
 

Twisted Trilayer Graphene: A Precisely Tunable Platform for Correlated Electrons

Ziyan Zhu ,1 Stephen Carr,1 Daniel Massatt,2 Mitchell Luskin ,3 and Efthimios Kaxiras 1,4

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA

3School of Mathematics, University of Minnesota—Twin Cities, Minneapolis, Minnesota 55455, USA
4John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 30 May 2020; accepted 29 July 2020; published 11 September 2020)

We introduce twisted trilayer graphene (tTLG) with two independent twist angles as an ideal system for
the precise tuning of the electronic interlayer coupling to maximize the effect of correlated behaviors. As
established by experiment and theory in the related twisted bilayer graphene system, van Hove singularities
(VHS) in the density of states can be used as a proxy of the tendency for correlated behaviors. To explore
the evolution of VHS in the twist-angle phase space of tTLG, we present a general low-energy electronic
structure model for any pair of twist angles. We show that the basis of the model has infinite dimensions
even at a finite energy cutoff and that no Brillouin zone exists even in the continuum limit. Using this
model, we demonstrate that the tTLG system exhibits a wide range of magic angles at which VHS merge
and that the density of states has a sharp peak at the charge-neutrality point through two distinct
mechanisms: the incommensurate perturbation of twisted bilayer graphene’s flatbands or the equal
hybridization between two bilayer moiré superlattices.
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Introduction.—Electronic properties in stacked graphene
layers can be tuned by a small twist angle that modifies the
interlayer interaction strength, an effect referred to as
“twistronics” [1]. As the twist angle approaches a critical
“magic angle” (∼1.05° in twisted bilayer graphene), the two
van Hove singularities (VHS) in the density of states (DOS)
of each monolayer merge, resulting in a sharp peak
associated with flatbands, leading to the emergence of
strongly correlated electronic phases [2]. The small twist
angle gives rise to large-scale repeating patterns known as
moiré patterns. Unconventional correlated states have now
been observed in many van der Waals (vdW) hetero-
structures with one twist angle, e.g., twisted bilayer
graphene (tBLG) and twisted double bilayer graphene
[3–15]. In these systems, electrons responsible for the
correlation effects localize at the moiré scale [16–18].
The addition of a third layer introduces a new degree of

freedom, the second twist angle, allowing for the further
tuning of electron correlations. In twisted trilayer graphene
(tTLG) with two consecutive twist angles, θ12 and θ23, the
beating of two bilayer moiré patterns leads to higher-order
patterns (moiré of moiré). The length scale of these is
orders of magnitude larger than the bilayer moiré [Fig. 1(a)]
[19–21]. Unlike in tBLG where only the lowest-order
moiré pattern dominates in the continuum limit, the
dominant harmonic is twist-angle dependent in tTLG.
For a given moiré of moiré harmonic labeled by ðm; nÞ,
the primitive reciprocal lattice vectors are given as the
column vectors of GH

mn ¼ mG12 − nG23, where the matrix
Gij spans the bilayer moiré reciprocal space between layers

i (Li) and j (Lj). The real space moiré of moiré supercell
AH
mn is obtained by AH

mn ¼ ð1=2πÞðGH
mnÞ−T, with the norm

of its column vectors being the moiré of moiré length.
Figure 1(b) shows the dominant moiré of moiré length as a
function of twist angles in which each lobe corresponds to

