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ABSTRACT
Object-based development using design-by-contract (DbC) is broadly
taught and practiced. Students must be able to read and write sym-
bolic DbC assertions that are sufficiently precise and be able to use
these assertions to trace program code. This paper summarizes the
results of using an automated tool to pinpoint fine-grain difficul-
ties students face in learning to symbolically trace code involving
objects. The pilots were conducted in an undergraduate software
engineering course. Quantitative results show that data collected by
the tool can help to identify and classify learning obstacles. Quali-
tative findings help validate student misunderstandings underlying
these difficulties. Analysis of exam questions helps understand the
persistence of student learning to read and write simple assertions
about code behavior. Together, these results provide directions for
intervention.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; •The-
ory of computation → Program reasoning.
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1 INTRODUCTION AND MOTIVATION
The challenges students face in writing code and the pedagogical
tools used to overcome them have received significant attention,
e.g., [12, 21, 34]. The importance of code tracing to help beginners
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write and understand code has also received considerable atten-
tion [4, 7, 16, 24, 26, 27]. Unfortunately, helping students learn to
trace code in the presence of objects –arguably among the most im-
portant CS topics– has received much less attention [3, 19, 25, 38].
Tracing method calls is ideally done abstractly so that students are
not overwhelmed by internal data structures [1]. For example, if
the string <△,⋆, □> denotes the value of a stack object, and the
left-most value, i.e., △ denotes the top value, after tracing over a
call to pop, the stack’s value will be <⋆, □>. Students should not
confuse these abstract values with how the stack is represented
internally (e.g., using an array or a linked structure); the focus here
is on understanding the abstract behavior of operations like pop().

While tracing with concrete values (as in the above example) is
a useful first step, ultimately, students must be able to understand
code behavior involving arbitrary inputs which requires a symbolic
approach. For example, if #S denotes an arbitrary initial value of a
non-full stack, then after a call to push, followed by a call to pop,
a student should be able to reason that the stack’s value remains
#S. While there is some prior work on tracing object behavior with
abstractly specified design-by-contract (DbC) assertions, students
must also be able to read and write formal assertions. There is
pioneering work in teaching formal assertions for mathematical
reasoning in CS education [6, 9–11, 14, 23, 35, 40], but few stud-
ies directly assess students’ ability to read and interpret formal
assertions and the specific challenges faced in writing them.

1.1 Software Engineering Context
The study presented here is part of a larger project that has involved
over a thousand students at multiple institutions, over multiple
years, covering a variety of undergraduate software development
courses at varying levels [17, 20, 22]. This paper focuses on results
from pilots in a software engineering course where students learn
to read and write formal assertions. Students complete their exer-
cises using an automated reasoning tool with a number of powerful
features, assisting us in identifying specific obstacles students en-
counter. Our findings are based on quantitative analysis of data
collected by the tool, as well as qualitative data from task-based
interviews. To assess the persistence of student learning difficulties,
we also study student performance on relevant exam questions.

While students in the course receive significant exposure to
formal methods and develop non-trivial code based on instructor-
supplied contracts (e.g., involving recursion, loops, and invariants),
this paper does not cover those aspects of the course [5, 31]. Instead,
using simple activities that involve tracing over calls on objects
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using contracts expressed as formal assertions, this study aims to
understand the basic difficulties students face in learning to reason
precisely about code. The results help to inform computer science
education efforts, not only in software development and software
engineering courses, but also in discrete mathematics and formal
languages courses where precise notations are important [15, 39].

1.2 Tool-Aided Assessment
A key aim of using the automated tool is to understand the spe-
cific learning difficulties students face when reasoning about code
so that appropriate interventions may be developed [2, 8, 31]. By
“fine-grain,” we mean understanding student difficulties at a res-
olution that exceeds identifying high-level constructs that might
present challenges (e.g., functions, loops, parameter passing) to re-
veal the underlying cause(s) of a learning roadblock (e.g., a missing
algebraic foundation or a flaw in the student’s mental model of
variable storage) When these difficulties are not readily apparent
to instructors, it is hard to devise suitable interventions, especially
for students with the most need. Achieving this level of resolution
is prohibitively time-consuming in the absence of automation.

