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Abstract—According to estimations, approximately 80% of
Internet traffic represents media traffic. Much of it is generated
by end users communicating with each other (e.g., voice, video
sessions). A key element that permits the communication of users
that may be behind Network Address Translation (NAT) is the
relay server.

This paper presents a scheme for offloading media traffic from
relay servers to programmable switches. The proposed scheme
relies on the capability of a P4 switch with a customized parser
to de-encapsulate and process packets carrying media traffic.
The switch then applies multiple switch actions over the packets.
As these actions are simple and collectively emulate a relay
server, the scheme is capable of moving relay functionality to
the data plane operating at terabits per second. Performance
evaluations show that the proposed scheme not only produces
optimal results regarding Quality of Service (QoS) parameters
(no packet loss, minimum delay, negligible delay variation, high
Mean Opinion Score) but also scales much better than current
solutions. Evaluations conducted with up to 35Gbps of media
traffic or its equivalent of 400,000 simultaneous G.711 media
sessions (limited only by the traffic generator rather than by
the switch) show an ideal operation of the switch-based solution
(using ∼1% of the switching capacity). In contrast, a relay server
with a modern CPU model used for evaluations can process up
to 900 simultaneous G.711 media sessions per core.

Keywords—Programmable switches, P4 language, Real Time
Protocol, Network Address Translation, offloading.

I. INTRODUCTION

The exponential increase in media traffic, fueled by the af-
fordability of consumer electronics (e.g., smartphones, tablets),
is rapidly changing the networking landscape. The growing
number of applications generating media traffic is constantly
requiring service providers to upgrade their infrastructure.
Applications include WhatsApp [1] and Skype [2], which have
more than 1.5 billion and 300 million monthly active users
respectively [3]. Other examples are operators’ platforms using
standard protocols such as Session Initiation Protocol (SIP)
[4] and Real-time Transport Protocol (RTP) [5]. According to
estimations, media traffic represents approximately 80% of the
total traffic over the Internet [6].

The infrastructure requirements are exacerbated by the net-
work address translation (NAT), which is used by virtually all
home and most enterprise and campus networks. Furthermore,
recent studies show that the number of network operators
deploying Carrier-grade NAT (CGN) is increasing [7]. CGN
is a scheme that extends the traditional NAT to a large-
scale deployment inside the service provider’s network. Survey
results [8] reveal that CGN has a widespread adoption and that

over half of operators have deployed or will deploy CGN. NAT
introduces issues such as violation of the end-to-end principle,
scalability and reliability concerns, and traversal of end-to-
end sessions. The latter is a problem that severely affects
media traffic. For example, for an end user to be reachable
for an end-to-end media session (voice, video), the user must
wait and accept incoming connections at a well-known port.
With NAT, the user is not reachable because it is assigned
a private IP address. Furthermore, port numbers are also
allocated dynamically. Moreover, these dynamic allocations
interfere with the operation of signaling protocols, as end
devices rely on opening ephemeral ports during the session
establishment to send and receive media traffic [6].

Technical solutions to these problems include Session
Traversal Utilities for NAT (STUN) [9], Traversal Using
Relays around NAT (TURN) [10], Interactive Connectivity
Establishment (ICE) [11], Port Mapping Protocol (PMP) [12],
and Port Control Protocol (PCP) [13]. Essentially, the general
solution of the NAT traversal problem requires the use of a
publicly available server that acts as a relay between two end
devices that may be behind NAT. Variants of this approach are
widely implemented by media applications listed above. Using
relay servers has associated costs to service providers, as these
devices must be provisioned according to the number of users.
Thus, an important open research problem is the design of a
scalable network architecture to support media traffic.

A. Contribution

This paper presents a scheme for offloading media traffic
from a relay server to a programmable switch. The scheme is
motivated by the advent of new-generation P4 switches [14],
which permit the programmer to describe the behavior of the
data plane. The contribution of the paper is summarized as
follows:
1) A working scheme is presented to offload media traffic

from relay servers to programmable switches.
2) The number of media sessions supported by the proposed

scheme is orders of magnitude higher than that supported
by relay servers.