FIG. 1. Illustration of moiré of moiré pattern in tTLG for
θ12 ¼ 2.6°, θ23 ¼ 2.8°. (a) Red and blue points represent the
lattice points of the bilayer moiré supercells between L1-L2 and
L2-L3, respectively. Black arrows represent dominant moiré of
moiré supercell lattice vectors. A blowup of the small boxed area
is shown below, with points representing monolayer lattice
points, for L1 and L2 on the left half and for L2 and L3 on
the right half. The moiré lattice vectors (red and blue arrows) are
slightly rotated and have different lattice constants. (b) The
dominant moiré of moiré length on a logarithmic color scale. The
black star corresponds to the twist angle in (a), and ðm; nÞ labels
the dominant moiré of moiré harmonic in the nearby lobe. Black
dashed line represents θ12 ¼ θ23.
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the region where a different harmonic ðm; nÞ dominates.
The moiré of moiré patterns can be discerned visually only
near the ðN; 1Þ or ð1; NÞ lobes for N ∈ ℤ. Generally,
multiple harmonics have competing length scales (see
Supplemental Material [22], Sec. I). Therefore, tTLG
cannot be approximated by two aligned tBLG and a general
expression for the trilayer supercell does not exist, making
it fundamentally different than multilayered vdW hetero-
structures with a single twist angle [25–28]. The lack of a
supercell approximation and the large length scale pose
many computational challenges to the theoretical modeling
of tTLG. While there have been some theoretical studies of
tTLG [19,29,30], including an accurate treatment of any
twist angles by Amorim and Castro [29], an electronic
structure model incorporating both accuracy and efficiency
is lacking; this severely restricts our ability to investigate its
electronic properties and the potential for correlated phases,
which have been observed recently in tTLG at the moiré of
moiré scale [31].
Here, we present tTLG as a platform to precisely tune

twistronic correlations, using the VHS intensity as a proxy
for strong correlations. We derive a general momentum-
space model to study the electronic properties of the two-
independent-twist-angle tTLG system using a low-energy k ·
pmodel that provides computational efficiency and removes
the constraint on the twist angle in atomistic calculationswith
supercells. Using this model, we explore the tTLG phase
space. We find that the two bilayer moiré superlattices
hybridize when the two twist angles are equal, minimizing
the separationbetween the two lowestVHSat a critical angle.
At general twist angles, there exists a wide range of values at
which the VHS merge and the DOS is sharply peaked at the
charge-neutrality point (CNP). These magic angles can be
understood as a tBLG magic angle modified by an incom-
mensurate perturbative potential from the third layer. Our
analysis is well suited to guide experimental searches for
correlation effects and enables the interpretation of otherwise
unclear experimental findings [31].
Momentum-space Hamiltonian.—To obtain the elec-

tronic structure model for tTLG, we employ a momen-
tum-space method by taking the Fourier transform of the
real-space tight-binding model. At a momentum k (referred
to as the center site), the model can be formally represented
by a 3 × 3 block matrix:

HðkÞ ¼

2
64
H1ðkÞ T12 0

T12† H2ðkÞ T23

0 T23† H3ðkÞ

3
75: ð1Þ

The diagonal blocks are the monolayer graphene tight-
binding Hamiltonians in the rotated basis [32] representing
the intralayer hopping. The off-diagonal blocks represent
the interlayer hopping. The interlayer terms that connect
two momentum degrees of freedom kðiÞ and kðjÞ in Li and
Lj are given as

Tij
αβ½kðiÞ;kðjÞ� ¼

1

jΓj
X

GðiÞ;GðjÞ
eiG

ðiÞ·τðiÞα t̃ijαβ½kþkðiÞ þGðiÞ�e−iGðjÞ·τðiÞβ

× δkðiÞ−GðiÞ;kðjÞ−GðjÞ ; ð2Þ

where jΓj is the monolayer unit cell area, τα (τβ) is the
position of the sublattice α (β), GðlÞ is a reciprocal space
lattice vector in Ll, and t̃ijαβðpÞ is the momentum-space
hopping parameter between sublattice α in Li and sublattice
β in Lj. The δ function imposes the constraint on the values
of kðlÞ, dictating the interlayer scattering selection rule.
The above expressions are equivalent to a real-space tight-
binding model in the Bloch basis (see Supplemental
Material [22], Sec. II A, for derivation).
Unlike tBLG[33–37], themomentum-spacebasis in tTLG

is infinitely dimensional and lacks a Brillouin zone even in
the continuum limit. In bilayers, coupled momentum states
satisfy the selection rule kð1Þ − kð2Þ ¼ Gð1Þ − Gð2Þ [35]. Note
that for a given Gð1Þ ¼ mbð1Þ1 þ nbð1Þ2 for m; n ∈ ℤ, we also