While this research is based on a specific formalism dictated
by an underlying tool, we note that the results are generally more
applicable because the core ideas of mathematical modeling and
logic are shared by many formal approaches. We note that syntactic
difficulties with formal expressions (such as those mentioned in
this paper) arise for beginning formal methods learners no matter
what the language. At the same time, semantic difficulties, such as
the one discussed in this paper concerning the distinction that be-
tween the input and output values of a parameter in an operation’s
postcondition, also arise across formal specification approaches.

1.3 Specific Objectives
The overarching research question is how to help students in learn-
ing to read and write formal DbC assertions. In addressing this
larger question, the paper addresses the following specific ques-
tions (ERQs).

ERQ 1:What common learning difficulties in reading and writing
formal DbC assertions can be pinpointed with an automated tool
and collected data?

ERQ 2: Which difficulties persist as students move through tool
activities and later on a final exam when they do not have access
to the tool?

This paper summarizes findings to these and related questions.
It uses insights that qualitative analysis provides into the misunder-
standings that cause the difficulties to validate the findings from
automated analysis.

2 ACTIVITIES AND THE REASONING TOOL
There are many tutoring environments for beginning programmers,
e.g., [13, 24, 30, 36, 38]. The tool employed in this paper shares char-
acteristics with these efforts; it is automated and online, requires no
installation, and collects student’s responses as they work through
activities [18, 32]). It is unique, however, in several important re-
spects. Since the tool is concerned with helping students learn how
to read and write assertions, it is not connected to a commercial

programming language, nor does it check assertions using execu-
tion or answer keys. Instead, the tool uses a verifying compiler to
prove correctness of symbolic assertions [32]. A variety of logically
equivalent answers are possible for any activity. For the purposes
of the research in this paper, the tool has been used less as a tutor
and more of an aid to help us assess learning obstacles and develop
interventions. More generally, the verifying compiler has been used
extensively for a variety of tool-based reasoning activities in CS
education; those details and citations have been suppressed here
for the anonymous version.

For the work reported here, the tool is instrumentedwith six sym-
bolic reasoning activities involving DbC assertions on objects. The
activities are presented with scaffolding that includes instructions
and reference materials, helping to reduce extraneous cognitive
load [28, 33, 37]. A screenshot appears in Figure 1.

Figure 1: Online Reasoning Tool

2.1 DbC Assertion Basics
Given the focus on assertions, the code in each activity is relatively
simple. After a short introduction, students have little to no diffi-
culty understanding the code, though the syntax is slightly different
than what they’re used to (i.e., the distinguished argument is passed
as an explicit parameter – Push(K, S), instead of s.push(k)) [2].

Specifications rely on simple mathematical concepts, such as sets
and strings, the latter being suitable for capturing the behavior of
stack, queue, and list objects, where order is important. Notations
used include Empty_String, o for string concatenation, |S| for
string length, and <E> to denote a string containing a single entry.

Several of the activities involve Stack objects. The contract
for object construction ensures that stack S = Empty_String,
whereas the contract for Pop requires (a pre-condition) that
the stack not be empty, i.e., |S| > 0. In the ensures clause (post-
condition) of an operation’s contract, it is often necessary to dis-
tinguish between input and output values. For example, the Push
specification ensures the value of stack S after invoking Push as
S = <#E> o #S; i.e., the concatenation of the input entry (#E) and
the input stack (#S).



Tool-Aided Assessment of Difficulties in Learning Formal Design-by-Contract Assertions ECSEE’20, June 15–19, 2020, Seeon Monastery, Germany

2.2 Activities
For each activity, the Reference Material section (see Figure 1)
reminds students of the mathematical symbols and operators that
can be used to complete the exercise.

The first two activities ask students to consider formal contracts
for operations, such as Push and Pop, and then reason about code
involving those operations. To facilitate symbolic reasoning, as op-
posed to concrete values, a Remember construct is used. Students
are instructed that this is not an executable statement; Remember
denotes the point at which initial values are defined for variables;
e.g., where #K is defined for some variable K.

While different formal approaches may differ in the details of
reasoning about objects, such as in using mathematical sequences
instead of mathematical strings to capture the behavior of objects
such as stacks or in using a different way to capture object values
at different states instead of using the # notation for input value,
symbolic tracing over code with objects needs some version of the
concepts presented in this paper.