3) The scheme produces optimal results regarding the follow-
ing Quality of Service (QoS) parameters: packet loss, delay,
delay variation, Mean Opinion Score (MOS).

4) The prototype employs standard signaling and media pro-
tocols, namely SIP and RTP. Similarly, the switch’s for-
warding behavior is described using P4.



5) After the session establishment, the proposed approach
fully offloads traffic to the switch and thus the CPU usage
of the relay server becomes negligible.

The rest of the paper is organized as follows. Section II
describes related work. Section III provides background in-
formation. Section IV describes the proposed system. Section
V analyzes and compares the performance of the proposed
system against a traditional system. Section VI describes
the resource consumption and lessons learned. Section VII
concludes the paper and describes future work.

II. RELATED WORK

Many proposal has been presented to solve the NAT traver-
sal problem using relay servers. STUN relies on a publicly
available server that provides a method for a device behind
NAT to determine its public IP address. While it solves the
NAT traversal problem for some scenarios, it does not work
when symmetric NAT is applied. The STUN architecture can
be extended with TURN servers to support symmetric NAT
[10]. In essence, the TURN server is a device that relays TCP
or UDP packets carrying media traffic.

ICE [11] is a framework that was recently proposed as a
general solution for the NAT traversal problem. ICE integrates
both STUN and TURN servers and is frequently used in
conjunction with other signaling protocols, such as Session
Description Protocol (SDP) [15]. ICE only works if both end
devices support it, and this requirement is one of the reasons
why ICE has not gained much traction. Other efforts to solve
the NAT traversal problem include the PMP [12] and PCP
[13] protocols. PMP permits a device to request the NAT
for its private-public IP addresses and port mappings. With
this information, the device can communicate its parameters
to another peer. PCP operates with IPv4 and IPv6 addresses
and has an improved keep-alive procedure.

The above solutions are open standards and depend on
the use of publicly available relay servers. While proprietary
solutions such as Skype are not disclosed, the basic operations
are inferred from measurements studies [2], [16]. For example,
Skype nodes are organized into a hierarchical overlay network,
with each node classified as a supernode or an ordinary node
(users). When two parties behind NAT want to establish a
session, a supernode is used to relay traffic between the
two end devices. Note that the NAT traversal standards and
proprietary solutions discussed above rely on relay servers.
Independently of the signaling and media protocols, the relay
server is a key component of the system.

Recent work on programmable switches includes NetCache
[17], NetPaxos [18], and NetChain [19]. NetCache [17] uses
programmable switches to detect, index, cache and serve hot
key-value items in the switch data plane rather than in servers.
NetPaxos [18] uses programmable switches to accelerate con-
sensus protocols, but it does not offer a replicated key-value
service, and the performance is bounded by the overhead of
application-level replication on servers. NetChain [19] extends
the ideas of NetCache and NetPaxos by offering a replicated
key-value service, guaranteeing consistency, and handling

switch failures. Key observations of these works [17]-[19] are
the use of the data plane to store key-values into a table, from
which they are then retrieved to serve queries for those keys at
line rate, and the use of the control plane to populate the table.
Kfoury et al. [20] also propose using programmable switches
to measure and compute the TCP sending rate in high-speed
networks (e.g., Science Demilitarized Zones [21]).

III. BACKGROUND

A. Signaling and Media Protocols

The proposed scheme uses SIP [4] as the signaling protocol
and RTP [5] as the media protocol. A SIP server/registrar
maintains an index that maps a SIP identifier to current IP
and port used for signaling. SIP is responsible for initiating,
maintaining, and terminating multimedia sessions between
communicating endpoints. SIP also encapsulates SDP [15]
messages. SDP conveys media details, such as IP address,
port, codec, and others. RTP runs over UDP and encapsulates
the samples of the media signals (voice, video). Note that, in
general, the IP address and port used for signaling (SIP) are
different from those used for media (RTP).