have Gð2Þ ¼ mbð2Þ1 þ nbð2Þ2 for the same m, n, where bðlÞi is
the ith component of the primitive reciprocal lattice vector of
Ll, since other hopping processes aremuch higher in energy.
As jGðlÞj increases, the scattered momentum k0 becomes
farther away from the Dirac point. Therefore, to implement a
finite cutoff, we can simply constrain the magnitude of the
scatteredmomentum k0 ¼ GðlÞ for l ¼ 1, 2. Physically, k0 is
a monolayer reciprocal lattice vector that can scatter to a
nearby momentum in the other layer. In contrast, in
trilayers, the momentum states that form the basis of the
Hamiltonian are connected in a more complicated way. A
given kð1Þ can couple to a momentum state kð2Þ that satisfies
kð2Þ ¼ kð1Þ þ Gð2Þ − Gð1Þ, same as in bilayers. Each kð2Þ can
then couple to a momentum state kð3Þ through the second
selection rule [Eq. (2)], resulting in the following final
momentum:

kð3Þ ¼ kð1Þ þ ½Gð2Þ − Gð1Þ� þ ½Gð3Þ − G0ð2Þ�; ð3Þ

where the reciprocal lattice vectors satisfy Gð2Þ − Gð1Þ ¼
mbð12Þ1 þ nbð12Þ2 and Gð3Þ − G0ð2Þ ¼ m0bð23Þ1 þ n0bð23Þ2 for

m; n; n0; m0 ∈ ℤ, with bðijÞk ¼ bðjÞk − bðiÞk being the bilayer
moiré reciprocal space lattice vectors. Equation (3) suggests
that L1 and L3 are coupled through L2, even though a direct
interlayer hopping is not allowed. Unlike the simple 2D
momentum crystal in bilayers, here the incommensuration

between bð12Þk and bð23Þk creates for kð3Þ a 4D structure that is
projected onto 2D.
Equation (3) suggests that in Ll of tTLG, k0 is given by

k0 ¼ GðiÞ þ GðjÞ for l ≠ i, j. To implement a cutoff, we
should impose jk0j ≤ kc for some cutoff value kc. However,
the incommensurability of twisted trilayers suggests that
jk0j can be arbitrarily small and imposing jk0j ≤ kc still
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leads to an infinite basis. For example, in Fig. 2(a), even
though Gð2Þ lies outside of the cutoff, the resulting k0 is still
a relevant low-energy degree of freedom due to the two-
step scattering process. A similar construction can be made
for all other Gð2Þ outside of the cutoff radius, which means
within a finite cutoff, there are infinitely many coupled
momentum states. In practice, another set of cutoff
conditions needs to be implemented, namely jGðlÞj ≤ kc.
With the constraint on jGðlÞj, the k0 in Fig. 2(a) is no longer
allowed. In this way, we ignore the cases where jGðlÞj is
large but jk0j is small, leading to the neglect of some low-
energy degrees of freedom and hence convergence is not
guaranteed, which merits future work (see Supplemental
Material [22], Sec. IID, for convergence study). In this
work, we choose kc ¼ 4jbðlÞj, with ∼5600 momenta,
such that the properties of interest (e.g., DOS maximum
and the VHS location) do not change significantly as kc
increases.
We take the low-energy limit by expanding around the

Dirac point of each layer, KLl, letting kðlÞ ¼ qðlÞ þ KLl,
which simplifies the model proposed by Amorim and
Castro [29]. The intralayer Hamiltonian becomes the
rotated Dirac equation, Hl ¼ vFq · ðσθlx ;−σθly Þ, where
σθlx ¼ σx cos θl − σy sin θl and σθly ¼ σx sin θl þ σy cos θl
are rotated Pauli matrices with θ1¼θ12;θ2¼0;θ3¼−θ23,
vF¼0.8×106 cm=s is the Fermi velocity [38], and
q ¼ kþ kðlÞ − KLl. For the interlayer hopping, we make
the approximation that t̃ijαβ½kþ kðiÞ þ GðiÞ� ≈ t̃ijαβ½GðiÞ þ KLi�
since jkj; jqðiÞj ≪ jKLij; jGðiÞj, for k near theDiracpoint.Due
to the rapid decay of t̃ijαβðpÞ as p increases [2,38,39], we keep
only the first shell in the summation in Eq. (2):