The relevant code segment for Activity 1 is shown in Listing 1,
with the type declarations omitted. The activity begins with a newly
constructed stackS. TheConfirm lineS = Empty_String serves
as an explicit reminder for the students of its initial value. Subse-
quently, an integer K is read (from standard input) and pushed
onto the stack. The Activity section reminds students to replace
all /∗ expression ∗/ blocks with a mathematical assertion that
expresses the behavior of the provided code.

Listing 1: Activity 1
Confirm S = Empty_String ;
Read (K ) ;
Remember ;
Push (K , S ) ;
Confirm S = / ∗ e xp r e s s i o n ∗ / ;

To answer the question correctly, students must be able to read
and understand the contracts. A correct answer is S = <#K>. Trivial
answers, such as S = S, are not accepted. Other incorrect answers
include the following.

• S = <> - Something has been pushed on the stack.
• S = K - Typemismatch; S is a string of entries; K is an integer.
• S = <K> - The Push contract is (purposely) written so that
K may be changed during the call. (This answer would be
correct if Push were specified not to change K.)

The second activity, shown in Figure 2, contains calls to Push
and Pop and is slightly more involved. The student response shown
in red is incorrect: After two pushes, followed by a pop, S will not
equal #S. The second element of the response, K = #J, shown in
green, is correct; J is pushed second, and then popped. The calls
to Push and Pop are highlighted in green because the tool has
proven that no overflows or underflows exist, though these details
are not relevant for the present activity.

Activities 3 and 4 ask students to fill in a suitable pre-condition
(or requires clause) for an operation so that when the clause is
assumed, the operation’s code is correct. Activities 5 and 6 focus
on post-conditions (or ensures clauses), where students must

specify an operation’s behavior based on its code. Taken together,
these activities cover the essence of operation calls in DbC.

Figure 2: Activity 2 Reasoning & Visual Feedback

3 DETAILS OF THE EXPERIMENT
The experiment was conducted in the spring of 2018, as part of a
third-year CS course in software engineering. The course descrip-
tion includes program specification and reasoning as core topics
and is required of all CS majors.

3.1 Online Tool
Seventy-one students interacted with the tool across two sections
with different instructors. Students had prior experience with the
tool as part of a prerequisite software development course [29]. The
tool was used outside of the classroom with no restrictions on the
amount of time available. However, completion of the activities
was required before a specified due date. It is important to note
that students’ answers did not affect their grades, allowing them
to interact with the tool without fear of penalty. Students were
also told that a (paper and pencil) final exam question would be
given, similar to the activities encountered when using the tool. All
student response data was collected automatically.

3.2 Task-based Interviews
A diverse group of students, both academically and demographi-
cally, were asked to engage in task-based interviews involving their
interactions with the online tool. Nine of the students volunteered
to perform an interview during their personal time. One student
had a learning disability. The sample details are as follows:

Course Grade Gender Ethnicity
3 A’s 6 Male 5 White
4 B’s 3 Female 2 African American
2 C’s 1 Hispanic or Latino

1 Asian
Participating students encountered the DbC activities for the first
time during the task-based interview. Each student was asked to
vocalize her thought process as she worked through the first three
activities. All on-screen interactions were recorded. If a student was
not vocal or did not explain why a problemwas being reworked, the
interviewer would give a vocal prompt. Each interview concluded
when the student completed the three activities or after twenty
minutes. In the latter case, students were asked to complete the
activities post-interview, continuing from where they stopped.



ECSEE’20, June 15–19, 2020, Seeon Monastery, Germany Fowler, et al.

3.3 Final Exam
The final exam included a logical reasoning question that required
students to complete DbC activities similar to those encountered
with the online tool. Students had access to the tool leading up to
the exam but not during the exam. The question for the first section
of the course involved a “preemptable” queue that includes an
Inject operation to insert a new entry at the front of a queue, in
addition to the usual Dequeue andEnqueue operations. Contract
specifications for all of the operations were included as reference
material.

Here we focus on the first section of the course, which involved
43 students and two versions of the exam. The difference between
the two versions involved an ordering difference between calls
to Inject and Enqueue (with interspersed calls to Dequeue).
Naturally, the correct answers differ between these two versions,
but the complexity of the questions is similar.

The exam for the second section of the course involved a stack-
based question, similar to those used in the online activities; student
performance on this questions is excluded from the analysis.