B. Relay Server

The relay server is an intermediary device that allows RTP
traffic to flow between end devices. Consider Fig. 1, where
users A and B are behind NAT and the relay server has the IP
address IPR. The IP addresses and ports to be used by users
A and B for RTP traffic are IPA-PA and IPB-PB respectively.
This information is encapsulated in SIP/SDP. At the time of
establishing the session, see Fig. 1(a), since RTP traffic is
not generated yet, the NAT-translated IP addresses and ports
are unknown. Assume that (1) user A initiates the session
by sending an INVITE message including the SDP session
information. The message is received by the SIP server and
(2) forwarded to the relay server. The relay server (3) allocates
a port PRA, which will be used to receive RTP traffic on
behalf of user A. The information IPR-PRA (4) is provided to
the SIP server, which replaces the original information IPA-
PA within the INVITE/SDP message, and (5) forwards it to
user B. Once user B responds, a similar procedure occurs; the
information IPR-PRB replaces IPB-PB within the SIP/SDP
message forwarded to user A. The allocated ports are stored
in the forwarding table at the relay server. As a result, when
RTP traffic is generated, see Fig. 1(b), the relay server receives
packets from both users. The relay server then learns the
NAT-translated IP addresses and ports, IPA′ -PA′ and IPB′ -PB′ ,
which enables it to establish the RTP channel.

C. Programmable Data Plane and P4

Several programmable switches implement the Protocol
Independent Switch Architecture (PISA). PISA is an abstract
processing model that consists of a programmable parser,
programmable match-action pipeline, programmable deparser
and programmable header/metadata bus that carry the headers
and metadata throughout the pipeline. PISA provides protocol
independence by allowing programmers to specify how a
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Fig. 1: Relay server mechanism. (a) Session establishment. IPA-PA and IPB-PB refer to the IP addresses and ports to be used for RTP traffic by users A
and B, and IPR is the IP address of the relay server. (1) User A sends an INVITE/SDP message; (2) the message is forwarded to the relay server, which
(3) allocates the port PRA, to be used to receive RTP traffic on behalf of user A; (4) the port allocation is provided to the SIP server, which incorporates
the information into the INVITE/SDP message; (5) the SIP server forwards the INVITE/SDP message to user B. A response from user B initiates a similar
process, with the relay server allocating port PRB . (b) RTP traffic. When the session has been established, the relay server receives RTP packets. At this
point, it learns the NAT-translated IP addresses and ports, IPA′ -PA′ and IPB′ -PB′ , and stores them in the relay table. This information enables the relay
server to establish the RTP channel.

packet should be parsed and processed by defining tables that
match on specified fields in the packet or intermediate results
(metadata), the actions that operate on the packet fields and
metadata (including adding/removing headers) as well as as
the processing algorithm itself [22]. As long as the P4 program
compiles, it runs on the chip at line rate.

IV. PROPOSED SYSTEM

A. Overview

The proposed architecture uses a programmable switch to
emulate the behavior of the relay server, which must: 1)
parse the incoming packet carrying media traffic from the first
party, say user A; 2) identify the session this packet belongs
to by using the 5-tuple {source IP, source port, destination
IP, destination port, protocol}. The destination IP and the
destination port in the incoming packet refer to a local socket
in the relay server; 3) replace the source IP with that of the
relay server and the source port with that used by the relay
server to receive traffic from user B; 4) replace the destination
IP and the destination port with the NAT-translated IP and port
corresponding to user B; 5) recalculate both IPv4 and UDP
checksums, and 6) forward the packet to user B. These steps
can be implemented with match-action pipelines available at
programmable switches. For each media session, the proposed
scheme computes a unique session identifier given by the hash
of the 5-tuple. The identifier is stored in a table by the control
plane. When a packet arrives, the data planes parses the packet
(step 1), identifies the session by matching the hash of the 5-
tuple of the incoming packet to an entry (step 2), replaces the
header fields (steps 3 and 4), recalculates checksums (step 5),
and forwards the packet (step 6).

