
An Emulation-based Evaluation of
TCP BBRv2 Alpha for Wired Broadband

Elie F. Kfourya, Jose Gomeza, Jorge Crichignoa, Elias Bou-Harbb

aIntegrated Information Technology Department, University of South Carolina, USA.
bThe Cyber Center For Security and Analytics, University of Texas at San Antonio, USA.

Abstract

Google published the first release of the Bottleneck Bandwidth and Round-trip Time (BBR) congestion control algorithm in 2016.
Since then, BBR has gained a widespread attention due to its ability to operate efficiently in the presence of packet loss and in
scenarios where routers are equipped with small buffers. These characteristics were not attainable with traditional loss-based con-
gestion control algorithms such as CUBIC and Reno. BBRv2 is a recent congestion control algorithm proposed as an improvement
to its predecessor, BBRv1. Preliminary work suggests that BBRv2 maintains the high throughput and the bounded queueing delay
properties of BBRv1. However, the literature has been missing an evaluation of BBRv2 under different network conditions.

This paper presents an experimental evaluation of BBRv2 Alpha (v2alpha-2019-07-28) on Mininet, considering alternative active
queue management (AQM) algorithms, routers with different buffer sizes, variable packet loss rates and round-trip times (RTTs),
and small and large numbers of TCP flows. Emulation results show that BBRv2 tolerates much higher random packet loss rates than
loss-based algorithms but slightly lower than BBRv1. The results also confirm that BBRv2 has better coexistence with loss-based
algorithms and lower retransmission rates than BBRv1, and that it produces low queuing delay even with large buffers. When a Tail
Drop policy is used with large buffers, an unfair bandwidth allocation is observed among BBRv2 and CUBIC flows. Such unfairness
can be reduced by using advanced AQM schemes such as FQ-CoDel and CAKE. Regarding fairness among BBRv2 flows, results
show that using small buffers produces better fairness, without compromising high throughput and link utilization. This observation
applies to BBRv1 flows as well, which suggests that rate-based model-based algorithms work better with small buffers. BBRv2 also
enhances the coexistence of flows with different RTTs, mitigating the RTT unfairness problem noted in BBRv1. Lastly, the paper
presents the advantages of using TCP pacing with a loss-based algorithm, when the rate is manually configured a priori. Future
algorithms could set the pacing rate using explicit feedback generated by modern programmable switches.

Keywords: Active queue management (AQM), bandwidth-delay product (BDP), Bottleneck Bandwidth and Round-trip Time
(BBR), BBRv2, congestion control, Controlled Delay (CoDel), CUBIC, round-trip time unfairness, router’s buffer size.

1. Introduction

The Transmission Control Protocol (TCP) [1] has been the
standard transport protocol to establish a reliable connection
between end devices. One of the key functions of TCP is con-
gestion control, which throttles a sender node when the network
is congested and attempts to limit the TCP connection to its fair
share of network bandwidth [2].

The principles of window-based congestion control were de-
scribed in late 1980s by Jacobson and Karels [3]. Since then,
many enhancements have been proposed [4]. Traditional con-
gestion control algorithms rely on the additive increase multi-
plicative decrease (AIMD) control law [5] to establish the size
of the congestion window, which in turn regulates the send-
ing rate. These algorithms include Reno and its multiple vari-
ants such as CUBIC [6] (the default algorithm used in multi-
ple Linux distributions and in recent versions of Windows and

Email addresses: ekfoury@email.sc.edu (Elie F. Kfoury),
gomezgaj@email.sc.edu (Jose Gomez), jcrichigno@cec.sc.edu (Jorge
Crichigno), elias.bouharb@utsa.edu (Elias Bou-Harb)

MacOS), HTCP [7], and others. Most traditional algorithms
are loss-based, because a packet loss is used as a binary signal
of congestion. The well-known TCP macroscopic model [8]
demonstrated that traditional algorithms cannot achieve high
throughput in the presence of even a modest packet loss rate
and large round-trip times (RTTs); the model states that the
throughput of a TCP connection is inversely proportional to the
RTT and the square root of the packet loss rate. Essentially, the
time needed for TCP to recover from a packet loss is significant,
as the congestion window is only increased by approximately
one Maximum Segment Size (MSS) every RTT [9].

In a TCP connection, congestion occurs at the bottleneck
link. Usually, the router with the bottleneck link multiplexes
packets received from multiple input links to an output link.
When the sum of arrival rates exceeds the capacity of the out-
put link, the output queue grows large and the router’s buffer
is eventually exhausted, causing packet drops. Loss-based con-
gestion control algorithms only indirectly infer congestion.

The router’s buffer plays an important role in absorbing traf-
fic fluctuations, which are present even in the absence of con-
gestion. The router avoids losses by momentarily buffering



packets as transitory bursts dissipate. When the router has a
small buffer, packets may be dropped even though the link may
be largely uncongested. With traditional loss-based algorithms
such as Reno and CUBIC, packet losses lead to a low through-
put as a consequence of the AIMD rule. While traditional loss-
based algorithms were adequate in the past for applications re-
quiring low throughput (e.g., Telnet, FTP), they face limita-
tions for applications demanding high throughput, such as high-
resolution media streaming, grid computing / Globus’ gridFTP
[10], and big science data transfers [9].

The Bottleneck Bandwidth and Round-Trip Time (BBRv1)
algorithm [11] has been the first scheme to estimate the bot-
tleneck bandwidth. BBRv1 is a rate-based congestion control
algorithm that periodically estimates the bottleneck bandwidth
and does not follow the AIMD rule [11]. It uses pacing to set
the sending rate to the estimated bottleneck bandwidth. The
pacing technique spaces out or paces packets at the sender node,
spreading them over time. This approach is a departure from the
traditional loss-based algorithms, where the sending rate is es-
tablished by the size of the congestion window, and the sender
node may send packets in bursts. Thus, traditional algorithms
rely on routers to perform buffering to absorb packet bursts.

While BBRv1 has improved the throughput of a TCP con-
nection, the literature [12] has reported some behavioral issues,
such as unfairness and high retransmission rates. Recently,
BBR version 2 (BBRv2) [13] has been proposed to address
these limitations. BBRv1 uses two estimates to establish the
sending rate of a connection: the bottleneck bandwidth and the
RTT of the connection. BBRv2 enhances this approach by also
incorporating Explicit Congestion Notification (ECN) and esti-
mating the packet loss rate to establish the sending rate.

1.1. Contribution and Findings
Although some preliminary evaluations of BBRv2 have been

reported [13, 14], the literature is still missing a comprehen-
sive evaluation of it. Thus, this paper presents an experimen-
tal evaluation of BBRv2 under various scenarios designed to
test the features of BBRv2. Scenarios include alternative active
queue management (AQM) algorithms, routers with different
buffer sizes, variable packet loss rates and RTTs, and small and
large numbers of TCP flows. Experiments are conducted with
Mininet using a real protocol stack in Linux, and provide the
following findings:

1. BBRv2 tolerates much higher random packet loss rates than
CUBIC but slightly lower than BBRv1.

2. In networks with small buffers, BBRv2 produces high Jain’s
fairness index [15] while maintaining high throughput and
link utilization. On the other hand, in networks with large
buffers, the fairness index is significantly reduced. Thus,
BBRv2 works better with small buffers. This observation
also applies to BBRv1 and indicates that small buffers re-
duce the delay in the TCP control loop, which produces bet-
ter outcomes.

3. The retransmission rate of BBRv2 is very low when com-
pared with that of BBRv1. Although the retransmission rate

of CUBIC is lower than that of BBRv2, the throughput is
also lower. Additionally, the high retransmission rate noted
in BBRv1 can be reduced by using an AQM algorithm such
as Flow Queue Controlled Delay (FQ-CoDel) [16].

4. The excessive delay or bufferbloat problem [17], noted in
traditional congestion control algorithms when the buffer
size is large, is not manifested in BBRv2. Instead, BBRv2
exhibits a queueing delay that is loosely independent of the
buffer size, even when routers implement a simple Tail Drop
policy.

5. BBRv2 shows better coexistence with CUBIC than BBRv1,
measured by the fairness index. Additionally, as the number
of flows in the network increases, the aggregate throughput
observed in BBRv2 is more consistent than that of BBRv1,
independently of the buffer size. Thus, selecting the correct
buffer size is no longer essential when using BBRv2.

6. BBRv2 enhances the coexistence of flows with different
RTTs, mitigating the RTT unfairness problem observed in
BBRv1. Such problem can be also corrected by using FQ-
CoDel [16], regardless of the buffer size.

7. A simple Tail Drop policy leads to unfair bandwidth allo-
cation among BBRv2 and CUBIC flows, in particular when
the buffer size is large. On the other hand, advanced AQM
policies such as FQ-CoDel [16] and Common Applications
Kept Enhanced (CAKE) [18] produce fair bandwidth allo-
cations.

8. Pacing [19] helps improve the fairness and the performance
of CUBIC when the rate is known a priori. Although dy-
namically applying pacing with CUBIC to predefined rates
was solved in newer Linux versions, results suggest that fu-
ture congestion control algorithms could consider the use
of pacing and more explicit feedback signals from routers.
As new-generation programmable switches are now becom-
ing accessible, network operators could implement in-band
network telemetry and other dataplane features to provide
explicit feedback control to adjust the pacing rate.

The rest of the paper is organized as follows: Section 2
presents a brief background on BBRv2 and the AQM algo-
rithms used in the experiments. Section 3 discusses related
work. Section 4 presents the experimental setup and the re-
ported metrics, and Section 5 presents the evaluation results.
Section 6 concludes the paper.

2. Background

2.1. BBRv2

BBRv2 is a rate-based, model-based congestion control al-
gorithm. Fig. 1 depicts its high-level architectural design. The
algorithm measures the bandwidth, the RTT, the packet loss
rate, and the ECN mark rate. The measurements are used to
estimate the bandwidth-delay product (BDP) and to model the
end-to-end path across the network, referred to as the network

2



Bandwidth RTT Loss rate ECN

Input: measurements from network traffic

Network path 

model
State machine

BBRv2: model-based congestion control

Rate

Output: control parameters

Volume Quantum

Transport sending engine

Application data

Packets to the network

Figure 1: High-level architectural design of BBRv2.

path model. Based on the current network path model, the algo-
rithm transitions among states of a finite state machine, which
includes probing for bandwidth and RTT. The state machine
generates three control parameters: rate, volume, and quantum.
The rate is the pacing rate that will be used by the sender. The
volume is the amount of data or bits that can be inside the path
as they propagate from the sender to the receiver, also referred
to as in-flight volume. The quantum is the maximum burst size
that can be generated by the sender. The control parameters are
used by the transport protocol sending engine, which segments
the application data into bursts of quantum size before sending
the data to the network as packets. Although packet loss rate
and ECN signals are inputs of the model, BBRv2 does not sim-
ply always apply a multiplicative decrease for every round trip
where packet loss occurs or an ECN signal arrives.

