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Abstract—In this paper, we present results on the authentication
capacity region for the two-user arbitrarily-varying multiple-
access channel. We first consider a standard definition of au-
thentication, in which the receiver may discard both messages if
an adversary is detected. For this setting, we show that an ex-
tension of the arbitrarily-varying channel condition overwritability
characterizes the authentication capacity region. We then define
γ-correcting authentication, where we require that at least a γ
fraction of the users’ messages be correctable, even in the presence
of an adversary. We give necessary conditions for the γ-correcting
authentication capacity region to have nonempty interior, and
show that positive rate pairs are achievable over a particular
channel that satisfies these conditions.

I. Introduction

As everyday devices steadily grow more interconnected,
the ability to verify the origin of information is increasingly
important. Consequently, we study the problem of keyless
authentication in the presence of an adversary: the receiver
must be able to decode in the absence of adversarial action,
and is allowed to either decode or declare adversarial inter-
ference when the adversary is active. In this paper, we focus
on authentication over the arbitrarily-varying multiple-access
channel (AV-MAC), an extension of the arbitrarily-varying
channel (AVC) [1]. Specifically, a t-user AV-MAC takes as
inputs t legitimate user transmissions and an adversarial state,
which is assumed to be chosen by an adversary who knows the
coding scheme, but cannot see the actual user transmissions.
The adversary’s goal is to trick the receiver into outputting
incorrect messages without detecting its interference.

The AVC is the point-to-point version of this scenario, in
which there is a single sender and single receiver. The channel
condition overwritability was shown in [2] to characterize the
authentication capacity over the AVC: if an AVC is over-
writable, its authentication capacity is equal to zero, and if
not, it has authentication capacity equal to the communication
capacity of the underlying non-adversarial channel. Other work
on authentication in point-to-point settings, with adversaries of
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varying capabilities and users who may or may not have access
to a shared secret key, includes [3]–[11].

The communication capacity region of a two-user AV-MAC,
provided the region has nonempty interior, was established by
Jahn in [12]. The complete capacity region characterization
was subsequently characterized by Gubner [13] and Ahlswede
and Cai [14], who together proved that (non)emptiness of the
region’s interior is determined by a symmetrizability condition
that is an extension of symmetrizability as defined for an AVC
[15]. However, authentication over the two-user AV-MAC has,
to the best of our knowledge, not been studied in the literature.

Of relevance to our current work is [16], in which the authors
consider authentication over a two-user byzantine MAC, where
one of the users may be adversarial. Specifying a byzantine
user reduces to the AVC setting considered by [2], but al-
lowing either to be byzantine necessitates an extension to the
overwritability condition. Based on this extension, the authors
characterize the authentication capacity region. In the current
work, we further extend overwritability in order to consider the
two-user AV-MAC, where the adversary exists outside of the
legitimate setup as a malicious third actor.

We first consider authentication in a manner akin to the def-
inition of [16]: successful authentication occurs if the receiver
(1) recovers both messages correctly, or (2) when appropriate,
outputs a declaration of interference for one or both users. For
this case, we present an extension to overwritability, and show
that overwritable AV-MACs have empty authentication capacity
region interiors. Furthermore, non-overwritable channels have
authentication capacity region equal to the underlying no-
adversary communication capacity region: that is, any the rate
pair for which reliable communication is achievable when the
adversary is not acting is also a rate pair for which authen-
tication is achievable, whether or not the adversary is active.
For channels over which the adversary is capable of disrupting
a single transmission but cannot disrupt both transmissions
simultaneously, we may wish to recover one message, even if
the other must be discarded. For such scenarios, we define γ-
correcting authentication, and give results on the γ-correcting
authentication capacity region.

The paper is organized as follows. Section II introduces the
relevant background and notation. Overwritability is extended
to the AV-MAC setting, and is used to characterize the au-
thentication capacity region in Section III. In Section IV, we
introduce γ-correcting authentication and give results on the
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γ-correcting authentication capacity region. Section V presents
a 0.5-correcting authentication coding scheme for a particular
channel. Section VI concludes the paper.

II. Preliminaries

Notation: throughout the paper, [M] := {1, . . . ,M}, and ‖ ·
‖ denotes the Hamming weight. A random variable will be
denoted using a capital letter, with the corresponding alphabet
and alphabet elements written with script and lowercase letters,
respectively. For example, X is a random variable with alphabet
X such that for all x ∈ X, PX(x) is the probability that X = x.
Vectors will be denoted with boldface, all logarithms will be
base 2, and H(·) will denote the entropy function.