B. Session Establishment

Fig. 2 illustrates the proposed architecture. When the user A
initiates a session, the following sequential events take place:

1) The user A sends a SIP INVITE message directed to the
SIP server, addressed to user B.

2) The SIP server extracts and sends the SIP call-id to the
relay server. The relay server allocates a new port for receiving
media traffic on behalf of user A.
3) A monitoring agent learns the allocated port.
4) The user B replies back with a SIP RESPONSE message.
5) The SIP server forwards the message to the relay server,
which in turns extracts the SIP call-id and performs a lookup
on the existing sessions. The relay server allocates a port for
receiving media traffic on behalf of user B.
6) The agent learns the allocated port.
7) The agent stores into a lookup table the ports allocated by
the relay server, the NAT-translated IP addresses and ports of
users A and B, and the 5-tuple hashes (one for each traffic
direction). This table is referred to as relay and is similar
to the relay table shown in Fig. 1(b).

When a packet carrying RTP traffic is received, the switch
matches the 5-tuple hash of the packet with the hash entries
in the relay table. If there is a match, it modifies the header
fields and forwards the packet.

C. Monitoring Agent

Fig. 3 illustrates the main components of the agent. It learns
the ports allocated to a media session by the relay server. The
Rule Generator uses the source and destination IP addresses,
protocol, and source and destination ports allocated to the
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Fig. 2: System architecture.
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media session to construct a unique session identifier. The
Rules Manager then connects to the switch’s control plane
and adds a new entry into the relay table, which stores the
identifiers of the media sessions currently traversing the switch
and the new headers’ values (i.e., source port, destination
port, and destination IP address). The relay table is used
by the data plane to match incoming UDP packets with a
media session. The Rule Manager is also responsible for
clearing media sessions allocated in the switch when a call is
teared down. The Rule Manager intercepts SIP BYE messages
received by the SIP server, determines the media session
corresponding to the call identifier, and deletes allocated media
sessions from the switch.

D. Switch Processing

The programmable switch implements regular functions of
a layer-3 switch. Additionally, it matches UDP packets against
the relay table. Pseudocode 1 describes the packet process-
ing logic on the switch (excluding regular functionalities of a
layer-3 switch). If the IPv4 and UDP headers are valid, then
the session identifier (index) is calculated by hashing the 5-
tuple. Subsequently, the packet is matched against the relay
table, and upon having a hit, the switch modifies the packet
headers to redirect the packet directly to the UAS/UAC without
going through the relay server.

V. IMPLEMENTATION AND EVALUATION

The topology used to conduct experiments is shown in Fig.
4. The following performance measures were used:

1) Delay: the time interval starting when a packet i is received
from the UAC by the switch’s ingress port, at time T i

1, and
ending when the packet is forwarded by the switch’s egress
port to the UAS, at time T i

2. The delay of the packet i is
computed as Di = T i

2 − T i
1. This metric measures the delay

contributions of the switch and the relay server. To compute
delay, the switch adds the timestamps T i

1 and T i
2 to each packet

at the ports facing the UAC and UAS respectively, see Fig. 4.
Timestamps are captured at the start of packet.
2) Delay variation: the absolute value of the difference be-
tween the delay of two consecutive received packets i and
i− 1. The delay variation is analogous to jitter, as defined by
RFC 4689 [23], and is expressed as

∣∣Di −Di−1
∣∣.

3) CPU usage: the percentage of the CPU’s capacity used by
the relay server.
4) Packet loss: the number of packets that fail to reach the
destination. The calculation is based on the sequence number
field of the RTP header.