BBRv2 maintains short-term and long-term estimates of the
bottleneck bandwidth and maximum volume of in-flight data.
This is analogous to CUBIC, which has a short-term slow start
threshold estimate (ssthresh) and long term maximum con-
gestion window (W max). BBRv2 spends most of the connec-
tion time in a phase where it can quickly maintain flow balance
(i.e., the sending rate adapts to the new bottleneck bandwidth /

bandwidth-delay product), while also attempting to leave unuti-
lized capacity in the bottleneck link. This spare capacity, re-
ferred to as headroom capacity, enables entering flows to grab
bandwidth. Therefore, BBRv2 maintains a short-term bw lo

and inflight lo estimates to bound the behavior using the
last delivery process (loss, ECN, etc.). The basic intuition in
this case is to maintain reasonable queueing levels at the bottle-
neck bandwidth by inspecting the recent delivery process.

BBRv2 also periodically probes for additional bandwidth
beyond the flow balance level. It maintains a long-term
tuple (bw hi and inflight hi) that estimate the maximum
bandwidth and in-flight volume that can be achieved, consistent
with the network’s desired loss rate and ECN mark rate.

BBRv2 Research Focus and Goals. According to the IETF
proposal [13], BBRv2 has the following goals:

1. Coexisting with loss-based congestion control algorithms
sharing the same bottleneck link. The literature [12], [20]
has shown that when the router’s buffer size is below 1.5BDP,
BBRv1 causes constant packet losses in the bottleneck link,
leading to successive multiplicative decreases in flows using

loss-based algorithms. When the router’s buffer size exceeds
3BDP, loss-based algorithms steadily claim more bandwidth in
the bottleneck link, leading to a decrease in the bandwidth allo-
cated to BBRv1. BBRv2 aims at improving the fairness index
[21] when competing with loss-based algorithms, in particular
in the above scenarios.

2. Avoiding the bufferbloat problem. BBRv2 aims at hav-
ing no additional delay when a router’s buffer is large (up to
100BDP). At the same time, BBRv2 aims at having low packet
loss rate when a router’s buffer is small.

3. Minimizing the time to reach an equilibrium point where
competing flows fairly share the bandwidth. BBRv2 attempts
to solve the RTT bias problem observed in BBRv1: when
a router’s buffer is large, flows with large RTTs have large
bandwidth-delay product / in-flight volume and use much of
the buffer, thus claiming more bandwidth than flows with small
RTTs.

4. Reducing the variation of the throughput by making the
“PROBE RTT” phase less drastic.

Life Cycle of a BBRv2 Flow. The state machine of BBRv2 is
similar to that of BBRv1, alternating between cycles that probe
for bandwidth and for round-trip time. A simplified life cy-
cle of a flow is shown in Fig. 2. Initially, a flow starts at the
STARTUP phase (a), which is similar to the traditional slow-
start phase. During the STARTUP phase, the algorithm attempts
to rapidly discover the bottleneck bandwidth by doubling its
sending rate every round-trip time. If the packet loss rate or
ECN mark rate increases beyond their respective thresholds,
the inflight hi is set as an estimation of the maximum in-
flight volume. The flow exits the STARTUP phase when contin-
uous bandwidth probes reach either a stable value (plateau) or
the inflight hi is set. The flow then enters the DRAIN phase
(b) which attempts to drain the excessive in-flight bits and the
queue, which may have been formed at the bottleneck link dur-
ing the previous phase, by setting a low pacing (sending) rate.
The flow exits this phase when the in-flight volume is at or be-
low the estimated bandwidth-delay product.

The flow spends most of the remainder of its life into the
CRUISE phase (c), where the sending rate constantly adapts to
control queueing levels. The {bw, inflight} lo tuple is updated
every round-trip time, using also packet loss and ECN signals.
Afterwards, during the PROBE BW:REFILL phase (d), the flow
probes for additional bandwidth and in-flight capacity. The goal
of this phase is to increase the in-flight volume (which was pre-
viously reduced) by sending at the estimated capacity (bottle-
neck bandwidth) for one round-trip time. Note that the expec-
tation in this phase is that queues will not be formed, as the
sending rate is not beyond the estimated bottleneck bandwidth.
Also, if the routers have small buffers, packet losses that are not
due congestion may occur. To avoid a reduction in the sending
rate, which would negatively impact the throughput, the algo-
rithm tolerates up to loss thresh losses every round-trip time.

During bandwidth probing PROBE BW:UP phase, if
inflight hi is fully utilized then it is increased by an

3



in
fl
ig
h
t

Time

STARTUP

in
fl
ig
h
t

Time

Inflight_hi

in
fl
ig
h
t

Time

Inflight_lo

PROBE_BW: CRUISE in
fl
ig
h
t

Time

Inflight_hi

PROBE_BW: REFILL

(a) (b) (c) (d) (e)

Inflight_hi

PROBE_BW: UP
BDPBDPBDP

in
fl
ig
h
t

Time

BDP
Inflight_hi

PROBE_BW: DOWN

DRAIN

Figure 2: Life cycle of a BBRv2 flow and its five phases: (a) STARTUP, (b) DRAIN, (c) PROBE BW: CRUISE, (d) PROBE BW: REFILL and PROBE BW: UP,
and (e) PROBE BW: DOWN.

amount that grows exponentially per round (1, 2, 4, 8 ...
packets). On the other hand, if the loss rate or the ECN
mark rate is too high, then the inflight hi is reduced to
the estimated maximum safe in-flight volume. The flow exits
the PROBE BW:UP phase when the inflight hi is set, or the
estimated queue is high enough (in-flight volume > 1.25 ·
estimated BDP). Finally, the flow enters the PROBE BW:DOWN

phase (e) to drain the queue recently created, and leaves
unused headroom. The flow exits this phase when both of the
following conditions are met: the in-flight volume is below
a headroom margin from the inflight hi and the in-flight
volume is at or below the estimated bandwidth-delay product.

2.2. Active Queue Management and Bufferbloat

AQM encompasses a set of algorithms to reduce network
congestion and queueing delays by preventing buffers from re-
maining full. AQM policies help to mitigate the bufferbloat
problem [17, 22–24], which not only excessively increases the
latency but also decreases the aggregate network throughput
and increases the jitter.

Several schemes have been proposed to mitigate the
bufferbloat problem, such as regulating the sending rate at end
devices (e.g., BBRv1/BBRv2) and implementing AQM poli-
cies at routers to signal imminent congestion. AQM policies
include Controlled Delay (CoDel) [25], Flow Queue CoDel
(FQ-CoDel) [16] and Common Applications Kept Enhanced
(CAKE) [18].

FQ-CoDel. CoDel [25] is a scheduling algorithm that
prevents bufferbloat by limiting the queue size. CoDel mea-
sures the packet delay in the queue, from ingress to egress
through timestamps. It recognizes two types of queues: 1)
good queue, which has a small sojourn time; and 2) bad
queue, which has a high sojourn time. When the bad queue is
manifested, the bufferbloat problem emerges. CoDel does not
rely on estimating RTT or link rate; instead it uses the actual
delay experienced by each packet as a criterion to determine
if a queue is building up. Thus, CoDel can adapt dynamically
to different link rates without impacting the performance.
FQ-CoDel [16] combines fair queueing scheduling and CoDel,
attempting to keep queues short and to provide flow isolation.
The queue used for a flow is selected by using a hashing
function that maps the packets’ flow to the selected queue.
The scheduler selects which queue to be dequeued based on a
deficit round-robin mechanism.

CAKE. This scheduling algorithm is an extension of FQ-
CoDel, designed for home gateways [18]. CAKE uses an
eight-way set-associative hash instead of a direct hash function
as in FQ-CoDel. CAKE provides bandwidth shaping with
overhead compensation for various link layers, differentiated
service handling, and ACK filtering.

3. Related Work

Previous studies focused on BBRv1 and provided an in-
depth analysis of its behavior under various network condi-
tions. Scholz et al. [26] explored features such as bottle-
neck bandwidth overestimation, inter-protocol behavior with
CUBIC, inter-flow synchronization, RTT unfairness, and oth-
ers. Ma et al. [27] conducted an experimental evaluation and
analysis of the fairness of BBRv1. The researchers focused on
the RTT unfairness and proposed BBQ, a solution that provides
better RTT fairness without deviating from Kleinrock’s optimal
operating point. Fejes et al. [28] performed experiments that
combined different AQMs and congestion control algorithms
to analyze fairness and coexistence of flows. The authors con-
cluded that fairness is poor as the assumptions used during the
development of AQMs do not typically hold in real networks.
While the authors tested some congestion control algorithms
and AQMs, they did not report results with FQ-CoDel [16] and
Cake [18]. Their experiments did not consider metrics and net-
work conditions such as RTT, queueing delays, flow completion
time (FCT), retransmission rates, and RTT unfairness. Tahil-
iani et al. [29] studied the differences in perceiving congestion,
from the viewpoint of end systems, between networks that do
not provide explicit feedback and AQMs, and those that provide
feedback and AQMs. They demonstrated that simple feedback
generated at the point of congestion eliminates the congestion
ambiguities faced by end-systems. The authors tested BBRv2
and DCTCP-style ECN [30], and showed that BBRv2 achieves
higher throughput when ECN is enabled in routers. Zhang [14]
conducted experiments on BBRv1 variations, controlling pa-
rameters used to improve the throughput. The tests focused on
the life cycles of BBRv1 variations.

Recent work includes in-network TCP feedback with new-
generation switches [19, 31]. While these protocols cannot be
used without replacing the legacy routers currently used in the
Internet, their results suggest future research directions. Kfoury
et al. [19] proposed a scheme based on programmable switches
to dynamically adjust the rates of competing TCP flows, ac-
cording to the number of flows sharing the bottleneck link. The

4



h100

h1

R1

(Loss/delay 

emulator)

R2 

(Rate limiting 

and AQM)

R3

0
0

Sender

h200

h101

Receiver

Bottleneck link

Figure 3: Topology used for evaluations.

scheme uses a custom protocol that is encapsulated inside the
IP Options header field and requires programmable switches to
parse such header. Li et al. [31] developed High Precision Con-
gestion Control (HPCC), a new congestion control protocol that
leverages in-network telemetry (INT) to obtain precise link load
information. The authors showed that by using programmable
switches and INT, HPCC quickly converges to an equilibrium
point while avoiding congestion and maintaining small queues.

4. Experimental Setup

Fig. 3 shows the topology used to conduct the experiments.
The topology consists of 100 senders (h1, h2, ..., h100), each
opening a TCP connection to a corresponding receiver (h101,
h102, ..., h200). The hosts in the experiments are network
namespaces in Linux. The AQM policy used in routers is the
simple Tail Drop, unless another policy is explicitly stated. The
emulation is conducted on Mininet [32], a lightweight mecha-
nism for isolating network resources. The virtual machine used
for the experiment runs a light Ubuntu (Lubuntu 19.04) distri-
bution and the kernel version is 5.2.0-rc3+. The scripts used
for the emulation are available in the following GitHub reposi-
tory [33]. The emulation scenario was carefully designed, and
sufficient resources were allocated (8 Xeon 6130 cores operat-
ing at 2.1 GHz, with 8GB of RAM) to avoid over-utilization of
resources (e.g., the usage of CPUs was at all times below pru-
dent levels), thus avoiding misleading results. The version of
BBRv2 used in the experiments can be found at [34]. Specif-
ically, the “v2alpha-2019-07-28” release was used. The Fair
Queue (fq) queuing discipline (qdisc) was used on the send-
ing hosts to implement pacing.

Latency/Loss Emulation. The router R1 is used to configure
the propagation delay and random packet loss rate, on the link
connected to router R2. The Network Emulator (NetEm) tool
[35] is used to set these values. All tests are configured with a
total propagation delay of 20ms, unless otherwise specified.

