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Abstract—Understanding the factors that determine
regional climate variability and change is a challenge
with important implications for the economy, security,
and environmental sustainability of many regions around
the globe. Unprecedented quantities of high-resolution
climate data provide an enormous opportunity to explore
this question systematically and exhaustively. Simple, off-
the-shelf machine learning and statistical analysis meth-
ods can yield misleading results when applied directly
to such data. Standard model selection methods are
fragile in the face of complex dependence structures in
the climate system. This abstract describes a regression
scheme that explicitly accounts for spatiotemporally cor-
related features via a regularization approach based on
an underlying correlation graph. Using large ensemble
climate outputs to estimate the strength of correlations
among features, we form a graph with edge weights
corresponding to pairwise correlations. This graph is used
to define a graph total variation regularizer that promotes
similar weights for highly correlated features. We apply
our scheme to predicting winter precipitation totals in the
southwestern US using sea surface temperatures (SST)
over the entire Pacific basin at multiple time lags, and
demonstrate that our method provides strong predictive
performance.

I. MOTIVATION

The growing quantities of high-resolution Earth ob-
servations and climate model output [1] provide an op-
portunity to discover previously unknown teleconnec-
tions (long-range connections among climate modes)
with strong predictive potential to improve seasonal-
to-subseasonal forecasting. However, many statistical
prediction schemes which aim to exploit established
climate teleconnections between large-scale modes of
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Fig. 1. The Pacific basin with known predictive regions highlighted
and the specific climate regions over the expanded SWUS.

variability (e.g., the El Niño-Southern Oscillation, the
Pacific North America pattern, the Madden-Julian Os-
cillation, etc.) and regional hydroclimate fail to capture
the highly complex and nonstationary nature of the
climate system. On the other hand, dynamical models
show limited predictive skill at lead times longer than
two weeks [2], due to imperfect physical conceptual-
izations and inaccurate initial conditions.

Recently, a new teleconnection between sub-tropical
sea surface temperatures off the coast of New Zealand
(NZI) and regional precipitation in the Southwestern US
(SWUS) (Figure 1) was discovered, exhibiting stronger
and earlier predictive potential than any other known
mode of variability, including the El Niño Southern
Oscillation (ENSO), which has long been used for
SWUS seasonal precipitation forecasting [3]. A natural
question to ask is whether there are additional, undis-
covered teleconnections that, once identified, could
improve seasonal forecasting.

Rather than relying on ad hoc methods for discov-
ering important teleconnections, we seek to cast the
forecasting problem as a regression problem in which
modes (influential climate patterns) are not specified
in advance but rather are allowed to emerge from the
data as sources of predictability. Such a method must
account for small sample sizes and high dimensionality,
strong spatiotemporal dependencies among the predic-
tors, and the need for interpretability in the climate
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sciences. Regularized regression has shown promise in
accomplishing this task ([4], [5], [6], [7]).

However, a key challenge is that the covariates or
features of such models (i.e., SSTs over space and
time) are highly correlated, violating key assumptions
underlying many modern high-dimensional regression
methods such as the Lasso. Simultaneously, we seek
to leverage data generated via simulation of physics-
based climate models in addition to observational data.
Treating simulation data as additional samples of ob-
servational data fails to account for model errors and
sampling bias associated with simulations [8]. This
abstract describes an approach in which we perform
regularization over a graph corresponding to the corre-
lation structure underlying the data. This approach (a) is
provably robust to strong correlations among features or
covariates and (b) leverages climate model simulations
by using them to set parameters of the regularizer.

II. PROBLEM FORMULATION

The SWUS region is highly vulnerable to drought,
which has severe economic and ecological implications.
Accurate and early prediction in this region is therefore
of particular interest. The largest amount of yearly
precipitation occurs during winter (November-March),
and there is high inter-annual variability. The SWUS is
divided into 16 climate divisions of interest [3], and we
are able to extract winter averages from each region for
1940-2015 1.

Given known teleconnections that are the current
state-of-the-art for seasonal forecasting [3], we use as
our predictors sea-surface temperature (SST) at various
time lags across the Pacific basin. Specifically, we
consider mean SST on a 10◦×10◦ grid in July, August,
September, and October. The data are from the 20th
Century Reanalysis project 2. We consider 226 locations
over the Pacific at 4 different time lags, for a total of
p = 904 features and n = 75 years of observations.

For a given year i and climate division r, we seek to
solve the regression problem

y(i)r =

p∑
j=1

X
(i)
j βj + ε(i)

where X
(i)
j is the summer SST measurement at (lo-

cation, time lag) j preceding y
(i)
r , the winter pre-

cipitation observation for region r. We also assume
ε(i) ∼ N(0, σ2). Although precipitation is non-negative

1https://www.ncdc.noaa.gov/cag/time-series/us
2https://www.esrl.noaa.gov/psd/data/20thC Rean/

and tends to be skewed in distribution, we find experi-
mentally that we can reasonably approximate monthly
winter totals over the SWUS regions with Gaussian
noise. X and y are both centered and normalized to
have unit variance and mean zero. We know that the
columns of X are highly correlated in both space
and time. Our goal is to estimate coefficients β that
yield low prediction error for the seasonal forecasting
problem and are physically interpretable from a climate
science perspective.