Tij
αβ½qðiÞ; qðjÞ� ¼

X3
n¼1

Tij
n;αβδqðiÞ−qðjÞ;−qijn ; ð4Þ

where qij1 ¼ KLi − KLj, qij2 ¼ R−1ð2π=3Þqij1 , and qij3 ¼
Rð2π=3Þqij1 using a counterclockwise rotation matrix
RðθÞ. We include out-of-plane relaxation by letting tijAA ¼
tijBB ¼ ω0 ¼ 0.07 eV and tijAB ¼ tijBA ¼ ω1 ¼ 0.11 eV
[34,40]. In the matrix form,

Tij
1 ¼

�
ω0 ω1

ω1 ω0

�
; Tij

2 ¼
�
ω0 ω1ϕ̄

ω1ϕ ω0

�
; Tij

3 ¼ T̄ij
2 ; ð5Þ

where ϕ ¼ expði2π=3Þ and z̄ indicates the complex con-
jugate of z. In tBLG, with the low-energy expansion,
momenta qð1Þ and qð2Þ form a hexagonal lattice with the
neighboring hexagon corners representing states from alter-
nating layers (amoiré momentum lattice) [2,35]. In tTLG, on
top of each lattice point of the L1-L2 moiré momentum
lattice, the additional scattering process creates a copy of the
L2-L3 moiré momentum lattice [Fig. 2(b)], suggesting the
absence of a Brillouin zone.
Density of states.—We use Gaussian smearing to obtain

the total DOS, summing over the two bilayer moiré
Brillouin zones, each discretized using a 22 × 22 grid
[41] (see Supplemental Material [22], Sec. II C, for the
expression). For normalization, we first calculate the DOS
of only the intralayer Hamiltonian, which reduces to three
independent copies of monolayer graphene [32]. We then
obtain the normalization constant by fixing the prefactor to
the expected low-energy monolayer DOS and using the
same constant for the DOS of the full Hamiltonian. We
adapt the Gaussian FWHM κ based on the twist angle
θl;lþ1: for θl;lþ1 ≤ 2°, κ ¼ 0.35 meV; for θl;lþ1 ∈
ð2°; 3.9°�; κ ¼ 1.2 meV; for θl;lþ1 > 3.9°, κ ¼ 2.4 meV.
Evolution of VHS.—We explore next the behavior of

VHS as a function of twist angles in tTLG by investigating
the DOS enhancement and the narrowing of the separation
between VHS (referred to as the VHS gap). We define a
magic angle approximately as a geometry where both
features are achieved. Figure 3(a) shows the DOS of
tTLG at θ12 ¼ θ23. The bright regions represent VHS.
As the twist angle decreases, the VHS gap first decreases
and then increases after reaching a minimum at ∼2.1°. This
behavior is similar to the evolution of VHS in tBLG in
which changing the twist angle tunes the hybridization
between two monolayer Dirac cones. In tTLG with
θ12 ¼ θ23, varying the twist angle changes the hybridiza-
tion strength between the two identical bilayer moiré
superlattices. However, the two VHS can never merge at
the CNP, with the minimum VHS gap being ∼20 meV at
2.1°. The DOS is also orders of magnitude lower than at the
tBLG magic angle. For general twist angles, Fig. 3(b)
shows the DOS as a function of θ12 with θ23 ¼ 3°. Unlike
when θ12 ¼ θ23, the two VHS approach each other as the

FIG. 2. Momentum degrees of freedom for tTLG at θ12 ¼ 2.2°,
θ23 ¼ 2°. Red, blue, and green are the reciprocal lattice vectors of
L1, L2, and L3, respectively. The origin is the Dirac point of L2.
(a) Extended zone scheme, with the orange circle indicating the
cutoff in jk0j. k0 ¼ Gð2Þ þ Gð3Þ falls within the cutoff radius
10 Å−1 despite both jGð2Þj and jGð3Þj being large. The momenta
of L3 are centered at Gð2Þ. (b) Reduced zone scheme folded back
to the monolayer Dirac points, qðlÞ ¼ kðlÞ − KLl. This basis
corresponds to the same twist angle as (a) but with an additional
constraint jGðlÞj ≤ kc ¼ 6jbðlÞj, leading to 26 921 momenta.