4 ERQ 1: AUTOMATED ANALYSIS OF
DIFFICULTIES

There were approximately 2000 responses generated by all of the
students for the six DbC activities. Here we present the results of
our analysis for the first activity, addressing ERQ 1.

4.1 Analysis of Activity 1 Responses
Seventy-one students attempted Activity 1 (Listing 1); sixty-four
were successful (90%), moving on to subsequent activities. The
remaining seven are candidates for targeted help.

Table 1 shows the distribution of student attempts at solving
the activity. Some students tried again at a later date for additional
practice, but these responses are not included in the analysis.

Table 1: Student-Response Distribution (Activity 1)
No. of Attempts No. of Students %

1 8/71 11.3%
2 ∼ 5 32/71 45.1%
6 ∼ 10 17/71 23.9%
11 ∼ 15 10/71 14.1%
16 ∼ 20 4/71 5.6%
> 20 0/71 0%

Of the 439 student responses, 86 unique response types emerged.
Three of these unique responses (3%) were correct; the remaining
83 (97%) were incorrect. We analyzed the incorrect responses for
frequency of appearance and for the type of error causing the
problem. Table 2 shows the top 10 most frequently given responses,
all of which are incorrect, except the responses highlighted in green.

4.2 Example Semantic Difficulty: Neglecting
Input Values

The second-most common incorrect response was S = <K>. (The
correct answer is S = <#K>.) Across unique responses, the post-
conditional value of K appeared in 31 instances (37%), signaling a

Table 2: Top 10 Unique Responses for Activity 1
No. Responses Occurrence %
1 Confirm S = K; 49/439 11%
2 Confirm S = <K>; 43/439 10%
3 Confirm S = <#K> o #S; 37/439 8%
4 Confirm S = <K> o #S; 27/439 6%
5 Confirm S = <#K>; 26/439 6%
6 Confirm S = #K; 19/439 4%
7 Confirm S = K o #S; 19/439 4%
8 Confirm S = /∗ expression ∗/ ; 18/439 4%
9 Confirm S = #S; 13/439 3%
10 Confirm S = #S o K; 12/439 3%

learning difficulty. Again, the answer is incorrect only because the
Push specification does not guarantee that the input entry K is left
unchanged. Pushmay change K, so the correct answer is S = <#K>.
This difficulty could reflect amisunderstanding of the “remembered”
value notation or amisunderstanding of (or inattention to) the given
specification of Push. So while an difficulty has been spotted, it
is not clear what misunderstanding has caused it to arise, a topic
addressed further in our qualitative analysis (Section 5).

4.3 Example Syntactic Difficulty:
Distinguishing Element vs. String

The most common incorrect response, S = K, occurred in approxi-
mately 11% of the 439 total responses. This type of error represents
32 of the 83 unique responses (39%), including, for instance, S = #K.
Interestingly, while this type of error is common for the first activity,
the difficulty mostly resolves in subsequent activities.

A discrete math instructor will appreciate the need for students
to distinguish between an element E and a set containing E, i.e., {E}.
This “stringification” difficulty (Table 3, line 2) is similar, reflect-
ing a type mismatch, where students do not distinguish between
an entry and a string containing an entry. While the underlying
misunderstanding could be merely that of syntax, it is also possible
that a learner has a deeper misunderstanding about strings.

4.4 Classifying Learning Difficulties
Table 4 summarizes our classification of difficulty types across the
83 unique incorrect responses for Activity 1. Since a single response
may contain more than one difficulty, the percentage column does not
add up to 100% – but does reflect the percentage of time that the error
occurred in the 83 responses.

Table 3: Classification of Activity 1 Difficulties
Difficulty Occurrence %
Input Values 31/83 37%
Stringification 32/83 39%

String Concatenation 10/83 12%
String Length 2/83 2%

Operation Contracts 9/83 11%
Under-Specification 12/83 14%

Variables 4/83 5%
Syntax and Other 16/83 19%
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This fine-grain classification of obstacles is adequate for the first
activity and makes some interventions obvious. However, further
refinement is needed for the more challenging activities.

