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Abstract—Cloud computing has become a necessary utility for
scientific and technical applications. Many diverse web services
are published and subscribed using cloud data centers. It has
become fairly easy to use services from Cloud Service Providers
(CSPs) for computation and data processing. However, even with
all their benefits, commercial cloud resources are not economical
when large data processing is required. It is not always feasible
for educators and researchers to use commercial cloud resources
to run large data processing workflow applications due to budget
limitations. In this paper, we propose a framework to help
users to leverage distributed compute resources to execute data-
intensive application workflows, while minimizing their budget
concerns. It also enables users who may have access to small-
scale compute resources in-house, to seamlessly interoperate with
public cloud resources.

Index Terms—Compute resource utilization, Scientific work-
flows, distributed computing

I. INTRODUCTION

Scientific and technological applications are becoming in-
creasingly data and compute-intensive. An exemplar case
in scientific workflows can be seen in bioinformatics such
as gene sequencing/analytics, where applications frequently
require diverse multi-cloud resources to execute job flows.
Researchers who create these workflow pipelines seek to use
large compute and memory resources on a routine basis in an
iterative and repeatable manner. Since the nature of research
is often iterative and requires repeated workflow execution
with varying data, they need to rely on open/commercial cloud
resources for their workflows under budget limitations.

To optimally fulfill user requirements, they seek to seam-
lessly interoperate with any compute resources they can ac-
cess. A potential scenario could involve the utilization of
small-scale resources in-house in conjunction with community
cloud resources such as GENI [5] and commercial CSPs
such as Amazon Web Services. However, the diversity in the
resources offered from different commercial and community
cloud providers and a sparsely documented in-house compute
resource configurations can overwhelm users who are not
well versed in cyberinfrastructure or are not cloud-experts. In
this paper, we describe a brokering framework that we are
developing to coordinate application workflow execution by
efficiently utilizing a distributed set of commercial/community
cloud as well as local computing resources. Our ultimate
goal is to seamlessly add any available resources using the
framework for executing unique/complex compute and data-
intensive application workflows.

II. MOTIVATION

For demonstrating potential use of the framework to non-
expert cloud user, we created a set of tool configurations as

shown in Figure 1. To execute application workflows, we
collect user specified resource requirements for their appli-
cation through a web portal viz., the Cyneuro portal [4]. This
portal is basically a science gateway, where multiple scientific
computational workflows can be deployed and executed for
neuroscience researchers/educators. We integrated a question-
naire interface on the Cyneuro portal, where the interface
presents users with a set of questions, such as required number
of processing units, minimum memory, and preferred size
of storage. Once user specified requirements for the appli-
cation workflow are collected, a distributed set of compute
resources will be provisioned by our broker framework to
fulfill user’s demand of resources. These resources could be
from commercial CSPs, community CSPs, local resources, or a
mixture of them for execution of different jobs in the workflow.
Once resource allocation is done by creating a collection of
distributed compute nodes, users can then configure and run
their application workflows on the allocated resources. During
job execution, performance of the application and the status of
the deployed resources can be monitored at any time. Figure
2 shows the steps of the collection, provisioning, consumption
and monitoring that we have designed for supporting a custom
scientific workflow.

III. FRAMEWORK COMPONENTS

Our framework is deployed using various tools in synergy
to create a distributed pool of resources. The distributed
computing resource pool is then used to execute the workflow.
The components of the framework are shown in Figure 2.
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Fig. 1. Overview showing abstract workflow created by an user using Pegasus
and a job processing pipeline with HTCondor.

Pegasus WMS: It is a Workflow Management System that
can manage large-scale scientific workflows across desktops
and computing sites. Pegasus WMS provides a means for
representing the workflow of an application in an abstract
form that is independent of the resources available to run it,



Cyneuro User Portal

€ e

................................... Workflow__ .. _.._.._

Performance Metrics

Cloud Performance

SINCLE NEURON WORKELOW REQUREMENTS

e

I Cyverse Data Portal

Input/Output Data

Pegasus

CPU: ... RS
RAM: ... .
Storage: ... IR

Requirement
s

- = — i

Metrics

PyGlidein
Client

PyGlidein
Client

PyGlidein

Local Oudput Data
Machine |
I i
i
i
———————————-—i—\
I | \
mage ] :
= — Analysis P2 | I
K Workflow I
D R
vy _ Prig
“~.,| HTCondor |-~ I
Configuration I

Fig. 2. Architecture design and implementation steps for representing our resource brokering framework components and their interactions.

and the location of data and executables. It compiles abstract
workflows into an executable form. The executable workflows
are deployed on a local and/or remote distributed resources
using the Condor DAGMan workflow engine from HTCondor.
HTCondor: It is an open-source high-throughput computing
software framework for coarse-grained distributed paralleliza-
tion of computationally-intensive tasks. It can be used to
manage workload on a dedicated cluster of computers, or to
farm out work to idle computer nodes.

PyGlidein: It is an application used to run glideins on remote
sites, adjusting for pool demand automatically. It consists of a
server running on the central HTCondor submit machine and a
number of clients on remote submit machines. The client will
submit a glideins, which connects back to a central HTCondor
machine that advertises slots for jobs to run in. Jobs are then
run at local on remote machines in the advertised slots.
Cyverse: Cyverse provides infrastructure for storage of large
data. Data can be stored remotely on a Cyverse account and
can be accessed and downloaded on-demand. Note for the
demo that we kept our application data on Cyverse storage.

IV. WORKFLOW EXECUTION

To demonstrate the effectiveness of our proposed frame-
work, a GENI [5] node is instantiated as the submit host
machine. Pegasus [1], HTCondor [2] and CyVerse iCommand
[7] are installed on the submit host. Further, an image analysis
workflow is created in compliance with the Pegasus guidelines.
Using Pegasus, our image analysis workflow is configured to
run on specific set of machines identified by their IP addresses.
Pegasus essentially divides the workflow into subtasks, and the
user can pre-configure individual subtask to be run on specified
compute nodes. Once the workflow is initialized by the user,
pegasus broadcasts the jobs to HTCondor to schedule them on
compute resources. Depending on the combined configuration

of workflow and condor, the jobs are computed locally or on
specified compute machines. HTCondor uses glidein services
from PyGlidein to connect to remote machines. The glideins
are submitted to the remote cluster scheduler, and once started
up, users perceive that their HTCondor pool extends into
a remote cluster. HTCondor can then schedule and monitor
the jobs to the remote compute node(s) in the same way it
currently schedules jobs on local compute nodes i.e., through
the use of the Pegasus APIs.

V. RESULTS AND CONCLUSION

Our novel resource brokering framework configuration al-
lows for the execution of data-intensive application workflows
with complex computing demands on remote sites such as
AWS, GENI [5], or local organizational resources. Input data
is fetched from Cyverse in real-time by the workflow and
output data is generated and sent back to the Cyverse storage.
Additional compute nodes could be added in real-time to the
compute pool to help users process large datasets in a cost-
effective and user-friendly manner.
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