Rate Limitation and Buffer Size. Another important
factor studied in this paper is the impact of the buffer size on
the bottleneck link. The topology of Fig. 3 uses the Linux’s
Token Bucket Filter (TBF) for limiting the link rate and hence

for emulating a bottleneck in the network. TBF is also used to
specify the buffer size on the interface of the router R2, facing
the router R3. The bottleneck bandwidth (link R2-R3) is set
to 1Gbps, unless otherwise specified. All other links have a
capacity of approximately 40Gbps.

Metrics Collection. The tool used to perform the mea-
surements between devices is iPerf3 [36]. Performance metrics
and variables include throughput, retransmission rate, size of
congestion window, RTT, and others. The queue occupancy
on the interface connecting to the bottleneck link is measured
using Linux’s traffic control (tc). The estimated bottleneck
bandwidth in BBRv2, pacing rate, and other internal variables
are measured using Linux’s ss command. The retransmission
rate is calculated using netstat. The Jain’s fairness index is
computed to measure fairness, as described in RFC 5166 [15]:

F =

(
n∑

i=1
Ti

)2

n ·
n∑

i=1
(Ti)2

, (1)

where Ti is the throughput of flow i. For example, in an scenario
with 100 simultaneous flows, n = 100 and i = 1, 2, ..., 100. The
results report the fairness index in percentage, which is given
by multiplying Eq. (1) by 100.

Each test was executed for 300 seconds, unless otherwise
specified. The size of the TCP send and receive buffers
(net.ipv4.tcp wmem and net.ipv4.tcp rmem) on the end-
hosts (senders and receivers) was set to 10 times the bandwidth-
delay product.

5. Results and Evaluation

This section presents the results obtained by running tests in
different network conditions. Every experiment is repeated 10
times and results are averaged for more accuracy.

5.1. Multiple Flows and Buffer Sizes
These tests measure the throughput of a flow and the link

utilization of the bottleneck link. Each test consists of 100 flows
running the same congestion control algorithm: CUBIC, BBR,
or BBRv2. The throughput of each flow over the duration of the
test (300 seconds) is calculated, which produces 100 samples.
As the test is repeated 10 times, the Cumulative Distribution
Function (CDF) of the throughput is constructed with the 1000
samples. The link utilization for a test is obtained by adding
the throughput of the 100 flows corresponding to that test and
dividing this aggregate throughput by the capacity of the link,
1Gbps. The CDF of the link utilization is constructed with the
10 samples.

Fig. 4 shows the CDFs of the throughput when no random
packet losses are emulated, considering various buffer sizes.
Fig. 5 shows their corresponding CDFs of the link utilization.
Figs. 4(a)-(b) and 5(a)-(b) show the results when the buffer size
is small, 0.01BDP and 0.1BDP, respectively. BBRv2’s aver-
age throughput exceeds CUBIC, and is closely similar to that

5



0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=6.2
=0.6
=99.0

BBRv1
=9.4
=1.4
=97.8

BBRv2
=9.4
=0.6
=99.6

(a) Buffer size: 0.01BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=9.1
=0.6
=99.6

BBRv1
=9.5
=1.7
=96.9

BBRv2
=9.4
=0.7
=99.4

(b) Buffer size: 0.1BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=9.3
=0.6
=99.6

BBRv1
=9.5
=3.6
=87.5

BBRv2
=9.3
=7.8
=59.1

(c) Buffer size: 1BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=9.5
=3.2
=89.8

BBRv1
=9.6
=16.9
=24.3

BBRv2
=9.4
=7.0
=64.3

(d) Buffer size: 10BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=9.5
=9.5
=50.4

BBRv1
=9.6
=16.9
=24.3

BBRv2
=9.4
=6.8
=65.7

(e) Buffer size: 100BDP.

Figure 4: Cumulative distribution function of the throughput of CUBIC, BBRv1, and BBRv2, with various buffer sizes and no random packet loss.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=61.9
=0.5

BBRv1
=94.5
=0.2

BBRv2
=93.7
=0.1

(a) Buffer size: 0.01BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=91.2
=0.9

BBRv1
=95.5
=0.6

BBRv2
=94.0
=0.2

(b) Buffer size: 0.1BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=92.6
=0.0

BBRv1
=94.6
=0.6

BBRv2
=93.2
=0.5

(c) Buffer size: 1BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=94.8
=0.1

BBRv1
=95.6
=0.3

BBRv2
=93.7
=0.5

(d) Buffer size: 10BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=95.5
=0.4

BBRv1
=95.7
=0.3

BBRv2
=93.9
=0.4

(e) Buffer size: 100BDP.

Figure 5: Cumulative distribution function of the link utilization of CUBIC, BBRv1, and BBRv2, with various buffer sizes and no random packet loss.

of BBRv1. CUBIC presents lowest throughput and link uti-
lization due to the constant AIMD cycles emerging from fre-
quent packet losses, caused by the small buffer. For BBRv1
and BBRv2, the standard deviation of the throughput is small
and the bottleneck link’s bandwidth is evenly distributed among
the simultaneous flows. Thus, the fairness index is high.

Fig. 4(c) and Fig. 5(c) show the results when the buffer size is
increased to 1BDP. Although the average throughput of BBRv2
is similar to that of CUBIC, its standard deviation is increased,
which indicates that some flows are grabbing more bandwidth
than others, and hence, the fairness index decreases.

Fig. 4(d) shows the results when the buffer size is increased
to 10BDP. The throughput and the link utilization of CUBIC
slightly increase while its fairness index decreases to 89.8%.
Although the throughput and link utilization of BBRv1 and
BBRv2 remain high, their fairness indices are only 24.3% and
64.3%. Thus, for BBRv1 and BBRv2, increasing the buffer size
to 1BDP and above only reduces the fairness.

Figs. 6 and 7 show the results obtained with 1% packet loss
rate. Initially, the same tests were executed with 0.01% packet
loss rate instead of 1%, but the results were very similar to Figs.
4 and 5 due to having a small loss rate distributed among the
100 flows. Thus, 1% loss rate was chosen. With packet losses,
BBRv1 and BBRv2 achieve much higher throughput and link
utilization than CUBIC, independently of the buffer size. How-
ever, when the buffer size is large, 10BDP and 100BDP, see Fig.
6(d)-(e), the fairness index produced by BBRv1 and BBRv2 de-
creases to low levels.

Summary: with small buffers, BBRv1 and BBRv2 produce a
fair bandwidth allocation and high throughput and link utiliza-
tion. With large buffers, the high throughput and the link uti-
lization remain but the fairness decreases significantly. These
two observations indicate that BBRv1 and BBRv2 work bet-
ter with small buffers, as the TCP control loop becomes faster.

Both BBRv1 and BBRv2 have better performance than CUBIC,
especially with random packet losses and small buffers.

5.2. Retransmissions with Multiple Flows

These tests compare the retransmission rate of CUBIC,
BBRv1, and BBRv2 as a function of the number of compet-
ing flows. The buffer size is 0.02BDP and no random packet
losses are introduced. The duration of each test is 300 seconds
and the emulated propagation delay is 100ms.

Fig. 8 shows that the retransmission rate of BBRv1 is signifi-
cantly high with any number of flows. With a single flow, the re-
transmission rate of BBRv1 is around 2.5%, while CUBIC and
BBRv2’s retransmission rates are below 0.1%. When the num-
ber of flows increases to 10, the retransmission rate of BBRv1
increases to approximately 18%, while BBRv2’s retransmission
rate is approximately 2.5%. CUBIC’s retransmission rate re-
mains low at 0.5%. As the number of flows increases, BBRv1’s
retransmission rate continues to increase and is significantly
higher than that of BBRv2. Although the retransmission rate
of CUBIC is lower than that of BBRv2, the throughput is also
lower, see Figs. 4 and 6.

Summary: the retransmission rate of BBRv2 is significantly
lower than that of BBRv1. Thus, BBRv2 successfully reduces
the excessive number of retransmissions of BBRv1. Although
the retransmission rate of CUBIC is low, its throughput is also
low.

5.3. Queueing Delay with Large Buffers

These tests measure the queueing delay when the router’s
buffer size is large. Experiments are analogous to those reported
by the BBRv2’s IETF presentation [13]. The duration of each
test is 300 seconds and the total propagation delay and the band-
width are 30ms and 1Gbps respectively. Various buffer sizes are

6



0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=5.2
=0.4
=99.4

BBRv1
=9.4
=1.4
=97.8

BBRv2
=9.4
=0.6
=99.6

(a) Buffer size: 0.01BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=6.1
=0.7
=98.6

BBRv1
=9.5
=1.7
=96.9

BBRv2
=9.4
=0.7
=99.4

(b) Buffer size: 0.1BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=6.2
=0.8
=98.5

BBRv1
=9.5
=3.4
=88.5

BBRv2
=9.3
=3.2
=89.5

(c) Buffer size: 1BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=6.0
=0.8
=98.2

BBRv1
=9.7
=16.2
=26.4

BBRv2
=9.7
=17.2
=24.1

(d) Buffer size: 10BDP.

0 10 20 30 40 50 60
Throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=6.0
=0.8
=98.3

BBRv1
=9.6
=19.4
=19.8

BBRv2
=9.7
=17.6
=23.4

(e) Buffer size: 100BDP.

Figure 6: Cumulative distribution function of the throughput of CUBIC, BBRv1, and BBRv2, with various buffer sizes and a random packet loss rate of 1%.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=51.9
=0.5

BBRv1
=94.4
=0.3

BBRv2
=93.6
=0.1

(a) Buffer size: 0.01BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=61.1
=1.0

BBRv1
=94.6
=0.8

BBRv2
=93.6
=0.1

(b) Buffer size: 0.1BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=62.0
=1.1

BBRv1
=95.2
=0.9

BBRv2
=92.7
=0.3

(c) Buffer size: 1BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=60.4
=1.4

BBRv1
=96.7
=0.6

BBRv2
=96.9
=1.1

(d) Buffer size: 10BDP.

20 40 60 80 100
Link utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=60.1
=1.1

BBRv1
=96.4
=0.4

BBRv2
=97.0
=0.5

(e) Buffer size: 100BDP.

Figure 7: Cumulative distribution function of the link utilization of CUBIC, BBRv1, and BBRv2, with various buffer sizes and a random packet loss rate of 1%.

used and samples of RTTs are averaged into a smoothed round-
trip time (SRTT).

Fig. 9(a) shows the RTT results, which is the sum of the
queueing delay plus the propagation delay, when two flows are
present. When the buffer size is 1BDP, the queueing delay is
small and packets experience a slight increase above the prop-
agation delay (30ms) with BBRv2. When the buffer size is
10BDP, the RTT of CUBIC increases to approximately 300ms.
On the other hand, the RTTs of BBRv1 and BBRv2 are signifi-
cantly lower, approximately 60ms. As the buffer size increases
to 50BDP and 100BDP, the RTT of CUBIC increases to ap-
proximately 1000ms and 2000ms, respectively. The RTTs of
BBRv1 and BBRv2 remain approximately constant at 60ms.

Figs. 9(b)-(d) show the latency results, when 10, 25, and 50
flows use the same congestion control algorithm. The RTT of
CUBIC decreases as the number of flows increases, especially
with large buffers. With more simultaneous flows, CUBIC’s
congestion window is relatively small and the throughput per
flow decreases, which reduces the buffer occupancy. BBRv1
and BBRv2 maintain low RTTs, between 50-75ms.