We consider authentication over the AV-MAC with two
legitimate users, a single receiver, and an outside adversary. We
assume that the adversary has full knowledge of the codebooks
of the legitimate parties, but no knowledge of the transmissions
at any given time. More formally, let WY |X1,X2,S be a discrete
memoryless adversarial channel with the sets X1,X2,S, and Y
as the input, state, and output alphabets. For multiple channel
uses, we write W(y | x1, x2, s) to represent the product channel,
where the sequence lengths are understood. See Fig. 1 for a
depiction. We define an authentication code for this setting as
follows.

User 1

User 2

WY |X1,X2,S Receiver

Adversary

x1 ∈ X1

x2 ∈ X2

y ∈ Y

s ∈ S

Fig. 1. The two-user AV-MAC.

Definition II.1. An (M1,M2, n) authentication code for a two-
user AV-MAC is given by two encoders f1 and f2, and a decoder
φ:

f1 : [M1]→ Xn
1, f2 : [M2]→ Xn

2 (1)
φ : Yn → ([M1] ∪ {0}) × ([M2] ∪ {0}) , (2)

where an output of “0” in either coordinate indicates adversarial
interference.

Notice that this definition may be extended to stochastic
encoders, but in this work we will focus on deterministic
encoders. In [16], the output of the decoder has been restricted
to ([M1] × [M2])∪{(0, 0)}. While (2) may be reduced to this type
of decoder, allowing for outputs where exactly one coordinate
is positive gives the opportunity to decode some information,
even if the adversary is active. This will be examined further
in Section IV.

Let φ−1(A) ⊆ Yn represent the set of channel outputs which
decode to some (i1, i2) in the set A under φ, and let φ−1(A)c be

the complement in Yn of this set. Let x j(i) := f j(i) denote the
length-n encoding of message i by user j. Given transmitted
messages i1 and i2 and adversarial state s, we define the
probability of error for the authentication code ( f1, f2, φ) as:

e(i1, i2, s) =W(φ−1({(i1, i2)})c | x1(i1), x2(i2), s) s = s0

W(φ−1({(î1, î2) : î j ∈ {0, i j}})c | x1(i1), x2(i2), s) s , s0,

(3)

where s = s0 denotes that the no-adversary state sequence. We
assume that each message pair in [M1] × [M2] is transmitted
with equal probability, so that the average probability of error
for a given adversarial choice of s is given by

e(s) =
1

M1M2

∑
(i1,i2)

e(i1, i2, s). (4)

We then say that a rate pair (R1,R2) is achievable if there
exists a sequence of (2R1n, 2R2n, n) authentication codes such
that maxs e(s) → 0 as n → ∞. Notice that maxs e(s) is the
highest average error probability the adversary can hope for,
achieved by choosing s optimally. The authentication capacity
region, Cauth, is the closure of the set of achievable rate pairs.
Let C denote the capacity region in the no-adversary setting
(i.e., s = s0).

As mentioned above, an extension of the AVC symmetriz-
ability condition fully characterizes when the two-user AV-
MAC has empty interior [13], [14]. Recall that an AVC WY |X,S
is symmetrizable if there exists a distribution PS |X such that
for all x, x′, y,

∑
s PS |X(s|x′)W(y|x, s) =

∑
s PS |X(s|x)W(y|x′, s)

[15]. Subsequently, symmetrizability for a two-user AV-MAC
is defined as follows.

Definition II.2. [13] A two-user AV-MAC WY |X1,X2,S is X1×X2-
symmetrizable if there exists P := PS |X1,X2 such that for all
x1, x2, x′1, x

′
2, y,∑

s

P(s | x′1, x
′
2)W(y|x1, x2, s) =

∑
s

P(s | x1, x2)W(y|x′1, x
′
2, s).

The channel is (i) X1-symmetrizable or (ii) X2-symmetrizable if
there exists P := PS |X1 or PS |X2 , respectively, such that for all
x1, x2, x′1, x

′
2, y,

(i)
∑

s

P(s | x′1)W(y|x1, x2, s) =
∑

s

P(s | x1)W(y|x′1, x2, s), or

(ii)
∑

s

P(s | x′2)W(y|x1, x2, s) =
∑

s

P(s | x2)W(y|x1, x′2, s).