III. METHODS

A. Graph total variation

For a response y ∈ Rn and covariates X ∈ Rn×p,
p� n, we seek to estimate β∗ such that y = Xβ∗ + ε
where β∗ is well-aligned with the correlation structure
of X . For a zero-centered X , let Σ := E(XTX) be the
covariance matrix of X and Σ̂ be an estimate of Σ. Let
ŝj,k := sign(Σ̂j,k). Our estimator, which we call graph
total variation (GTV) [9], is given by

β̂ = arg min
β
‖y −Xβ‖22

+ λTV
∑
j,k

|Σ̂j,k|1/2|βj − ŝj,kβk| (1)

+ λ1‖β‖1,

where λ1 and λTV are regularization parameters chosen
through cross validation. We can interpret this estimator
from a graph perspective by defining a covariance
graph based on Σ̂. Let G = (V,E,W ) be an undirected
weighted graph with vertices V = {1, 2, . . . , p}, edges
E := {(j, k) : |Σ̂j,k| > 0, j 6= k}, and weight matrix
W with Wj,k = wj,k = |Σ̂j,k|1/2. Let Γ ∈ R|E|×p be
the weighted edge incidence matrix, of G, where each
row ` represents a pair of connected vertices (j`, k`):

Γ`,j` = |Σ̂j`,k` |1/2 (2)

Γ`,k` = −sign(Σ̂j`,k`)|Σ̂j`,k` |1/2

We can thus simplify the total variation term in (1) as

|Σ̂j,k|1/2|βj − ŝj,kβk| = ‖Γβ‖1

It is worth highlighting the differences between GTV
and similar well-studied structured estimators, such as
the fused Lasso [10] and the generalized Lasso [11].
The theoretical guarantees of these estimators assume
that X satisfies the restricted eigenvalue condition [12],
which is often violated when the columns of X are
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highly correlated. GTV, on the other hand, performs
well in the presence of strong correlations.

GTV promotes estimates of β that contain sparse
clusters of coefficients corresponding to highly cor-
related variables. That is, the stronger the correlation
between Xj and Xk, the more similar β̂j and β̂k. In
the case of perfect correlation (i.e. Xj = Xk), Lasso
will assign weight to either Xj or Xk, while GTV will
distribute the weight evenly across Xj and Xk. This
results in more interpretable model selection, which is
of interest in climate and other application areas. This
estimator adaptively selects clusters of features aligned
with an estimated underlying graphical structure.

B. Covariance matrix estimation

The GTV regularization term depends on a reliable
estimate of Σ. It is well documented ([13], [14]), that,
in high-dimensional settings where p � n, the sample
covariance Σ̂S = 1

nXX
T is not a consistent or accurate

estimate of Σ. In some application areas, including
climate science, there exists side information that is not
based on X with which we can estimate Σ.

Climate models are physical mathematical models
that simulate how energy and matter interact. In climate
and related domains, there is hope that leveraging
climate models alongside observations can help reduce
uncertainties in predictive schemes [15]. One way to do
this is data augmentation, which treats the simulation
data as independent and identically distributed draws
from the distribution of the observed data and combines
all data to feed to the model, but this can be problematic
in light of model biases and sensitivities to initialization
[8].

We propose treating these climate simulations as
side information we can use to estimate Σ. We use
simulations from the CESM Large Ensemble Project,
known as LENS1. LENS is a 40-member ensemble of
Community Earth System Model V1 (CESM1) simu-
lations, each of which is subject to the same radiative
forcing scenario but with slightly perturbed initial tem-
perature conditions. We linearly interpolate the LENS
simulations of summer SST onto the same spatial grid
as our observations.

Letting XL ∈ R40n×p be the centered matrix of
stacked features from all LENS ensemble members, we
let Σ̂L be the sample covariance matrix of XL. We
are assuming that both X and XL are draws from a
distribution with the same covariance matrix, Σ, and

1http://www.cesm.ucar.edu/projects/community-projects/LENS/

since XL has a much higher sample size than X , we
believe Σ̂L is a better estimate of Σ than Σ̂S .