100 101 102

Number of flows

0

5

10

15

20

25

30

Re
tra

ns
m

iss
io

n 
ra

te
 [%

] CUBIC
BBRv1
BBRv2

Figure 8: Retransmission rate as a function of the number of flows. The buffer
size is 0.02BDP.

Summary: BBRv1 and BBRv2 maintain relatively low
queueing delay, independently of the number of flows and the
buffer size. CUBIC has a high queueing delay with large
buffers, in particular when the number of simultaneous flows
in the network is small.

5.4. Throughput and Retransmissions as a Function of Packet
Loss Rate

These tests measure the throughput and the retransmission
rate of a single TCP flow as a function of the packet loss rate,
using CUBIC, BBR, and BBRv2. Tests with buffer sizes of
0.1BDP and 1BDP are conducted. The total propagation delay
is 100ms.

Fig. 10(a) shows that BBRv1 and BBRv2 achieve higher
throughput than CUBIC when the buffer size is 0.1BDP. When
the packet loss rate is lower than 1%, BBRv1 and BBRv2 have
a steady throughput of approximately 900Mbps. At that rate,
the throughput of BBRv2 decreases to 600Mbps while that of
BBRv2 remains at 900Mbps. When the packet loss rate in-
creases to 10%, the throughput of BBRv2 collapses while that
of BBRv1 decreases to 600Mbps. Although BBRv1 has a
higher throughput than BBRv2, its retransmission rate is also
higher, as shown in Fig. 10(b). BBRv1 is loss-agnostic, which
leads to a higher retransmission rate, in particular when the
buffer size is small. On the other hand, BBRv2 uses the packet
loss rate as a signal to adjust the sending rate, as shown in Fig.
1.

Fig. 10(c) shows the throughput when the buffer size is
1BDP. The throughput of BBRv2 decreases to 800Mbps when
the packet loss rate is 1%, and collapses as the rate increases
further. BBRv1 achieves a better throughput than BBRv2 when
the packet loss rate exceeds 0.1%. Both BBRv1 and BBRv2
significantly outperform CUBIC in throughput. Fig. 10(d)

7



1 10 50 100
Buffer size [BDP]

101

102

103

104

RT
T 

[m
s]

CUBIC
BBRv1
BBRv2

(a) Round-trip time, 2 flows.

1 10 50 100
Buffer size [BDP]

101

102

103

104

RT
T 

[m
s]

CUBIC
BBRv1
BBRv2

(b) Round-trip time, 10 flows.

1 10 50 100
Buffer size [BDP]

101

102

103

104

RT
T 

[m
s]

CUBIC
BBRv1
BBRv2

(c) Round-trip time, 25 flows.

1 10 50 100
Buffer size [BDP]

101

102

103

104

RT
T 

[m
s]

CUBIC
BBRv1
BBRv2

(d) Round-trip time, 50 flows.

Figure 9: Round-trip time experienced by packets with: (a) 2 simultaneous flows; (b) 10 simultaneous flows; (c) 25 simultaneous flows; and (d) 50 simultaneous
flows in the network. The total propagation delay is 30ms.

shows the retransmission rate when the buffer is 1BDP. BBRv1
and BBRv2 have similar retransmission rates.

Summary: BBRv2 can tolerate up to approximately 1%
of random packet loss rate without a significant performance
degradation, which is much higher than the packet loss rate tol-
erated by CUBIC but lower than that of BBRv1. On the other
hand, with a small buffer, the retransmission rate of BBRv2 is
significantly lower than that of BBRv1.

5.5. Coexistence and Fairness with CUBIC

These tests investigate the capabilities of BBRv1 and BBRv2
to coexist with CUBIC, with different buffer sizes. Four types
of experiments are considered: 1) a single BBRv1 flow compet-
ing with a single CUBIC flow; 2) 50 BBRv1 flows competing
with 50 CUBIC flows; 3) a single BBRv2 flow competing with
a single CUBIC flow; and 4) 50 BBRv2 flows competing with
50 CUBIC flows. Experiments with and without random packet
losses are conducted.

The middle and bottom graphs of Fig. 11(a) show the
throughput as a function of the buffer size. The top graph shows
the corresponding fairness index. When the buffer size is below
1BDP, BBRv1 consumes approximately 90% of the bandwidth.
On the other hand, BBRv2 shows a better coexistence with CU-
BIC, in particular with a small buffer. When the buffer size ex-
ceeds 1BDP, CUBIC starts consuming more bandwidth. When
the buffer is significantly large, 100BDP, the fairness index de-
creases to approximately 60%.

Fig. 11(b) shows the results with a random packet loss rate
of 0.01%. When the buffer size is below 1BDP, BBRv2 has
higher throughput than CUBIC, yet both achieve comparable

throughput. This result is reflected in the fairness index, which
is always above 80%. In contrast, when the buffer size is below
1BDP, BBRv1 consumes most of the bandwidth, leading to a
poor performance of the CUBIC flow. The corresponding fair-
ness index is below 60%. This index increases to approximately
100% only when the buffer size is very large, 100BDP.

Figs. 11(c) and 11(d) show the results with 50
BBRv1/BBRv2 flows competing with 50 CUBIC flows, with
and without random packet losses. BBRv2 achieves better
throughput than CUBIC, independently of the buffer size, and
the fairness index is always above 80%. On the other hand,
BBRv1 consumes most of the bandwidth, in particular when the
buffer size is below 1BDP. When no random packet losses are
configured and when the buffer size is above 4BDP, the through-
put of BBRv1 and CUBIC are similar and the fairness index
increases.

Fig. 12 evaluates the impact of the number of competing
flows on the throughput share per congestion control algorithm.
The dashed lines represent the ideal fair share, while the solid
lines represent the measured share. It can be seen that gener-
ally BBRv2 flows claim more bandwidth than their fair shares
when competing against CUBIC flows. Nevertheless, as the
number of BBRv2 flows increases, CUBIC’s bandwidth share
approaches the ideal share; for example, with 10 BBRv2 flows
and two CUBIC flows, the achieved share is exactly the fair
share.

Fig. 13 shows the heatmaps of the fairness index. The tests
consider two competing flows (CUBIC and BBRv2), different
buffer sizes, without random packet losses and with 0.01% ran-
dom packet loss rate. Each entry in a heatmap was generated by

10 4 10 3 10 2 10 1 100 101

Packet loss rate [%]

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv1 BBRv2

(a) Buffer size: 0.1BDP.

10 4 10 3 10 2 10 1 100 101

Packet loss rate [%]

10 3

10 2

10 1

100

101

102

Re
tra

ns
m

iss
io

n 
ra

te
 [%

] CUBIC BBRv1 BBRv2

(b) Buffer size: 0.1BDP.

10 4 10 3 10 2 10 1 100 101

Packet loss rate [%]

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv1 BBRv2

(c) Buffer size: 1BDP.

10 4 10 3 10 2 10 1 100 101

Packet loss rate [%]

10 3

10 2

10 1

100

101

102

Re
tra

ns
m

iss
io

n 
ra

te
 [%

] CUBIC BBRv1 BBRv2

(d) Buffer size: 1BDP.

Figure 10: Throughput and retransmission rate as functions of the packet loss rate. The buffer size is: (a), (b): 0.1BDP, and (c), (d): 1BDP.

8



0

100

Fa
irn

es
s [

%
]

CUBIC - BBRv1 CUBIC - BBRv2

0

1000 CUBIC BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1000

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv2

(a) No packet loss, 2 flows.

0

100

Fa
irn

es
s [

%
]

CUBIC - BBRv1 CUBIC - BBRv2

0

1000 CUBIC BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1000

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv2

(b) 0.01% packet loss rate, 2 flows.

0

100

Fa
irn

es
s [

%
]

CUBIC - BBRv1 CUBIC - BBRv2

0

1000 CUBIC BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1000

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv2

(c) No packet loss, 100 flows.

0

100

Fa
irn

es
s [

%
]

CUBIC - BBRv1 CUBIC - BBRv2

0

1000 CUBIC BBRv1

10 1 100 101 102

Buffer size [BDP]
0

1000

Th
ro

ug
hp

ut
 [M

bp
s]

CUBIC BBRv2

(d) 1% packet loss rate, 100 flows.

Figure 11: Throughput and fairness index as functions of the buffer size. (a) 2 flows: one BBRv1 (middle graph) / BBRv2 (bottom graph) flow and one CUBIC
flow, with no random packet losses; (b) 2 flows: one BBRv1/BBRv2 flow and one CUBIC flow, with a random packet loss rate of 0.01%; (c) 100 flows: 50
BBRv1/BBRv2 flows and 50 CUBIC flows, with no random packet losses; and (d) 100 flows: 50 BBRv1/BBRv2 flows and 50 CUBIC flows, with a random packet
loss rate of 1%.

running 10 experiments, calculating the average fairness value,
and coloring the entry according to that value. Additionally, an
entry includes three values: the link utilization of the bottleneck
link in percentage (center top value), the percentage of band-
width used by CUBIC (bottom left value), and the percentage
of bandwidth used by BBRv2 (bottom right value). The rows
and columns correspond to the bandwidth of the bottleneck link
and the propagation delay respectively. For simplicity, the prop-
agation delay is referred to as delay hereon.

Fig. 13(a)-(c) show the heatmap with no random packet
losses. When the buffer size is small, see Fig. 13(a), the
heatmap illustrates a low fairness index. Even with small BDP
values (upper left entries of the matrix), BBRv2 is allocated
more bandwidth than CUBIC. The latter presents low band-
width allocation because of the constant AIMD cycles emerg-
ing from frequent packet losses due to the small buffer. When
the bandwidth (lower left entries), the delay (upper right en-
tries), or both increase, the fairness index decreases further.
This is clearly noted for large BDP values (lower right entries),
where the bandwidth allocated to CUBIC collapses as that of
BBRv2 surges. As a traditional loss-based congestion control
algorithm, CUBIC throughput is inversely proportional to the
RTT and the square root of the packet loss rate [37]. Because
of this relationship, its performance is poor with large BDP val-
ues. On the other hand, the above relation does not apply to

1 2 3 4 5 6 7 8 9 10
Number of CUBIC flows

0

20

40

60

80

100

To
ta

l s
ha

re
 o

f C
UB

IC
 fl

ow
s [

%
] # BBRv2 flows

1 2 3 5 10

Figure 12: Bandwidth share for competing CUBIC and BBRv2 flows. The
dashed lines show the ideal fair share and the solid lines show the measured
share.

BBRv2. Moreover, BBRv2 actively measures the propagation
delay and the available bandwidth to estimate the number of
packets that can be in-flight, leading to a better utilization of
the bandwidth. Note that when the bandwidth is 20Mbps and
the delay is 20ms, the buffer can only hold one packet, which
leads to a low link utilization.

When the buffer size is 1BDP, see Fig. 13(b), packet losses
due to buffering at the router decrease. Consequently, CUBIC
utilizes more bandwidth and a better fairness index is observed.
Increasing the buffer size further to 10BDP, however, results in
lower fairness index, see Fig. 13(c). When the BDP is small
(upper right entries), CUBIC fills the buffer and uses most of
the bandwidth, while BBRv2 is allocated the remaining capac-
ity. As the bandwidth (lower left entries) or the delay (upper
right entries) increases, the bandwidth is more evenly allocated.
When the BDP is large (lower right corner), the performance
of CUBIC deteriorates and BBRv2 utilizes the available band-
width.