Pseudocode 1: PACKET PROCESSING(pkt)
1 eth ← parse(pkt.eth)
2 ipv4 ← parse(pkt.ipv4)
3 udp ← parse(pkt.udp)
4 if valid(ipv4) = true then
5 if valid(udp) = true then
6 index ← hash(5-tuple)
7 if relay.hit(index) = true then
8 eth.srcAddr ← eth.dstAddr
9 ipv4.srcAddr ← ipv4.dstAddr

10 ipv4.dstAddr ← relay[index].dstAddr
11 udp.srcPort← relay[index].srcPort
12 udp.dstPort ← relay[index].dstPort

5) MOS: estimation of the quality of the media session based
on the propagation delay, packetization delay, and jitter buffer.
It is a reference quality indicator standardized by ITU-T [24].

The following components are used for the experiment:
1) OpenSIPS [26], an open source implementation of a SIP
server. 2) RTPProxy [30], a high-performance relay server for
RTP streams. 3) SIPp [25]: an open source SIP traffic generator
that can establish multiple concurrent sessions and generate
media (RTP) traffic. 4) Iperf [28]: traffic generator used to
generate background UDP traffic.

Table I lists the hardware specifications. It also describes the
software components along with their versions and additional
remarks. The SIPp instances (UAC and UAS) were installed
on two devices with Intel Xeon Silver 4114 CPU (four cores
were allocated in each, 2.20GHz), running Debian GNU/Linux
9. The SIP and relay servers were both installed on two
servers with the same hardware specifications. The relay
server was allocated one core for relay purposes. For their
communication, the SIP and relay servers use UDP. Edgecore
Wedge100BF-32X [29] is the programmable switch used in
the experiment. It is designed for high-performance data cen-
ters with programmable Tofino switch silicon. Wedge100BF-
32X has 32 100Gbps ports, and thus can support up to
3.2Tbps. The experiment is limited to a single port of the
switch, and 40Gbps link is used instead of 100Gbps.

Two scenarios are considered. The first scenario uses the
relay server to relay media between end devices, without the
intervention of the programmable switch. We refer to this
scenario as “Server-based relay”. The second scenario uses the
programmable switch to relay media. We refer to this scenario
as “Switch-based relay”.

Scenario 1 – Server-based relay: In this scenario, the UAC
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40Gbps
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SIP server
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Programmable switch
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Agent

Mgmt 

port TCP

40Gbps
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Fig. 4: Evaluation topology.



TABLE I: System components (software and hardware).
Name Version Open Source Remarks

Traffic generator SIPp [25] 3.2 Yes Generates concurrent sessions with RTP support.
Codec G.711 N/A Yes Packetizes media traffic at a rate of 87.2Kbps.
SIP server OpenSIPS [26] 2.4.6 Yes Industry-grade, RFC 3261 [27] compliant.
Relay Server RTPProxy [25] 2.1.0 Yes High-performance software proxy.
Background traffic generator iPerf [28] 2.0.9 Yes Measurement tool, also used to generate traffic load.
Parser and Rule Generator Custom Python Script N/A Yes Intercepts allocations and installs/removes rules.
Stream analyzer Wireshark/Tshark 3.0.6 Yes RTP streams analysis and statistics.
P4 programmable switch Edgecore Wedge100BF-32X [29] N/A No Tofino switch silicon from Barefoot Networks.
CPU (UAC, UAS, servers) Intel Xeon Silver 4114 N/A N/A 2.20 GHz, 64 GB RAM.

(SIPp) generates 900 media sessions that include RTP streams
to the UAS (SIPp). The number of simultaneous sessions was
chosen empirically, and is considered a safe target. The authors
noted that when the number of sessions is above 900, the relay
server drops some packets as a consequence of the CPU usage.
The rate at which sessions arrive is 30 per second, until 900
sessions are active. The test lasts for 300 seconds, and the
codec used for media encoding is G.711.

Scenario 2 – Switch-based relay: the same traffic distri-
bution as in scenario 1 was applied to scenario 2. The only
difference is that the programmable switch now acts a relay
server once the session is established.