One aggregation of obstacles for Activity 1 concerns math no-
tations. Here, the Stringification, String Concatenation, and String
Length obstacles suggest a need for a better understanding of string
notations. Interventions can usually occur together. The Operation
Contracts difficulty suggests that there is a misunderstanding of one
or more of the Stack operations’ contracts. The specific response
S = #S, which occurred ~3% (13/439) of the time, suggests that
some students did not understand that the value of S is modified by
Push. The Under-Specification difficulty reflects a student assertion
that is true, but which does not capture the essence of the code. For
example, the response S = S was entered four times for Activity 1
(4/439), stating that stack S at line 18 equals itself. And finally, the
Syntax and Other category covers syntax and other problems, when
the assertion includes one or more variables that are misspelled,
not declared, or not applicable. In some cases, these problems are
not easily classified from the given response.

5 VALIDATION THROUGH QUALITATIVE
ANALYSIS

The qualitative analysis to address ERQ 1 and to identify the mis-
understandings underlying observed learning obstacles is based on
task-based interviews of nine volunteers. The interviews generated
two hours and 13 minutes of video. These videos were transcribed
to contain both what the participant vocalized, as well as their tool
interactions. The transcripts were reviewed and analyzed by two
researchers independently. No demographic differences were noted.

The answers recorded by students were then classified based on
the difficulty identified in Table 3. While only 4 of the difficulties
appeared in the group who performed tasked-based interviews,
and Two-Way ANOVA test revealed that there is not a statically
significant difference between the proportions of difficulties for
each group.

Table 4: Task-based Interview Activity 1 Difficulties
Difficulty Occurrence %
Input Values 27/44 61%
Stringification 12/44 27%

Under-Specification 1/44 2%
Variables 4/44 9%

5.1 Overcoming Misunderstandings
Table 5 shows the progress of Student No. 3, which is consistent
with learning. She changed her answer twice before submitting,
and with each change, moved closer to the correct answer.

Table 5: Student No. 3 Responses for Activity 1
No. Response Tool Response
1 Confirm S = #S o K;
2 Confirm S = K o #S;
3 Confirm S = <K> o #S; Incorrect
4 Confirm S = <#K> o #S; Correct

After entering her first answer, she referred to the supporting
material on the screen, which inspired the change to the second
answer based on the post-condition. On a second pass through the
material, student No. 3 recognized the need to stringify K and was
able to explain the purpose behind this action. When questioned
about the inclusion of the # symbol after the second failed attempt,
No. 3 responded “... initially I wasn’t thinking I needed to include
that, because we didn’t change K, so I was thinking K was already
its original value... We change K because we use K throughout the
operation, and so we have to just prove that it is the original that is
being added to the stack due to...[Push specification].”

This task-based interview shows that a potential intervention
could be as simple as recommending to a student that she use the
references after a failed attempt, or after a fixed amount of time has
been spent on the Activity without a submission. This particular
student worked for 4 minutes before the first submission.

5.2 Lingering Misunderstandings
While use of the reference material can assist in guiding students to
the correct answer, it does not guarantee an accurate understanding
of the material. Consider Student No. 8’s responses for Activity 1,
shown in Table 6. Student No. 8 appears to demonstrate the same
growth as No. 3 for this activity.

Table 6: Student No. 8 Responses for Activity 1
No. Response Tool Response
1 Confirm S = K; Incorrect
2 Confirm S = <K> o #S; Incorrect
3 Confirm S = <#K> o #S; Correct

When No. 8 was asked why he included the # symbol, he re-
sponded, “I want to be able to confirm that K didn’t change between
when it was pushed onto the stack and when you’re confirming
it.” According to this answer, it would appear that he does not un-
derstand how an element may be affected by being pushed onto a
Stack. This suspicion was further confirmed when he reiterated
this idea after Activity 2: “You want to show that those values didn’t
get changed, they were the original values that were pushed on.”
Without this task-based interview, it would not have been possible
to capture this particular misunderstanding since the answers being
submitted were correct.

5.3 Summary Analysis
In an automated analysis, the two students above are likely indis-
tinguishable with respect to the difficulty concerning input values,
whereas the interventions suggested by the interviews are quite
different.

For most students, learning occurred, and some misunderstand-
ings disappeared as they progressed from the first to the second
activity. This is less apparent in the automated analysis.