When random packet losses are injected, see Fig. 13(d)-(f),
the fairness index is similar to the results observed in Fig. 13(a)-
(c). A larger bandwidth allocation for BBRv2 is more evident
as the BDP increases (lower right corner) and CUBIC is unable
to use its share of the bandwidth.

Summary: BBRv2 shows a better coexistence with CUBIC
than BBRv1. Additionally, as the number of flows increases,
the aggregate throughput observed in BBRv2 is more consistent
than that of BBRv1, independently of the buffer size. There-
fore, when BBRv2 is used, selecting the correct buffer size is
not as important as it is when loss-based congestion control al-
gorithms are used. Furthermore, as the number of BBRv2 flows
increases when competing against CUBIC, the bandwidth share
of CUBIC approaches the ideal share. When the buffer size
is 1BDP, BBRv2 demonstrates good coexistent with CUBIC.
BBRv2 is also able to use the available bandwidth in networks
with small buffer size and in networks with large BDP. In such
scenarios, additional bandwidth is available because of the in-
ability of CUBIC to use its share.

5.6. Round-trip Time Unfairness
The literature has reported that BBRv1 suffers from RTT un-

fairness [27]. Unlike traditional congestion control algorithms,

9



10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000

Bo
ttl

en
ec

k 
ba

nd
wi

dt
h 

[M
pb

s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

9
8 1

91
27 64

92
31 61

93
36 57

93
29 64

93
40 53

93
32 61

93
34 59

93
23 70

93
20 73

92
9 83

93
17 76

94
28 66

92
39 53

92
33 59

92
30 62

92
23 69

92
22 70

92
15 77

91
15 76

90
12 78

92
7 85

92
31 61

92
36 56

92
41 51

93
41 52

91
29 62

92
23 69

91
18 73

91
16 75

92
15 77

90
10 80

91
13 78

91
38 53

92
36 56

92
36 56

92
37 55

91
27 64

91
19 72

91
16 75

91
16 75

91
13 78

91
16 75

91
7 84

91
32 59

91
41 50

91
31 60

92
38 54

91
28 63

91
16 75

91
16 75

91
16 75

92
12 80

90
18 72

91
11 80

89
36 53

90
30 60

93
34 59

94
39 55

91
26 65

92
20 72

91
19 72

92
21 71

91
20 71

89
18 71

87
18 69

92
32 60

91
36 55

91
19 72

92
32 60

89
23 66

91
23 68

91
28 63

92
15 77

92
18 74

89
12 77

89
27 62

94
3 91

92
12 80

91
12 79

89
13 76

90
11 79

93
10 83

90
5 85

91
13 78

91
3 88

90
6 84

89
3 86

93
15 78

92
13 79

91
12 79

90
6 84

89
2 87

92
6 86

89
6 83

92
7 85

91
8 83

89
3 86

89
3 86

88
40 48

93
23 70

90
6 84

90
2 88

91
6 85

91
5 86

90
6 84

91
3 88

91
7 84

90
4 86

87
1 86

93
30 63

92
5 87

91
6 85

91
2 89

89
2 87

92
2 90

90
3 87

92
2 90

90
3 87

89
2 87

84
0 84 50

60

70

80

90

100

(a) Buffer size: 0.1BDP.

10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000
Bo

ttl
en

ec
k 

ba
nd

wi
dt

h 
[M

pb
s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

95
50 45

96
59 37

96
64 32

95
62 33

95
58 37

96
60 36

96
62 34

95
70 25

95
59 36

95
62 33

95
62 33

95
63 32

95
65 30

95
67 28

96
70 26

95
55 40

95
52 43

95
58 37

95
61 34

95
53 42

95
58 37

95
57 38

95
58 37

95
63 32

95
56 39

95
59 36

95
61 34

96
62 34

95
59 36

95
55 40

95
61 34

96
52 44

95
55 40

96
61 35

95
60 35

96
60 36

95
57 38

95
56 39

96
58 38

95
56 39

95
58 37

95
56 39

95
54 41

95
59 36

95
61 34

95
64 31

96
61 35

95
48 47

96
57 39

95
62 33

96
51 45

96
59 37

96
41 55

95
52 43

95
55 40

95
65 30

95
57 38

96
60 36

95
64 31

96
65 31

95
59 36

96
48 48

95
52 43

95
39 56

95
48 47

95
56 39

95
66 29

96
48 48

95
71 24

95
56 39

95
56 39

96
68 28

96
49 47

95
54 41

95
52 43

95
46 49

95
50 45

95
63 32

95
63 32

96
49 47

95
61 34

95
62 33

95
60 35

96
53 43

95
37 58

95
59 36

95
56 39

95
53 42

95
64 31

96
64 32

96
50 46

95
43 52

95
67 28

96
57 39

96
59 37

95
58 37

95
52 43

96
62 34

95
58 37

95
67 28

96
63 33

95
59 36

95
65 30

95
58 37

95
62 33

95
56 39

95
49 46

96
66 30

95
48 47

96
62 34

96
65 31

95
62 33

95
67 28

95
66 29

96
58 38

95
55 40

96
62 34

95
56 39

96
62 34

95
67 28

93
19 74 50

60

70

80

90

100

(b) Buffer size: 1BDP.

10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000

Bo
ttl

en
ec

k 
ba

nd
wi

dt
h 

[M
pb

s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

96
78 18

95
86 9

96
80 16

96
85 11

95
80 15

95
79 16

95
78 17

95
70 25

95
71 24

95
81 14

96
75 21

96
75 21

95
77 18

95
73 22

96
72 24

95
80 15

96
80 16

95
74 21

95
74 21

95
70 25

96
74 22

95
70 25

95
81 14

95
64 31

95
70 25

95
76 19

96
76 20

95
70 25

95
72 23

95
66 29

95
67 28

95
67 28

96
67 29

95
71 24

95
59 36

95
64 31

96
64 32

95
65 30

95
65 30

95
62 33

96
63 33

96
57 39

95
58 37

96
59 37

95
63 32

96
66 30

95
64 31

95
64 31

95
71 24

95
55 40

96
56 40

95
67 28

95
66 29

95
64 31

95
59 36

96
73 23

95
56 39

96
66 30

96
70 26

95
55 40

95
61 34

95
65 30

95
64 31

96
55 41

96
55 41

95
55 40

95
67 28

95
53 42

96
57 39

96
60 36

96
53 43

96
60 36

95
54 41

95
58 37

95
51 44

95
60 35

95
56 39

95
65 30

96
74 22

95
60 35

95
76 19

95
65 30

95
68 27

95
59 36

95
62 33

96
60 36

95
59 36

95
53 42

95
68 27

96
54 42

95
70 25

95
62 33

95
57 38

96
56 40

95
65 30

96
62 34

95
55 40

95
61 34

96
46 50

96
67 29

95
65 30

95
58 37

96
62 34

96
56 40

96
61 35

95
68 27

96
58 38

96
58 38

95
55 40

93
4 89

95
61 34

95
65 30

95
59 36

95
60 35

95
59 36

95
59 36

49
25 24

96
40 56

94
5 89

93
4 89

91
2 89 50

60

70

80

90

100

(c) Buffer size: 10BDP.

10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000

Bo
ttl

en
ec

k 
ba

nd
wi

dt
h 

[M
pb

s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

8
7 1

91
28 63

92
29 63

93
34 59

93
31 62

92
38 54

94
31 63

93
31 62

93
22 71

93
20 73

93
7 86

93
21 72

93
32 61

92
34 58

92
31 61

93
33 60

92
21 71

92
21 71

92
16 76

93
13 80

90
12 78

91
7 84

93
29 64

92
38 54

91
38 53

92
37 55

91
26 65

92
19 73

91
15 76

91
15 76

91
16 75

92
11 81

90
9 81

91
37 54

92
40 52

91
35 56

92
30 62

91
23 68

92
16 76

91
16 75

91
14 77

92
15 77

91
11 80

91
8 83

91
38 53

91
43 48

91
32 59

91
29 62

90
23 67

91
20 71

90
14 76

91
14 77

91
12 79

91
10 81

89
8 81

83
49 34

86
11 75

91
44 47

90
19 71

88
16 72

92
26 66

91
10 81

92
11 81

90
13 77

89
15 74

89
8 81

83
31 52

85
30 55

90
16 74

88
29 59

90
12 78

91
16 75

88
7 81

88
4 84

90
14 76

86
12 74

88
4 84

78
59 19

89
26 63

83
28 55

90
18 72

91
24 67

93
11 82

90
8 82

89
8 81

90
9 81

82
17 65

86
9 77

89
31 58

82
13 69

91
22 69

90
3 87

90
11 79

92
7 85

91
3 88

90
4 86

89
3 86

89
3 86

87
5 82

86
30 56

85
20 65

91
6 85

88
4 84

88
6 82

90
3 87

89
3 86

91
1 90

90
4 86

89
4 85

88
2 86

88
35 53

81
12 69

91
3 88

90
3 87

89
1 88

91
1 90

90
2 88

90
2 88

91
2 89

88
2 86

86
3 83 50

60

70

80

90

100

(d) Buffer size: 0.1BDP.

10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000

Bo
ttl

en
ec

k 
ba

nd
wi

dt
h 

[M
pb

s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

95
48 47

95
62 33

95
60 35

95
66 29

95
60 35

95
56 39

96
60 36

95
53 42

96
58 38

96
60 36

95
59 36

95
61 34

96
66 30

96
58 38

95
56 39

96
58 38

95
55 40

95
52 43

96
55 41

96
59 37

95
57 38

95
51 44

95
60 35

95
57 38

95
51 44

95
57 38

96
40 56

96
38 58

95
54 41

96
50 46

96
56 40

95
43 52

95
49 46

95
62 33

96
67 29

95
56 39

95
55 40

95
56 39

96
52 44

95
43 52

95
53 42

95
47 48

95
44 51

95
44 51

95
60 35

96
52 44

95
47 48

95
57 38

96
55 41

95
56 39

95
55 40

96
34 62

95
45 50

95
49 46

95
35 60

95
61 34

95
48 47

95
60 35

93
51 42

95
56 39

95
42 53

96
53 43

96
49 47

95
32 63

95
35 60

96
44 52

95
50 45

95
57 38

96
61 35

96
57 39

95
47 48

96
46 50

95
56 39

95
29 66

96
35 61

95
45 50

95
32 63

96
57 39

95
38 57

95
42 53

95
31 64

94
25 69

96
29 67

95
29 66

91
14 77

95
42 53

95
27 68

95
29 66

95
66 29

96
50 46

95
52 43

95
36 59

80
29 51

95
41 54

95
21 74

94
51 43

95
36 59

95
24 71

95
30 65

96
64 32

94
64 30

89
46 43

92
34 58

95
38 57

96
41 55

96
40 56

93
33 60

95
35 60

94
19 75

95
29 66

95
45 50

76
30 46

65
28 37

96
41 55

63
27 36

92
30 62

95
33 62

94
6 88

94
16 78

92
11 81

83
7 76 50

60

70

80

90

100

(e) Buffer size: 1BDP.