C. Multitask GTV

We know that precipitation patterns across the entire
SWUS are tied to similar summer atmospheric events,
but possibly to a different degree for each region.
Because of this, we seek to simultaneously solve m
regression problems, a technique known as multitask
learning. We assume that there is an unknown subset
of covariates that are relevant for prediction, and this
subset is preserved across the m regions. Let Y =
[y(1), y(2), . . . y(m)] ∈ Rn×m be the matrix of the m
response vectors corresponding to each climate region
shown in Figure 1 and B = [β(1), β(2), . . . β(m)] ∈
Rp×m be the matrix of the corresponding m coeffi-
cient vectors. We wish to solve the following objective
function, which we refer to as MultiGTV:

B̂ = arg min
B
‖Y −XB‖2F (3)

+ λ1

m∑
r=1

(
‖Γβ(r)‖1 + ‖β(r)‖1

)
+ λ2

p∑
j=1

‖Bj,:‖2

where Γ is the edge-incidence matrix from (2) and
Bj,: is the jth row of B. The first regularization term
encourages coefficient estimates for each region that
are sparse and well-aligned with the covariance of X ,
while the second promotes similarity in the support of
the coefficient vectors across regions. We use a variant
of an ADMM algorithm (Alternating Direction Method
of Multipliers) [16] to solve this objective function.

IV. EVALUATION

For all experiments, the models are trained on the
first 50 years of data and the remaining 25 years
are held out for testing. Regularization parameters are
chosen through 5-fold cross validation on the training
data, and all reported errors are computed on the test
data.

We compare the performance of GTV and MultiGTV
with other well-known structured regression methods.
Because GTV estimates coefficients for a single re-
sponse and MultiGTV estimates many responses si-
multaneously, in order to compare performance in a
meaningful way we report errors as follows. For a given
region, we compute the mean squared error (MSE) on
the corresponding test data. Then, we compute and
report the area-weighted means and standard errors (SE)
of the MSE across all regions in the SWUS.
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We benchmark our methods against ordinary least
squares (OLS) and Lasso (along with the multitask
version of Lasso) in order to set a baseline. Then, we
consider the following graph-based methods, which all
solve a form of the GTV objective function with the
edge-incidence matrix Γ defined by a variety of graphs:

1) Fused Lasso: The graph includes only immediate
spatial and temporal neighbors

2) GTV with Σ̂S : The graph includes edges and
weights based on the covariance of the SST
observations, Σ̂S

3) GTV with Σ̂L: The graph includes edges and
weights according to the covariance of the LENS
SST simulations, Σ̂L

Each of these graphs can be used in the MultiGTV
method as well. The results of all methods under
consideration are shown in Table I.

Method MSE SE
OLS 1.018 0.038
Lasso 1.014 0.037
Fused Lasso 1.069 0.062
GTV with Σ̂S 0.989 0.052
GTV with Σ̂L 0.949 0.041
Multitask Lasso 0.964 0.029
Multitask Fused Lasso 0.929 0.036
MultiGTV with Σ̂S 0.921 0.035
MultiGTV with Σ̂L 0.919 0.027

TABLE I
AREA-WEIGHTED MEAN AND STANDARD ERRORS OF THE MSE

FOR EACH OF THE 16 CLIMATE REGIONS UNDER
CONSIDERATION. THE TOP SECTION INCLUDES METHODS THAT
ESTIMATE COEFFICIENTS FOR EACH REGION SEPARATELY AND

THE BOTTOM INCLUDES METHODS THAT ESTIMATE ALL
REGIONS SIMULTANEOUSLY. THE BEST PERFORMING METHOD

IN EACH SECTION IS IN BOLD.

We see that GTV outperforms the other methods in both
the multitask and regular cases. Additionally, we see
that estimating the covariance graph using the LENS
data (Σ̂L) provides stronger predictive performance
than using just the observations (Σ̂S). The multitask
methods outperform their single-response counterpart,
but it is worth noting that MultiGTV with both Σ̂S and
Σ̂L result in nearly identical predictive performances,
suggesting that the improvement in performance when
using the LENS simulations seen in the ordinary GTV
setting is not as influential in the multitask setting.

V. DISCUSSION

In this abstract we argue that the seasonal forecasting
problem is improved by the use of graph-based reg-

ularization methods that explicitly account for spatial
and temporal correlations among the features. We also
present a novel method of leveraging large ensemble
climate models to estimate the covariance graph for
use in GTV, which results in the highest predictive
performance of the methods considered. The intuition
behind this discovery is that there are long-range
teleconnections among climate variables that extend
beyond nearest-neighbors approaches like fused Lasso,
and accounting for these relationships is important for
the forecasting problem.

This work lays the methodological foundation for
a data-driven approach to seasonal forecasting that is
grounded in physics. There are many potential next
steps for this research. First, we note that the method as
presented does not account for the nonlinearity of the
system dynamics. We acknowledge that external forc-
ing like anthropogenic climate change and/or natural
multidecadal oscillations in the Pacific can affect the
predictive skill of the algorithm. One of the next steps
of this research is to account for changes in the weights
of the predictors as a function of time.

Next steps also include a rigorous investigation of
the locations and time lags at which Pacific SSTs
are selected by our model to be predictive of SWUS
precipitation. This analysis will address the robustness
of the selected variables to help determine whether or
not they correspond to true teleconnections from both
a statistical and physical standpoint.

Finally, we hope to further validate our methods on
different seasonal forecasting problems. Our methods
are flexible and can easily adapt to different climate
variables and prediction settings.
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