A. Relay Server CPU Usage

Fig. 5 shows the percentage of CPU used by the relay server
during the experiment with both scenarios. In the server-based
relay scenario, the relay server consumes a significant portion
of the CPU while new sessions are being added. The graph
indicates that the CPU usage during this period increases up
to 80%. Sessions stop arriving at t = 30, when a total of 900
sessions are active. The consumption drops to approximately
50% at t = 50, 20 seconds after sessions stop arriving. On the
other hand, in the switch-based relay, the relay server peaked
at 15% for a short period of time as sessions arrive at 30 per
second. At t = 40, the CPU usage starts decreasing. The CPU
consumption is approximately zero once sessions stop arriving.
At this point, although 900 sessions are simultaneously active,
they are fully processed by the switch.

B. Delay

Fig. 6 (a) shows the Cumulative Distribution Function
(CDF) of the delay observed during the experiments in both
scenarios. The CDF was formed with the data set composed
of the delay measurements for all packets in both scenarios.

The delay of the server-based relay ranges from 0.250
milliseconds (ms) to 17ms, with a mean (µ) of 6.88ms and
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Fig. 5: Relay server CPU usage.

a standard deviation (σ) of 3.74ms. Approximately 50% of
the packets experienced a delay above 7.5ms, and 20% of
the packets have delays above 10ms. Note that the observed
delay is mostly a consequence of the software component
in the relay server (e.g., Linux’s process scheduling, varying
interrupt processing delay). The delay of the switch-based
relay is almost-constant, 440 nanoseconds.

C. Delay Variation

Fig. 6 (b) shows the CDF of the delay variation observed
during the experiments in both scenarios. The CDF was
formed with the data set composed of the calculations of delay
variation in both scenarios. The delay variation of the server-
based relay ranges from 100 microseconds (µs) to 3ms, with
a mean of 0.26ms and a standard deviation of 0.57ms. On the
other hand, the delay variation of the switch-based relay is
negligible. The proposed solution relies on the precise timing
characteristics of the switch, removing the delay variation
introduced by the relay server.

D. Packet Loss Rate

Fig. 6 (c) shows the CDF of the packet loss rate observed
during the experiment in the server-based relay scenario. The
loss rate varies from 0.15% to 0.5%, and all sessions experi-
ence some packet losses over time. Note that the performance
tests deliberately generated a maximum of 900 active media
sessions simultaneously. The authors observed that this was the
safe limit supported by the relay server. Beyond 900 sessions,
the relay server started to experience packet losses. In contrast,
the switch-based relay did not experience packet losses.

E. Maximum Number of Sessions

In the switch-based relay, the current testbed cannot stress
test the capacity of the switch (this has a switching capacity
of 3.2Tbps). According to measurements conducted in the lab,
the bottleneck of the testbed is the device hosting the UAC
(specifically, the CPU usage of this device reached 100%). As
the number of active sessions exceeds 1800, the number of
packets dropped in the system significantly increases.

To further test the proposed scheme, a third scenario was
created. The third scenario used iPerf instead of SIPp to
emulate media traffic. The UAC generates dummy media
session in main memory, which is then moved down through
the protocol stack and over the network media. The UAS
receives the data and moves it up through the protocol stack.
No input/output operations occur with iPerf, which reduces
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the CPU usage. The UAC generated approximately 35Gbps
of dummy media traffic. Additional forwarding rules were
inserted in the lookup table of the programmable switch, so
that to relay the dummy media traffic from UAC to UAS.