Finally, while the online tool only collects student response data
when they make a submission for checking correctness, in the in-
terviews, it is seen that seven of the nine participants changed their
answers multiple times before ever submitting. Much of students’
thought processes may not be visible in the responses collected
automatically.
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6 ERQ 2: PERSISTENCE OF DIFFICULTIES
As a prelude to discussing persistent syntactic and semantic diffi-
culties students encounter in their initial introduction to formal
contracts, we summarize the activities analyzed in this study.

6.1 Summary of All Activities
Unlike in Activities 1 and 2, where students need only understand
given operation contracts, in Activities 3 through 6, they must write
contracts for new operations (a requires or ensures clause) –
a considerably more complex task.

Figure 3: Activity 3 Reasoning & Visual Feedback

The value of an automated tool, such as the one employed in this
research to pinpoint difficulties, depends on the choice of activities.
Learners will flounder if the activities are too hard or not focused.
Activities 3 and 4 focus on writing requires clauses. Figure 3 shows
Activity 3. This activity appears straightforward in that given the
call to Pop in the code on a stack S, Mystery operation must
include a precondition that |S| >= 1. While this answer is close, it
is not correct. This is because the specification says that Mystery
must ensure that stack S must be empty at the end. This end result
is possible with a single call to Pop only if |S| = 1. This simple
activity illustrates the interplay between pre- and postconditions,
in general. Activity 4 involves an if statement, but it also asks the
students to complete a precondition.

Figure 4: Activity 6

Activities 5 and 6 concernwriting ensures clauses. Figure 4 shows
Activity 6. Here, a part of the postcondition is given, so the students
need to complete only the right hand side of the equation. The
correct answer is Reverse(S) o T = Reverse(#S) o #T. This is
the effect of popping one stack and pushing on to another based on
the specifications of Pop and Push given in the reference material.

6.2 Persistence of Difficulties in Activities
The six activities illustrate the fine-grain level at which various
concepts can be presented to identify trouble spots, mostly auto-
matically. Most students were able to successfully complete each
of the six activities: Activity 1, 90%; Activity 2, 92%; Activity 3,

95%; Activity 4, 84%; Activity 5, 88%; and Activity 6, 85%. Table 7
summarizes the obstacles for all six activities. The first column is
identical to the last column of Table 4. The additional columns are
for Activities 2 through 6. Recall that since one response can reflect
more than one obstacle, percentage columns do not add up to 100%.
The table illustrates that whereas some syntactic difficulties, such
as those having to do with string syntax disappear, others, such as
ones pertaining to operation contracts persist.

One confounding factor is that while the obstacle classification
is informative for Activity 1, it is insufficiently detailed for the
more challenging, later activities. Math notation obstacles (rows
labeled Stringification, String Concatenation, and String Length) were
largely resolved beyond the first activity, except for Stringification
in Activity 5. (A closer examination showed many such responses
from a small number of students who were likely floundering.)

Whereas the math notation aggregation is not particularly useful
for later activities, the Operation Contracts classification is overly
broad. Further work is needed to more precisely classify the associ-
ated obstacles.

Table 7: Difficulties for All Activities
Activities

Difficulty 1 2 3 4 5 6
Input Values 37% 20% 24% 9% 31% 41%
Stringification 39% 13% 0% 4% 30% 5%

String Concatenation 12% 9% 0% 0% 0% 0%
String Length 2% 0% 2% 2% 1% 0%

Operation Contracts 11% 47% 76% 70% 57% 64%
Under Specification 14% 1% 0% 21% 8% 11%

Variables 5% 2% 11% 10% 19% 0%
Syntax and Other 19% 7% 17% 35% 14% 23%

The persistence seen in the table is summarized in a more aggre-
gate form (e.g., the grouping of all string-syntax related errors) in
the following illustration which shows which DbC contract-level
trouble spots persist. One point of note here is the task of writ-
ing a requires clause got easier (going from activity 3 to 4), the
task of writing an ensures clause (going from activity 5 to a more
challenging activity 6) turned out to be harder.