10 20 30 40 50 60 70 80 90 100 200

20

40

60

80

100

200

400

600

800

1000

2000

Bo
ttl

en
ec

k 
ba

nd
wi

dt
h 

[M
pb

s]

Propagation delay [ms]

Fa
irn

es
s [

%
]

96
67 29

96
75 21

96
69 27

95
78 17

96
67 29

95
77 18

96
58 38

95
63 32

95
59 36

96
69 27

95
58 37

96
77 19

95
79 16

95
80 15

95
58 37

95
72 23

96
54 42

95
57 38

95
50 45

95
65 30

95
56 39

96
57 39

95
76 19

95
63 32

95
60 35

95
58 37

95
59 36

95
52 43

96
55 41

96
56 40

95
52 43

96
59 37

95
34 61

96
79 17

95
59 36

95
50 45

95
66 29

96
68 28

96
61 35

96
48 48

95
59 36

96
53 43

95
43 52

95
58 37

95
75 20

96
51 45

96
60 36

95
80 15

95
48 47

95
54 41

96
43 53

95
58 37

95
42 53

95
52 43

95
54 41

95
48 47

95
57 38

95
63 32

96
54 42

96
61 35

96
49 47

95
51 44

95
45 50

95
54 41

95
41 54

96
59 37

95
58 37

95
53 42

96
55 41

95
54 41

95
44 51

95
55 40

96
42 54

96
55 41

95
35 60

95
61 34

95
20 75

96
79 17

95
38 57

95
37 58

95
44 51

95
41 54

96
41 55

95
24 71

95
41 54

96
51 45

95
12 83

95
18 77

95
48 47

95
52 43

95
47 48

95
50 45

96
48 48

95
42 53

95
26 69

96
39 57

95
10 85

95
36 59

95
27 68

95
57 38

95
75 20

93
60 33

96
43 53

96
29 67

95
26 69

95
17 78

95
33 62

95
25 70

95
36 59

93
7 86

96
40 56

96
40 56

95
25 70

95
48 47

94
10 84

95
37 58

94
15 79

95
16 79

95
28 67

95
24 71

86
9 77 50

60

70

80

90

100

(f) Buffer size: 10BDP.

Figure 13: Fairness index visualized in a heatmap for CUBIC and BBRv2 flows. Each entry in a heatmap includes three numbers: the percentage of the link
utilization at the bottleneck link (center top) and the percentage of bandwidth used by the CUBIC flow (bottom left) and the BBRv2 flow (bottom right). (a)-(c) No
packet loss. (d)-(f) 0.01% packet loss rate.

which favor flows with small RTTs, BBRv1 allocates more
bandwidth to flows with large RTTs. According to [27], this
bias presents a tradeoff between low latency and high delivery
rate and therefore violates the engineering efforts of minimiz-
ing latency. It also disrupts the concept of finding a route with
the minimum RTT.

These tests compare the RTT unfairness of BBRv1 and
BBRv2, and investigate whether this limitation is mitigated by
BBRv2. The tests incorporate one flow with a propagation de-
lay of 10ms competing with another flow with a propagation
delay of 50ms. The tests are executed 10 times and the aver-
age is reported. Four types of experiments are considered: 1)
two competing BBRv1 flows. Router R2 implements a sim-
ple Tail Drop policy; 2) two competing BBRv2 flows. Router
R2 implements a simple Tail Drop policy; 3) two competing
BBRv1 flows. Router R2 implements FQ-CoDel policy; and
4) two competing BBRv2 flows. Router R2 implements FQ-
CoDel policy. The severity of RTT unfairness is also related to
the buffer size. Thus, the throughput and fairness are reported
as a function of the buffer size. Fig. 14(a) shows the throughput
of BBRv1 flows, for experiment 1. When the buffer size is be-
low 1BDP, the two flows receive similar amounts of bandwidth
and the fairness index is approximately 100%. When the buffer
size increases above 1BDP, the flow with 50ms RTT receives
more bandwidth than the flow with 10ms RTT; at 3BDP and

above, the flow with 50ms RTT receives approximately 85% of
the bandwidth and the fairness index remains at approximately
60%.

Fig. 14(b) shows the throughput of BBRv2 flows, for experi-
ment 2. At the tested buffer sizes, the two flows receive similar
amounts of bandwidth and the fairness index is always above
85%. Figs. 14(c) and 14(d) show that by using FQ-CoDel, the
RTT unfairness is eliminated and the fairness index is 100% for
both BBRv1 and BBRv2.

Fig. 15 shows the average retransmission rates generated by
BBRv1 and BBRv2 (i.e., the average of the retransmission rates
observed in both flows, the one with propagation delay of 10ms
and the one with propagation delay of 50ms), with Tail Drop
and FQ-CoDel policies. The results indicate that the retrans-
mission rate generated by BBRv2 is low, independently of the
queue management algorithm and the buffer size. On the other
hand, the retransmission rate generated by BBRv1 is high when
the Tail Drop policy is used and when the buffer size is below
1BDP, see Fig. 15(a). Applying FQ-CoDel helps to reduce the
retransmission rate of BBRv1, see Fig. 15(b).

Summary: BBRv2 enhances the coexistence of flows with
different RTTs, mitigating the RTT unfairness problem. Also,
by using an AQM algorithm such as FQ-CoDel to manage the
buffer delay, oversized buffers are made irrelevant, without neg-
atively impacting the bottleneck link utilization. The AQM al-

10



0

50

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

500

1000

Th
ro

ug
hp

ut
 [M

bp
s]

10 ms 50 ms

(a) BBRv1 with Tail Drop policy.

0

50

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

500

1000

Th
ro

ug
hp

ut
 [M

bp
s]

10 ms 50 ms

(b) BBRv2 with Tail Drop policy.

0

50

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

500

1000

Th
ro

ug
hp

ut
 [M

bp
s]

10 ms 50 ms

(c) BBRv1 with FQ-CoDel policy.

0

50

100

Fa
irn

es
s [

%
]

Fairness

10 1 100 101 102

Buffer size [BDP]
0

500

1000

Th
ro

ug
hp

ut
 [M

bp
s]

10 ms 50 ms

(d) BBRv2 with FQ-CoDel policy.

Figure 14: Throughput and fairness index as functions of the buffer size, for two competing flows: one flow has 10ms RTT and another has 50ms RTT. (a) Flows
use BBRv1 and the router R2 implements a simple Tail Drop policy. (b) Flows use BBRv2 and the router R2 implements a simple Tail Drop policy. (c) Flows use
BBRv1 and the router R2 implements FQ-CoDel policy. (d) Flows use BBRv2 and the router R2 implements FQ-CoDel policy.

gorithm also helps to reduce the retransmission rate of BBRv1.

5.7. Flow Completion Time (FCT)

These tests compare the flow completion times (FCTs) us-
ing different congestion control algorithms, considering several
buffer sizes. Five types of experiments are conducted: 1) 100
flows using the same congestion control algorithm (CUBIC,
BBRv1, and BBRv2); 2) 50 flows using CUBIC and 50 flows
using BBRv2; 3) 50 flows using CUBIC and 50 flows using
BBRv1; 4) the same composition of flows as in experiment 2,
but incorporating a random packet loss rate of 1%; and 5) the
same composition of flows as in experiment 3, but incorporating
a random packet loss rate of 1%. Each experiment is repeated
ten times and the average is reported.

Fig. 16 shows the results for experiment 1, where each flow
completes a data transfer of 10 Gigabytes (GB). Consider first
the case when no random packet losses are introduced, Fig.
16(a). When the buffer size is 0.1BDP, the completion time of
flows using CUBIC increases considerable with respect to those
flows using BBRv1 and BBRv2, as frequent packet losses occur
at the router and the bottleneck link is poorly utilized. When the
buffer size is 0.2BDP and larger, the completion time is approx-
imately 90s in all cases, independently of the congestion control
algorithm. Note that although relatively small when compared
with the rule-of-thumb, 1BDP, a buffer size of 0.2BDP is ac-
ceptable for these experiments, because the number of flows is
large, 100. This result is aligned with the buffer size rule pro-

10 1 100 101 102

Buffer size [BDP]

10 2

10 1

100

101

102

Re
tra

ns
m

iss
io

n 
ra

te
 [%

] BBRv1 BBRv2

(a) Retransmissions, Tail Drop.

10 1 100 101 102

Buffer size [BDP]

10 2

10 1

100

101

102

Re
tra

ns
m

iss
io

n 
ra

te
 [%

] BBRv1 BBRv2

(b) Retransmissions, FQ-CoDel.

Figure 15: Retransmission rate generated by BBRv1 and BBRv2, with: (a)
a simple Tail Drop policy implemented at router R2, and (b) with FQ-CoDel
policy implemented at router R2.

posed by Appenzeller et al. [38], who stated that a buffer size of
(RTT·bottleneck bandwidth)/

√
N bits is sufficient for a full uti-

lization of the bottleneck link, where N is the number of flows.
Consider now Fig. 16(b). In the presence of a packet loss rate
of 1%, the completion time of flows using BBRv1 and BBRv2
is still approximately 90s. Meanwhile, the completion time of
flows using CUBIC increases substantially. Thus, BBRv1 and
BBRv2 have a better performance than CUBIC, as they are less
sensitive to random packet losses.

Fig. 17 shows the results for experiment 2, where each flow
completes a data transfer of 100 Megabytes (MB). When the
buffer size is 0.1BDP, see Fig. 17(a), the completion time
of flows using BBRv2 is approximately between 50s and 60s,
whereas the completion time of flows using CUBIC is approx-
imately between 80s to 90s. As the buffer size increases to
0.5BDP and 1BDP, see Figs. 17(b) and 17(c), the gap be-
tween the completion time of flows using BBRv2 and CUBIC
is slightly reduced. As the buffer size increases to 10BDP and
100BDP, see Figs. 17(d) and 17(e), the variability of the com-
pletion time of flows using both BBRv2 and CUBIC increases,
and values vary between 20s and 70s for BBRv2, and between
18s and 80s for CUBIC.

Fig. 18 shows the results for experiment 3, where each flow
completes a data transfer of 100 Megabytes (MB). Similar to
BBRv2, BBRv1 has a smaller FCT than CUBIC, independently
of the buffer size. BBRv1’s FCT is smaller than BBRv2 due its
aggressiveness when competing with CUBIC.

Fig. 19 shows the results for experiment 4, where the sce-

10 1 100 101 102

Buffer size [BDP]

0

50

100

150

200

250

FC
T 

[s
ec

on
ds

]

CUBIC BBRv1 BBRv2

(a) No random packet losses.

10 1 100 101 102

Buffer size [BDP]

0

50

100

150

200

250

FC
T 

[s
ec

on
ds

]

CUBIC BBRv1 BBRv2

(b) 0.01% random packet loss rate.

Figure 16: Flow completion time as a function of the buffer size with: (a) no
random packet losses; and (b) random packet loss rate of 0.01%.

11



0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 85.2
= 1.3

BBRv2
= 57.2
= 1.4

(a) Buffer size: 0.1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 84.1
= 1.3

BBRv2
= 69.9
= 2.1

(b) Buffer size: 0.5BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 83.1
= 1.5

BBRv2
= 66.3
= 4.7

(c) Buffer size: 1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 73.6
= 10.2

BBRv2
= 50.1
= 10.9

(d) Buffer size: 10BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 71.2
= 13.8

BBRv2
= 49.5
= 7.6

(e) Buffer size: 100BDP.