Measures obtained in the scenario showed that the pro-
grammable switch relays 35Gbps of media traffic without
experiencing packet losses. Other measures (delay, delay vari-
ation) are consistent with those obtained in scenarios 1 and
2. These results confirm the capability of the switch to relay
35Gbps of media traffic, or its equivalent of 400,000 media
sessions operating with G.711 codec (each session generates
87.2Kbps of media traffic). In contrast, the relay server can
serve up to 900 sessions per core before the QoS deteriorates.
F. Mean Opinion Score

Fig. 7 reports the MOS CDF considering three different
scenarios: the first with 750 simultaneous sessions, the second
with 1500 sessions, and the third with 1800 sessions. When the
number of sessions is 750, the network resources are underuti-
lized and the two schemes attain the maximum score for G.711
(∼4.4). As the number of simultaneous sessions increases to
1500 and 1800, the MOS values of the server-based relay
scheme decrease; for example, for 1800 simultaneous sessions,
approximately 60% of sessions have a MOS score below ∼3.7.
With this score, only some users are satisfied [24].

VI. RESOURCE CONSUMPTION AND LESSONS LEARNED

A. Resource Consumption

For each media session, the proposed system stores in RAM
a session identifier, given by the hash of the 5-tuple (match),

and the header fields to be modified (action data). The hash
is 32-bit long and the action data is 64-bit long, for a total of
96 bits per media session. To evaluate the overhead in terms
of hardware resources, the prototype is implemented in two
different scenarios: 1) on top of the baseline switch program
(switch.p4), and 2) standalone implementation. The baseline
switch.p4 implements various networking features needed for
typical cloud data centers, including Layer 2/3 functionalities,
Access Control List (ACL), QoS, etc. With the switch.p4
program, the relay table accommodates 64,000 media sessions
by increasing the SRAM usage by 16.2% beyond the usage
of switch.p4. As a standalone program, the relay table was
able to accommodate up to 1,050,000 entries for media relay,
with some additional resources to spare. Table II shows the
resources used in both cases. Note the linear-like increase in
SRAM utilization when increasing the table size.

B. Lessons Learned

Advantages of offloading relay functionality to the switch
include: a) performance: the number of media sessions sup-
ported by the switch-based solution is orders of magnitude
larger than that of the server-based solution; b) QoS: the
switch-based solution exhibits optimal results regarding QoS
parameters; c) flexibility: using a P4 switch permits to forward
packets using non-standard fields. In the proposed approach,
a packet is forwarded based on its session identifier; d) timing
information: the authors noted that measuring delay and delay
variation on the P4 switch results in precise high-resolution
timing information.
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Fig. 7: CDF of Mean Opinion Score (750, 1500, and 1800 simultaneous sessions).



TABLE II: Additional hardware resources used by the offloading feature when
deployed on top of switch.p4 and as a standalone program.

On top of switch.p4

Table size SRAM Hash Bits TCAM

32,000 +8.45% +2.7% +0%
64,000 +16.2% +4.6% +0%

Standalone program

Table size SRAM Hash Bits TCAM

500,000 ———- ———- ———-
1,000,000 +97.84% +86.4% +0%
1,050,000 +107.5% +89.8% +0%

From Table II, note that the P4 switch enables the pro-
grammer to free unused resources (e.g., SRAM consumed by
features on switch.p4) and customize the program, in order
to accommodate additional sessions. Also, avoiding complex
application logic and using simple operations (implemented
with few match-action tables) facilitate the implementation of
the switch-based relay.

VII. CONCLUSION AND FUTURE WORK

This paper presents a scheme for offloading media traffic
from relay servers to P4 programmable switches. The scheme
permits to move media relay functionality from a general-
purpose server to the data plane of the switch operating at
terabits per second. Performance evaluations show that the pro-
posed scheme not only provides optimal results regarding QoS
parameters but also scales much better than current solutions
based on general-purpose CPUs. For example, evaluations
conducted with up to 35Gbps of media traffic or its equivalent
of 400,000 simultaneous G.711 media sessions (limited only
by the traffic generator rather than by the switch) show an
ideal operation of the proposed solution (using ∼1% of the
switching capacity). As a reference, the relay server with a
modern CPU model used for evaluations can process up to
900 simultaneous G.711 media sessions per core before QoS
deteriorates. Future work intends to offload the signaling traffic
required to establish and tear down media sessions.
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