PHYSICAL REVIEW LETTERS 125, 116404 (2020)

116404-3



twist angle decreases and merge when 1.3° ≤ θ12 ≤ 1.6°,
resulting in a sharp DOS peak.
To investigate the nature of DOS enhancements in tTLG,

we performed calculations over an entire region of the θ12,
θ23 parameter space. Figure 4 shows theDOSmaximum and
theVHSgap,ΔE, as a function of both twist angles [42]. The
magic-angle condition is met at a wide range of twist angles
that follows a smooth curve but disappears near the diagonal.
Although there is no significant DOS enhancement at
θ12 ¼ θ23, the DOS maximum is higher compared to the
nearby regionswhere θ12 and θ23 differ slightly [light yellow
region within the dotted lines in Fig. 4(a)].
We now examine the magic angles away from the

diagonal. In the limit where θ12 ≫ θ23 or θ12 ≪ θ23,
tTLG decomposes into a decoupled tBLG moiré supercell
and a graphene monolayer; the monolayer does not con-
tribute significantly to the low-energy features. Therefore,
we observe that the tTLGmagic-angle curve asymptotically
approaches the tBLGmagic angle [dashed lines in Fig. 4(a)]

for large θ12 or θ23. We verified numerically that when one
twist angle is very large, θ12 ¼ 40° for instance, the DOS
maximum occurs exactly when θ23 is at the tBLG magic
angle. The continuous curve and its asymptotic behavior
suggest that these magic angles can be understood as the
magic-angle tBLG modified by an effective potential, V,
from the third layer. We can qualitatively analyze this
argument using perturbation theory by truncating the
momentum space to the first shell, including one state from
L2 and three states each from L1 and L3. We obtain the
renormalized Fermi velocity v�F by extracting the coefficient
of the first-order effective Hamiltonian in q in the form of a
Dirac Hamiltonian, given by

v�F ¼ 1 − 3ðα212 þ α223Þ
1þ 6ðα212 þ α223Þ

vF; ð6Þ

where αij¼ω=ðvFkθijÞ, kθij ¼ 8π sinðθij=2Þ=ð3aGÞ, assum-
ing that ω0 ¼ ω1 ¼ ω. The Hamiltonian and its derivation
are provided in Sec. III of the Supplemental Material [22].
Magic angles occur when v�F vanishes, leading to the
following condition:

α212 þ α223 ¼
1

3
: ð7Þ

The solid line in Fig. 4(a) corresponds to θ12 and θ23 that
satisfy Eq. (7), which matches the DOS peaks and ΔE
minima in Fig. 4(a),(b). Taking the large angle limit, for
example, when θ23 → ∞, α23 → 0, Eq. (7) becomes
α212 ¼ 1

3
, which is the tBLG magic-angle condition [2].

The evolution of VHS along the diagonal likely has
a different origin than the magic angles for θ12 ≠ θ23.
Perturbation theory predicts that v�F can reach 0 at
θ12 ¼ θ23 ¼ 1.72°. In the numerical calculations, however,
we do not observe v�F ¼ 0 at equal twist angles, and the
twist angle with the minimal VHS gap (2.1°) deviates from
the perturbation theory prediction. The discrepancy sug-
gests that the perturbation argument does not apply to equal
twist angles since features near the diagonal are more aptly
described by the hybridization between the two bilayer
moiré superlattices with a shared middle layer rather than
between two independent unit cells as in tBLG.
Moiré of moiré.—In magic-angle tBLG, correlated states

occur at the half-filling of the moiré supercell by filling two
isolated flatbands [3,4,16–18]. In tTLG, even though the
origin of some magic angles is perturbed tBLG, filling
each flatband corresponds to filling the moiré of moiré
supercell rather than the bilayer moiré cell because the
incommensurate effective potential modifies the relevant
supercell area.
We compare our results to a simplified model that

approximates tTLG as two aligned moiré cells [30].
While we observe similar qualitative behaviors, the sim-
plified model fails to capture physics at the moiré of moiré
scale and does not predict as drastic a DOS enhancement as

FIG. 3. (a) DOS as a function of twist angle for θ12 ¼ θ23.
(b) DOS as a function θ12 at θ23 ¼ 3°, both on a logarithmic
color scale.