Figure 17: Cumulative distribution function of the flow completion time, for 50 flows using CUBIC and 50 flows using BBRv2, with various buffer sizes and no
random packet losses.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=84.7
=6.8

BBRv1
=41.4
=2.5

(a) Buffer size: 0.1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=84.4
=2.5

BBRv1
=40.0
=3.2

(b) Buffer size: 0.5BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=83.9
=2.1

BBRv1
=39.0
=3.4

(c) Buffer size: 1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=75.7
=9.7

BBRv1
=56.0
=11.9

(d) Buffer size: 10BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=72.4
=19.0

BBRv1
=54.3
=15.1

(e) Buffer size: 100BDP.

Figure 18: Cumulative distribution function of the flow completion time, for 50 flows using CUBIC and 50 flows using BBRv1, with various buffer sizes and no
random packet losses.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 127.9
= 2.4

BBRv2
= 56.3
= 1.2

(a) Buffer size: 0.1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 119.4
= 4.1

BBRv2
= 58.8
= 2.4

(b) Buffer size: 0.5BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 121.9
= 3.5

BBRv2
= 55.5
= 3.4

(c) Buffer size: 1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

CUBIC
= 125.2
= 4.5

BBRv2
= 44.0
= 10.1

(d) Buffer size: 10BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
= 124.2
= 3.3

BBRv2
= 44.0
= 10.4

(e) Buffer size: 100BDP.

Figure 19: Cumulative distribution function of the flow completion time, for 50 flows using CUBIC and 50 flows using BBRv2, with various buffer sizes and a
random packet loss rate of 1%.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=154.6
=9.9

BBRv1
=41.2
=2.6

(a) Buffer size: 0.1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=153.2
=10.4

BBRv1
=39.8
=3.1

(b) Buffer size: 0.5BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=150.8
=10.0

BBRv1
=38.8
=3.1

(c) Buffer size: 1BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=141.5
=10.8

BBRv1
=39.9
=13.6

(d) Buffer size: 10BDP.

0 40 80 120 160 200 240
Flow completion time [seconds]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CUBIC
=142.5
=10.0

BBRv1
=38.2
=12.8

(e) Buffer size: 100BDP.

Figure 20: Cumulative distribution function of the flow completion time, for 50 flows using CUBIC and 50 flows using BBRv1, with various buffer sizes and a
random packet loss rate of 1%.

nario is similar to experiment 2, with the addition of a packet
loss rate of 1%. The completion time of flows using BBRv2
is similar to that observed in experiment 2, where no random
packet losses were introduced. BBRv2 is not affected by such
packet loss rate and correctly estimates the bottleneck band-
width and sending rate. On the other hand, the flow completion
time of flows using CUBIC substantially increases, indepen-
dently of the buffer size, to values between approximately 100s
and 135s.

Fig. 20 shows the results for experiment 5, where the sce-
nario is similar to experiment 3, with the addition of a packet

loss rate of 1%. Similar to BBRv2, BBRv1 has a shorter FCT
than CUBIC, independently of the buffer size. BBRv2’s FCT
is larger than that of BBRv1, as it incorporates the packet loss
rate in the network path model, see Fig. 1.

Summary: BBRv2 is not affected by random packet loss rates
below 1-2% and correctly estimates the bottleneck bandwidth
and sending rate, leading to a full utilization of the bottleneck
link. The corresponding flow completion times are reduced
with respect to those of CUBIC. On the other hand, as a loss-
based algorithm, CUBIC erroneously decreases the sending rate
when random packet losses occur, leading to a poor utilization

12



10 1 100 101 102

Buffer size [BDP]

0

20

40

60

80

100

Fa
irn

es
s [

%
]

CAKE
FQ-CoDel
Tail Drop
FQ-CoDel with ECN

(a) 1 BBRv2 flow, 1 CUBIC flow.

10 1 100 101 102

Buffer size [BDP]

0

20

40

60

80

100

Fa
irn

es
s [

%
]

CAKE
FQ-CoDel
Tail Drop
FQ-CoDel with ECN

(b) 1 BBRv2 flow, 10 CUBIC flows.

10 1 100 101 102

Buffer size [BDP]

0

20

40

60

80

100

Fa
irn

es
s [

%
]

CAKE
FQ-CoDel
Tail Drop
FQ-CoDel with ECN

(c) 10 BBRv2 flows, 10 CUBIC flows.

10 1 100 101 102

Buffer size [BDP]

0

20

40

60

80

100

Fa
irn

es
s [

%
]

CAKE
FQ-CoDel
Tail Drop
FQ-CoDel with ECN

(d) 50 BBRv2 flows, 50 CUBIC flows.

Figure 21: Fairness index as a function of the buffer size, produced with an even number of flows using BBRv2 and CUBIC. The following AQM policies are
implemented in the router R2: Tail Drop, CAKE, FQ-CoDel, and FQ-CoDel with ECN.

of the bottleneck link and high flow completion times.

5.8. Impact of AQM on Fairness

These tests compare the fairness index when flows using
BBRv2 and CUBIC are present in the network, and when dif-
ferent AQM policies and buffer sizes are implemented on the
routers. The tests consider the following AQM policies: simple
Tail Drop, CAKE [18], and FQ-CoDel [16] with and without
DCTCP-style ECN enabled [30]. The DCTCP-style ECN is en-
abled by setting the ce threshold parameter of the fq codel

qdisc to 242us. Tests are executed with 2, 11, 20, and 100 flows,
with even and uneven composition of flows using BBRv2 and
CUBIC.

Fig. 21(a) shows the results for 2 flows: 1 BBRv2 flow and
1 CUBIC flow. Consider first the results with Tail Drop policy
(red curve). When the buffer size is 0.1BDP, the fairness in-
dex is approximately 80%. This result is a consequence of the
inability of CUBIC to fully utilize its bandwidth share when
the buffer size is small. When the buffer size increases to val-
ues between 0.5BDP to 10BDP, the fairness index using Tail
Drop improves to values close to 90%. However, when the
buffer increases further to 100BDP, the Tail Drop policy leads
to a poor fairness index of approximately 60%, because CUBIC
fills the buffer, increases the delay, and consumes most of the
bandwidth. Consider now the results with more advanced AQM
policies, CAKE and FQ-CoDel (with and without ECN). These
policies produce better fairness indices, which approach 100%.
These AQM policies are designed to solve the bufferbloat prob-
lem and also prevent flows from consuming additional band-
width beyond their share.

Fig. 21(b) shows the case when a BBRv2 flow and 10 CU-
BIC flows are present. In this case, the fairness index remains
above 80% when the Tail Drop policy is used. Similarly, ad-
vanced AQM policies improve the fairness. Fig. 21(c) shows
the results when 10 BBRv2 flow and 10 CUBIC flows are
present. With the Tail Drop policy, the results are similar to
those observed in Fig. 21(a), and the unfairness resulting from
CUBIC consuming most of the bandwidth is noted when the
buffer size is 100BDP. Fig. 21(d) shows the case when 50
BBRv2 flows and 50 CUBIC flows are present. The fairness
index is approximately 80% for any buffer size different than
1BDP. On the other hand, advanced AQM policies produce bet-
ter fairness indices, independently of the buffer size and the

number of flows.
Summary: although very simple to implement, a simple Tail

Drop policy leads to unfair bandwidth allocation among BBRv2
and CUBIC flows, in particular when the buffer size is large.
On the other hand, advanced AQM policies such as FQ-CoDel
and CAKE produce fair bandwidth allocations, independently
of the buffer size and the number of flows.

5.9. The Effects of Fixed-rate Pacing on TCP CUBIC

TCP pacing is used by BBRv1 and BBRv2. It evenly spaces
packets over time, so that packets are not sent in bursts. Pacing
reduces the variance in the data rates at network bottlenecks,
which in turn reduces the transient queues everywhere [8]. As
a result, congestion control algorithms can still achieve high
throughput with small buffers, as noted in previous sections.
Motivated by such results, this section investigates whether pac-
ing can have a positive impact on window-based congestion
control algorithms.

These tests investigate the throughput, fairness, and RTT of
flows using CUBIC, with and without TCP pacing. The num-
ber of flows is 100. The bottleneck bandwidth is 1Gbps and the
total propagation delay of 20ms. The tests are executed with-
out random packet losses and with a random packet loss rate
of 1%. The experiments are executed 10 times and the average
is reported. When pacing is used, the pacing rate is manually
computed so that all flows have the same maximum bandwidth
allocation. Thus, the pacing rate per flow is set to (1Gbps)/(100
flows) - headroom = 10Mbps - 1.5Mbps = 8.5Mbps. The head-
room of 1.5Mbps is used to keep the link utilization at approx-
imately 85%, which avoids filling the buffer. Pacing is applied
through the fq qdisc in Linux using fq pacing maxrate

parameter when the sending hosts are configured with CUBIC.
Note that these experiments emulate ideal scenarios where the
number of flows is known in advance and each flow is con-
figured with the correct pacing rate. Nevertheless, the results
provide insight into the success of new congestion control al-
gorithms based on pacing.

Fig. 22(a) shows the aggregate throughput. When pacing
is used and the network does not experience packet losses, the
throughput is high, constant at 850Mbps. When pacing is not
used, and the network does not experience packet losses, the
throughput is slightly higher, peaking at 900Mbps. On the other
hand, when the network experiences packet losses, enabling

13



10 1 100 101 102

Buffer size [BDP]

0

200

400

600

800

1000
Th

ro
ug

hp
ut

 [M
bp

s]

w/o pacing w/o loss
w/o pacing w/ loss
w/ pacing w/o loss
w/ pacing w/ loss

(a) Throughput.

10 1 100 101 102

Buffer size [BDP]

0

20

40

60

80

100

Fa
irn

es
s [

%
]

w/o pacing w/o loss
w/o pacing w/ loss
w/ pacing w/o loss
w/ pacing w/ loss

(b) Fairness index.

10 1 100 101 102

Buffer size [BDP]

0

100

200

300

400

500

RT
T 

[m
s]

w/o pacing w/o loss
w/o pacing w/ loss
w/ pacing w/o loss
w/ pacing w/ loss

(c) Round-trip time.

Figure 22: Throughput, fairness index, and RTT as functions of the buffer size. The four curves represent the results of flows operating according to the following
configurations: CUBIC without enabling TCP pacing and no random packet losses (red); CUBIC without enabling TCP pacing and with a packet loss rate of 1%
(yellow); CUBIC with TCP pacing and no random packet losses (green); and CUBIC with TCP pacing and with a packet loss rate of 1% (blue).

pacing improves the total throughput: the throughput of paced
flows is 700Mbps, while the throughput of non-paced flows is
approximately 600Mbps. The buffer size does not affect the
aggregate throughput.

Fig. 22(b) shows the fairness results. When pacing is used,
the fairness index is high, close to 100%, independently of
whether the network experiences packet losses or not. When
pacing is not used and the buffer size is below 5BDP, the fair-
ness index is similar in both cases, with packet losses and with-
out packet losses. When the buffer size increases to 5BDP and
above, the fairness index decreases rapidly. CUBIC without
pacing is unable to avoid a very disproportionate bandwidth al-
location, even when all flows use the same congestion control
algorithm.

