixing the prefactor to
the expected low-energy monolayer DOS and using the
same constant for the DOS of the full Hamiltonian. We
adapt the Gaussian FWHM « based on the twist angle
Oppir: for 0y, <2° k=035meV; for 6,,., €
(2°,3.9°,k = 1.2 meV; for 6, ,,, > 3.9% k = 2.4 meV.

Evolution of VHS.—We explore next the behavior of
VHS as a function of twist angles in tTLG by investigating
the DOS enhancement and the narrowing of the separation
between VHS (referred to as the VHS gap). We define a
magic angle approximately as a geometry where both
features are achieved. Figure 3(a) shows the DOS of
tTLG at 0y, = 0,3. The bright regions represent VHS.
As the twist angle decreases, the VHS gap first decreases
and then increases after reaching a minimum at ~2.1°. This
behavior is similar to the evolution of VHS in tBLG in
which changing the twist angle tunes the hybridization
between two monolayer Dirac cones. In tTLG with
01, = 0,3, varying the twist angle changes the hybridiza-
tion strength between the two identical bilayer moiré
superlattices. However, the two VHS can never merge at
the CNP, with the minimum VHS gap being ~20 meV at
2.1°. The DOS is also orders of magnitude lower than at the
tBLG magic angle. For general twist angles, Fig. 3(b)
shows the DOS as a function of 6, with 6,5 = 3°. Unlike
when 6, = 6,3, the two VHS approach each other as the
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FIG. 3. (a) DOS as a function of twist angle for 6, = 0,3.
(b) DOS as a function 0, at 6,3 = 3°, both on a logarithmic
color scale.

twist angle decreases and merge when 1.3° < 6, < 1.6°,
resulting in a sharp DOS peak.

To investigate the nature of DOS enhancements in tTLG,
we performed calculations over an entire region of the 6,5,
0,3 parameter space. Figure 4 shows the DOS maximum and
the VHS gap, AE, as a function of both twist angles [42]. The
magic-angle condition is met at a wide range of twist angles
that follows a smooth curve but disappears near the diagonal.
Although there is no significant DOS enhancement at
01, = 6,3, the DOS maximum is higher compared to the
nearby regions where 6, and 0,5 differ slightly [light yellow
region within the dotted lines in Fig. 4(a)].

We now examine the magic angles away from the
diagonal. In the limit where 6, > 6,3 or 6y, <K 6,3,
tTLG decomposes into a decoupled tBLG moiré supercell
and a graphene monolayer; the monolayer does not con-
tribute significantly to the low-energy features. Therefore,
we observe that the tTLG magic-angle curve asymptotically
approaches the tBLG magic angle [dashed lines in Fig. 4(a)]

FIG. 4. (a) DOS maximum and (b) VHS gap, AE, as a function
of twist angles on a logarithmic color scale. The black solid line
follows the tTLG magic angles predicted by Eq. (7). Vertical and
horizontal black dashed lines correspond to 6, and 6,3 at the
tBLG magic angle, respectively. Within the dotted lines is
roughly the region that can be understood as the hybridization
between two bilayer moiré superlattices.

for large 0,, or 0,3. We verified numerically that when one
twist angle is very large, 0,, = 40° for instance, the DOS
maximum occurs exactly when 65 is at the tBLG magic
angle. The continuous curve and its asymptotic behavior
suggest that these magic angles can be understood as the
magic-angle tBLG modified by an effective potential, V,
from the third layer. We can qualitatively analyze this
argument using perturbation theory by truncating the
momentum space to the first shell, including one state from
L2 and three states each from L1 and L3. We obtain the
renormalized Fermi velocity v} by extracting the coefficient
of the first-order effective Hamiltonian in ¢ in the form of a
Dirac Hamiltonian, given by

1 - 3(“%2 + 0‘%3)

V=
P14 6(af, + a3y)

UV, (6)

where a;;=w/(vpky,), ko, = 8xsin(0;;/2)/(3ac), assum-
ing that g = w; = w. The Hamiltonian and its derivation
are provided in Sec. III of the Supplemental Material [22].
Magic angles occur when vy vanishes, leading to the
following condition:

1
a%z + 0‘%3 = 3 (7)

The solid line in Fig. 4(a) corresponds to @, and 6,5 that
satisfy Eq. (7), which matches the DOS peaks and AFE
minima in Fig. 4(a),(b). Taking the large angle limit, for
example, when 6,3 — o0, a3 —» 0, Eq. (7) becomes
ai, = 1, which is the tBLG magic-angle condition [2].

The evolution of VHS along the diagonal likely has
a different origin than the magic angles for 6, # 0,s.
Perturbation theory predicts that vy can reach 0 at
01, = 6,3 = 1.72°. In the numerical calculations, however,
we do not observe v = 0 at equal twist angles, and the
twist angle with the minimal VHS gap (2.1°) deviates from
the perturbation theory prediction. The discrepancy sug-
gests that the perturbation argument does not apply to equal
twist angles since features near the diagonal are more aptly
described by the hybridization between the two bilayer
moiré superlattices with a shared middle layer rather than
between two independent unit cells as in tBLG.

Moiré of moiré.—In magic-angle tBLG, correlated states
occur at the half-filling of the moiré supercell by filling two
isolated flatbands [3,4,16—18]. In tTLG, even though the
origin of some magic angles is perturbed tBLG, filling
each flatband corresponds to filling the moiré of moiré
supercell rather than the bilayer moiré cell because the
incommensurate effective potential modifies the relevant
supercell area.

We compare our results to a simplified model that
approximates tTLG as two aligned moiré cells [30].
While we observe similar qualitative behaviors, the sim-
plified model fails to capture physics at the moiré of moiré
scale and does not predict as drastic a DOS enhancement as
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our work. Moreover, the simplified model requires a new
basis for different sets of twist angles, making it difficult to
generalize—limitations that our model overcomes. We
include a comparison between the two models in
Sec. IV of the Supplemental Material [22].

In summary, we explore the rich electronic behavior of
tTLG in its twist-angle phase space. We offer a general low-
energy momentum-space model to obtain electronic struc-
ture in tTLG. We show that the twisted trilayer momentum-
space model does not have a Brillouin zone and has an
infinitely sized basis. Although we do not predict corre-
lation strengths directly, we can use the presence of VHS as
a proxy for electronic correlation. We show that the tTLG
system exhibits a wide range of magic angles with merging
VHS at the CNP. Away from equal twist angles, the origin
of the magic angles can be understood as tBLG in an
incommensurate perturbative potential. At equal twist
angles, the electronic properties are a result of the hybridi-
zation between two bilayer moiré superlattices that share
the middle layer. Tuning the twist angle makes it possible to
traverse between these two regimes. Our MATLAB code for
the model is openly available [43].
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