FIG. 4. (a) DOS maximum and (b) VHS gap, ΔE, as a function
of twist angles on a logarithmic color scale. The black solid line
follows the tTLG magic angles predicted by Eq. (7). Vertical and
horizontal black dashed lines correspond to θ12 and θ23 at the
tBLG magic angle, respectively. Within the dotted lines is
roughly the region that can be understood as the hybridization
between two bilayer moiré superlattices.
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our work. Moreover, the simplified model requires a new
basis for different sets of twist angles, making it difficult to
generalize—limitations that our model overcomes. We
include a comparison between the two models in
Sec. IV of the Supplemental Material [22].
In summary, we explore the rich electronic behavior of

tTLG in its twist-angle phase space. We offer a general low-
energy momentum-space model to obtain electronic struc-
ture in tTLG. We show that the twisted trilayer momentum-
space model does not have a Brillouin zone and has an
infinitely sized basis. Although we do not predict corre-
lation strengths directly, we can use the presence of VHS as
a proxy for electronic correlation. We show that the tTLG
system exhibits a wide range of magic angles with merging
VHS at the CNP. Away from equal twist angles, the origin
of the magic angles can be understood as tBLG in an
incommensurate perturbative potential. At equal twist
angles, the electronic properties are a result of the hybridi-
zation between two bilayer moiré superlattices that share
the middle layer. Tuning the twist angle makes it possible to
traverse between these two regimes. Our MATLAB code for
the model is openly available [43].
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sulated graphene, Nano Lett. 20, 979 (2020).

[21] N. Leconte and J. Jung, Commensurate and incommensu-
rate double moire interference in graphene encapsulated by
hexagonal boron nitride, 2D Mater. 7, 031005 (2020).

PHYSICAL REVIEW LETTERS 125, 116404 (2020)

116404-5

https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41567-020-0825-9
https://doi.org/10.1038/s41586-020-2458-7
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1103/PhysRevLett.123.197702
https://doi.org/10.1103/PhysRevLett.123.197702
https://arXiv.org/abs/1910.12147
https://arXiv.org/abs/1911.13302
https://arXiv.org/abs/2003.09482
https://arXiv.org/abs/2003.11072
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevResearch.1.033072
https://doi.org/10.1103/PhysRevB.101.224107
https://doi.org/10.1021/acs.nanolett.9b04058
https://doi.org/10.1088/2053-1583/ab891a


[22] See SupplementaryMaterial, which includes Refs. [23,24], at
http://link.aps.org/supplemental/10.1103/PhysRevLett.125
.116404 for the calculation of moiré of moiré length, a
detailed derivation of the momentum-space model and
convergence test, the derivation of the analytical expression
of the tTLG magic angles, and comparisons with other
models.

[23] M.Yankowitz, J.Xue,D.Cormode, J. D. Sanchez-Yamagishi,
K.Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and
B. J. Leroy, Emergence of superlattice Dirac points in
graphene on hexagonal boron nitride, Nat. Phys. 8, 382
(2012).

[24] W.-J. Zuo, J.-B. Qiao, D.-L. Ma, L.-J. Yin, G. Sun, J.-Y.
Zhang, L.-Y. Guan, and L. He, Scanning tunneling
microscopy and spectroscopy of twisted trilayer graphene,
Phys. Rev. B 97, 035440 (2018).

[25] X. Li, F. Wu, and A. H. MacDonald, Electronic structure of
single-twist trilayer graphene, arXiv:1907.12338.

[26] S. Carr, C. Li, Ziyan Zhu, E. Kaxiras, S. Sachdev, and A.
Kruchkov. Ultraheavy and ultrarelativistic dirac quasi
particles in sandwiched graphenes, Nano Lett. 20, 3030
(2020).

[27] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K.
Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean,
and M. Yankowitz, Electrically tunable correlated and
topological states in twisted monolayer-bilayer graphene,
arXiv:2004.11340.

[28] Y. Park, B. L. Chittari, and J. Jung, Gate-tunable topological
flat bands in twisted monolayer-bilayer graphene,
Phys. Rev. B 102, 035411 (2020).

[29] B. Amorim and E. V. Castro, Electronic spectral properties of
incommensurate twisted trilayergraphene, arXiv:1807.11909.

[30] C. Mora, N. Regnault, and B. A. Bernevig, Flatbands and
Perfect Metal in Trilayer Moiré Graphene, Phys. Rev. Lett.
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