Fig. 22(c) shows the RTT results. When pacing is used,
the RTT is almost constant and equal to the propagation delay.
When pacing is not used and the network experiences packet
losses, the RTT is also almost constant and equal to the prop-
agation delay. In this regard, the random packet losses have a
positive effect on CUBIC, as they prevent the congestion win-
dow to continue to increase, and sender nodes do not fill up the
buffer. On the other hand, when no losses occur and pacing is
not used, the bufferbloat problem is observed.

Summary: TCP pacing enhances the throughput of CUBIC
when the network experiences packet losses. It also improves
the fairness among CUBIC flows and avoids the bufferbloat
problem when the buffer size is large. Although the scenar-
ios described in this section are ideal (the pacing rate must be
configured statically according to the number of flows. In pro-
duction networks, estimating the number of flows in real time
is challenging), future research directions may explore the ca-
pability of new-generation switches to obtain explicit feedback
from routers to estimate the pacing rates dynamically [19, 31].

6. Conclusion

BBRv1 represented a major disruption to the traditional loss-
based congestion control algorithms. BBRv1 departed from the
use of binary signals -packet losses- to modify the sending rate.
Instead, it relied on periodical measurements of the bottleneck

bandwidth and the RTT to set the pacing rate and the number
of bits to keep in-flight. Despite its success in improving the
throughput of a connection, BBRv1 has shown some issues, in-
cluding a poor coexistence with other congestion control algo-
rithms and a high retransmission rate. In this context, BBRv2
has been recently proposed to address such issues.

This paper presented an emulation-based evaluation of
BBRv2, using Mininet. Results show that BBRv2 tolerates
much higher random packet loss rates than CUBIC but slightly
lower than BBRv1, has better coexistence with CUBIC than
BBRv1, mitigates the RTT unfairness problem, produces lower
retransmission rates than BBRv1, and exhibits low queuing de-
lay even with large buffers. The results also show that with
small buffers, BBRv2 produces better fairness without compro-
mising the high throughput and the link utilization. This obser-
vation was also noted in BBRv1 and suggests that model-based,
rate-based congestion control algorithms work better with small
buffers, which could have significant implications on networks.
The paper also presented advantages of using AQM algorithms
and TCP pacing with loss-based algorithms.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant Numbers 1925484, 1829698,
and 1907821, funded by the Office of Advanced Cyberinfras-
tructure (OAC). The authors are very grateful for the compre-
hensive review conducted by the anonymous reviewers. Their
suggestions and corrections helped improve the quality of this
manuscript.

References

[1] J. Postel, RFC 793: Transmission control protocol (TCP), September,
1981.

[2] J. Kurose, K. Ross, Computer networking: a top-down approach, 7th Edi-
tion, Pearson, 2017.

[3] V. Jacobson, M. Karels, Congestion avoidance and control, ACM SIG-
COMM Computer Communications Review 18 (4) August, 1988.

[4] R. Al-Saadi, G. Armitage, J. But, P. Branch, A survey of delay-based
and hybrid TCP congestion control algorithms, IEEE Communications
Surveys & Tutorials, 21, (4), March, 2019.

14



[5] P. Hurley, J. Le Boudec, P. Thiran, Technical Report: A note on the fair-
ness of additive increase and multiplicative decrease, Infoscience EPFL
Scientific Publications, 1990.

[6] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP vari-
ant, ACM SIGOPS Operating Systems Review, 42, (5), July, 2008.

[7] D. J. Leith, R. N. Shorten, H-TCP protocol for high-speed long distance
networks, Second International Workshop on Protocols for Fast Long-
Distance Networks, Chicago, IL, USA, February, 2004.

[8] M. Mathis, J. Mahdavi, Deprecating the TCP macroscopic model, ACM
SIGCOMM Computer Communication Review, 49, (5), November, 2019.

[9] J. Crichigno, E. Bou-Harb, N. Ghani, A comprehensive tutorial on sci-
ence DMZ, IEEE Communications Surveys & Tutorials, 21, (2), October,
2018.

[10] K. Chard, I. Foster, S. Tuecke, Globus: Research data management as ser-
vice and platform, 2017 Practice and Experience in Advanced Research
Computing (PEARC) Conference, New Orleans, LO, USA, July, 2017.

[11] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson, BBR:
congestion-based congestion control, ACM Queue, 14, (5), September,
2016.

[12] M. Hock, R. Bless, M. Zitterbart, Experimental evaluation of BBR con-
gestion control, 2017 IEEE 25th International Conference on Network
Protocols (ICNP), Toronto, Canada, October, 2017.

[13] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha, Y. Se-
ung, M. Mathis, V. Jacobson, BBRv2: a model-based congestion control,
Presentation in the Internet Congestion Control Research Group (ICCRG)
at IETF 105 Update, Montreal, Canada, July, 2019.

[14] S. Zhang, An evaluation of BBR and its variants, In Proceedings of ACM
Conference, Washington, DC, USA, July 2017.

[15] S. Floyd, RFC 5166: metrics for the evaluation of congestion control
mechanisms, March, 2008.

[16] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, E. Dumazet, RFC
8290: The flow queue CoDel packet scheduler and active queue manage-
ment algorithm, January, 2018.

[17] J. Gettys, Bufferbloat: dark buffers in the internet, IEEE Internet Com-
puting, 15, (3), May, 2011.

[18] T. Høiland-Jørgensen, D. Täht, J. Morton, Piece of CAKE: a comprehen-
sive queue management solution for home gateways, 2018 IEEE Inter-
national Symposium on Local and Metropolitan Area Networks (LAN-
MAN), Washington, DC, USA, October, 2018.

[19] E. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, G. Srivastava, Enabling
TCP pacing using programmable data plane switches, 42nd International
Conference on Telecommunications and Signal Processing (TSP), Bu-
dapest, Hungary, July, 2019.

[20] S. M. Claypool, Sharing but not caring-performance of TCP BBR and
TCP CUBIC at the network bottleneck, Worcester Polytechnic Institute,
March, 2019.

[21] R. Jain, A. Durresi, G. Babic, Throughput fairness index: an explanation,
ATM Forum contribution, 99, (45), February, 1999.

[22] M. Allman, Comments on bufferbloat, ACM SIGCOMM Computer Com-
munication Review, 43, (1), January, 2013.

[23] Y. Gong, D. Rossi, C. Testa, S. Valenti, M. D. Täht, Fighting the
bufferbloat: on the coexistence of AQM and low priority congestion con-
trol, Computer Networks, 65, (1), June, 2014.

[24] C. Staff, Bufferbloat: what’s wrong with the Internet?, Communications
of the ACM, 55, (2), February, 2012.

[25] K. Nichols, V. Jacobson, Controlling queue delay, Communications of the
ACM, 10, (5), July, 2012.

[26] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, G. Carle,
Towards a deeper understanding of TCP BBR congestion control, 2018
IFIP Networking Conference (IFIP Networking) and Workshops, Zurich,
Switzerland, May, 2018.

[27] S. Ma, J. Jiang, W. Wang, B. Li, Towards RTT fairness of congestion-
based congestion control, Computing Research Repository (CoRR), June,
2017.

[28] F. Fejes, G. Gombos, S. Laki, S. Nádas, Who will save the internet from
the congestion control revolution?, International Conference Proceeding
Series (ICPS) Proceedings of the 2019 Workshop on Buffer Sizing, Palo
Alto, CA, USA, December, 2019.

[29] M. P. Tahiliani, V. Misra, K. Ramakrishnan, A principled look at the util-
ity of feedback in congestion control, International Conference Proceed-
ing Series (ICPS) Proceedings of the 2019 Workshop on Buffer Sizing,

Palo Alto, CA, USA, December, 2019.
[30] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, G. Judd, RFC 8257:

Data center TCP (DCTCP): TCP congestion control for data centers, Oc-
tober, 2017.

[31] Y. Li, R. Miao, H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang,
F. Kelly, M. Alizadeh, M. Yu, HPCC: high precision congestion control,
SIGCOMM 2019: Proceedings of the ACM Special Interest Group on
Data Communication, Beijing, China, August, 2019.

[32] R. De Oliveira, C. Schweitzer, A. Shinoda, R. Prete, Using mininet
for emulation and prototyping software-defined networks, 2014 IEEE
Colombian Conference on Communications and Computing (COLCOM),
Bogota, Colombia, June, 2014.

[33] J. Gomez, E. Kfoury, Emulation scripts using BBRv2, [Online], Avail-
able: https://github.com/gomezgaona/bbr2, July, 2020.

[34] google/bbr, TCP BBR v2 Alpha/Preview Release, [Online], Available:
https://github.com/google/bbr/tree/v2alpha, July, 2019.

[35] S. Hemminger, et al., Network emulation with NetEm, Linux conf au,
April, 2005.

[36] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, K. Prabhu, iPerf3, tool
for active measurements of the maximum achievable bandwidth on IP
networks, [Online], Available: https://github.com/esnet/iperf.

[37] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic behavior of
the TCP congestion avoidance algorithm, ACM SIGCOMM Computer
Communication Review 27 (3) July, 1997.

[38] G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, ACM
SIGCOMM Computer Communication Review, 34, (4), August, 2004.

Elie F. Kfoury is a PhD student in
the College of Engineering and Com-
puting at the University of South Car-
olina (USC). Prior to joining USC, he
worked as a research and teaching as-
sistant in the Computer Science depart-
ment at the American University of Sci-
ence and Technology in Beirut. He has
published several research papers and ar-

ticles in international conferences and peer-reviewed journals.
His research focuses on telecommunications, network security,
Blockchain, Internet of Things (IoT), Software Defined Net-
working (SDN), and data plane programming.

Jose Gomez is a PhD student in the Col-
lege of Engineering and Computing at
the University of South Carolina (USC)
in the United States of America. Prior to
joining USC, he worked as a researcher
and teaching assistant in the School of
Engineering at the Catholic University
in Paraguay. His research focuses on
P4 programming and congestion control

protocols.

15



Dr. Jorge Crichigno is an Associate
Professor in the College of Engineer-
ing and Computing at the University of
South Carolina (USC) and the director
of the Cyberinfrastructure Lab at USC.
He has over 15 years of experience in
the academic and industry sectors. Dr.
Crichigno’s research focuses on practical
implementation of high-speed networks,

network security, TCP optimization, offloading functionality to
programmable switches, and IoT devices. His work has been
funded by U.S. agencies such as the National Science Founda-
tion (NSF) and the Department of Energy. He received his PhD
in Computer Engineering from the University of New Mexico
in 2009, and his bachelor’s degree in Electrical Engineering
from the Catholic University in Paraguay in 2004.

Dr. Elias Bou-Harb is the Associate Di-
rector of the Cyber Center for Security
and Analytics at the University of Texas
San Antonio (UTSA), where he leads,
co-directs and co-organizes university-
wide innovative cyber security research,
development and training initiatives. He
is also an Associate Professor at the
department of Information Systems and

Cyber Security specializing in operational cyber security and
data science as applicable to national security challenges. Pre-
viously, he was a senior research scientist at Carnegie Mel-
lon University (CMU) where he contributed to federally-funded
projects related to critical infrastructure security and worked
closely with the Software Engineering Institute (SEI). His re-
search and development activities and interests focus on oper-
ational cyber security, attacks’ detection and characterization,
malware investigation, cyber security for critical infrastructure
and big data analytics.

16