Table 8: Pairwise Comparisons to Operation Contracts

Difficulty Dif t Ratio Prob > t Lower
95%

Upper
95%

Input
Values 0.1880 2.79 0.0100 0.0491 0.3269

String Error 0.2336 3.46 0.0019 0.0947 0.3725
Under Spec-
ification 0.3103 4.6 0.0001 0.1713 0.4491

Variables 0.3212 4.76 <0.0001 0.1823 0.4601
Syntax and
Other 0.1951 2.89 0.0078 0.0562 0.3340

6.3 Persistence of Difficulties on Final Exam
The final examwas administered to a class of 43 students. During the
exam, students did not have access to the tool. Part 1 of the logical
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Figure 5: Persistence ofDifficultiesAcross Six ToolActivities

reasoning exam question closely resembled Activity 2 (Figure 2),
the difference being that students were working with a preemptable
queue rather than a stack. 86% of students received full credit for
part 1. Those that received partial credit appeared to confuse the
Enqueue() and Inject() operations.

Part 2 of the logical reasoning question resembled a combination
of Activities 3 through 6 (Figures 3 and 4). Students were required
to develop an operation’s pre- and post-conditions to reflect the
behavior of its given code. 84% of students received full credit for
the pre-condition, and those that did not receive credit did not
provide an answer. The post-condition proved to be more difficult
for students, resulting in 60% of students receiving full credit, 21%
receiving partial credit only, and 19% not receiving any credit.

Based on student exam performance, students were able to
demonstrate their learning, thereby answering ERQ 2. The per-
sistence of semantic difficulties seen through the analysis of tool
activities is also seen to a degree in the illustration of answers on
the final exam. One confounding factor is that manual grading
might not have been as rigorous as the tool.

7 DIRECTIONS FOR INTERVENTIONS AND
CONCLUSIONS

7.1 Interventions
Based on the fine-grain analysis, automated and manual interven-
tions are possible. In some cases, an intervention may refer a stu-
dent to reference material. In other cases, the intervention may be
tailored to specific students, based on data collection and analysis.

Table 9: A Sequence of Responses from a Student
No. Responses Timestamp
1 Confirm S = <K>; 2018-04-25T18:56:20
2 Confirm S = <#S> o <K>; 2018-04-25T18:56:37
3 Confirm S = <K> o <#S>; 2018-04-25T18:56:55
4 Confirm S = <#K> o <#S>; 2018-04-25T18:57:12
5 Confirm S = <#S> o <#K>; 2018-04-25T18:57:33
6 Confirm S = <#K>; 2018-04-25T18:57:42

Figure 6: Persistence of Difficulties on the Exam

Table 9 shows a chronological sequence of responses given by
a student for Activity 1. Notice that except for the missing #, the
first response is identical to the last. A timely intervention that
directed the student’s attention to the reference material on the
specification of Push or the notion of remembered values might
have helped this student avoid floundering. At the same time, the
intervening responses may indicate obstacles that may arise later.

In another case, a student working over a six-minute time span
on Activity 1 came up with 16 incorrect responses and never suc-
cessfully finished the activity. This student did not attempt any
of the other activities. The first response, S = Empty_String,
and subsequent responses reveal the use of a “guess and check” ap-
proach. For this student, an automated tutor could use the response
sequence to document the extent of misunderstanding, which could
later be used by an instructor to provide needed help.

7.2 Conclusions and Ongoing Research
The research presented in this paper has helped identify common
difficulties for students in learning to understand formal DbC as-
sertions and trace symbolically over code involving objects. While
students have syntactic and semantic difficulties, the semantic ones
involving mathematical modeling used in describing contracts for
operations and understanding how and why input values need
to be distinguished that persist are important to address. Such se-
mantic difficulties are programming and specification-language
neutral, and educators need to understand them to develop suitable
interventions.

Data collection in subsequent semesters has provided additional
information with regard to student performance and interaction
with the tool. Rather than working independently, students com-
pleted the task in pairs or even groups of three. Early analysis of
captured video has shown an increase of qualitative data collected
via student verbal exchanges when engaged with a peer as opposed
to working alone and self reporting their thought process. Future
analysis will investigate the roles assumed by students as well as
the level of content mastery achieved by each student. Concurrent
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research is also being conducted regarding student ability to read
and write more complex assertions, such as loop invariants. Quali-
tative error analysis is also in progress to assist in the development
of the most effective instructional strategies in all cases.

While quantitative analysis based on automated data collection
is beneficial for developing tutors and interventions, qualitative
analysis provides insights behind student misunderstandings that
give rise to learning obstacles. Students are able to demonstrate the
ability to read and write assertions. Future directions involve devel-
opment of intelligent tutors, informing instructors and providing
tailored guidance for students with the most difficulties.
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