Example II.3. Consider the channel with X1 = X2 = S = {0, 1}
such that the channel output is the real-valued sum of the input
values. We then have Y = {0, 1, 2, 3}. Now, s = 0 is the no-
adversary state, and an output of “3” is immediate indication
that an adversary is present. This channel is not X1 × X2-
symmetrizable. It is, however, both X1- and X2-symmetrizable.
In other words, the adversary can imitate at most one of the
legitimate users at a time.
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In Section III, we will introduce an overwritability condition
as an extension of the overwritability condition of [2]. An AVC
WY |X,S is overwritable if there exists a distribution PS |X such
that for all x, x′, y,

∑
s PS |X(s|x′)W(y|x, s) = W(y|x′, s0), where

s0 denotes the no-adversary state. This condition is analogous
to symmetrizability, but for authentication capacity rather than
communication capacity.

III. Authentication over AV-MACs

In this section, we give results on the authentication capacity
region for the two-user AV-MAC. Similar to the way in which
Definition II.2 is an extension of AVC symmetrizability, we
give an extension of overwritability for the two-user AV-MAC.

Definition III.1. A two-user AV-MAC WY |X1,X2,S is X1 ×

X2-overwritable if there exists PS |X1,X2 such that for all
x1, x2, x′1, x

′
2, y,∑

s

PS |X1,X2 (s | x′1, x
′
2)W(y|x1, x2, s) = W(y|x′1, x

′
2, s0).

The channel is (i) X1-overwritable or (ii) X2-overwritable
if there exists PS |X1 or PS |X2 , respectively, such that for all
x1, x2, x′1, x

′
2, y,

(i)
∑

s

PS |X1 (s | x′1)W(y|x1, x2, s) = W(y|x′1, x2, s0), or

(ii)
∑

s

PS |X2 (s | x′2)W(y|x1, x2, s) = W(y|x1, x′2, s0).

Example III.2. Recall the channel considered in Example II.3;
this channel is not overwritable in any sense.

Example III.3. Let X1 = X2 = {0, 1}, S = {s0, 0, 1}, and Y =

{0, 1, 2}. Let WY |X1X2S be such that Y = X1 + X2 if S = s0, and
Y = X1 + S otherwise, where “+” denotes real addition. This
channel is clearly X2-overwritable, but is not X1- nor X1 × X2-
overwritable.

As in the point-to-point case, each of the above three over-
writability conditions implies the corresponding symmetrizabil-
ity condition in Definition II.2.

Proposition III.4. If a channel is X1 × X2-overwritable
(resp., X1- or X2-overwritable), then it is trivially X1 × X2-
symmetrizable (resp., X1- or X2-symmetrizable), in the sense
that there exists a distribution PS |X1,X2 (resp., PS |X1 or PS |X2 )
giving symmetrizability that is independent of X1 and X2.

Proof. We show that this holds for the X1 × X2 case; the other
two cases may be shown similarly. Suppose that WY |X1,X2,S is
X1 × X2-overwritable. Then, there exists P := PS |X1,X2 such that
for all x1, x2, x′1, x

′
2, y,∑

s

P(s | x′1, x
′
2)W(y | x1, x2, s) = W(y | x′1, x

′
2, s0).

For any choice of s, x̃1, x̃2, define the distribution

P̃S |X1,X2 (s | x̃1, x̃2) :=
1

|X1| · |X2|

∑
x′1,x

′
2

P(s | x′1, x
′
2).

Notice that P̃S |X1,X2 is independent of X1 and X2. Thus, P̃S |X1,X2

reduces to a distribution on S ; we denote this distribution by
P̃S . For any choice of x1, x2, x̃1, x̃2, y,∑

s

P̃S (s)W(y | x1, x2, s) =

1
|X1| · |X2|

∑
x′1,x

′
2

∑
s

P(s | x′1, x
′
2)W(y | x1, x2, s) (5)

=
1

|X1| · |X2|

∑
x′1,x

′
2

W(y | x′1, x
′
2, s0) (6)

=
1

|X1| · |X2|

∑
x′1,x

′
2

∑
s

P(s | x′1, x
′
2)W(y | x̃1, x̃2, s) (7)

=
∑

s

P̃S (s)W(y|x̃1, x̃2, s). (8)

Thus, WY |X1,X2,S is trivially X1 × X2-symmetrizable. �

However, the converse of Proposition III.4 does not hold, as
demonstrated by the following example.

Example III.5. Consider the channel with X1 = X2 = S =

{0, 1} such that the channel output is the modulo 2 sum of the
input values. Here, s = 0 is the no-adversary state. This channel
is not X1-, X2-, nor X1 × X2-overwritable, but is symmetrizable
in every sense.

We next show that if overwritability in any sense holds,
the interior of the authentication capacity region is empty:
specifically, at least one of R1 or R2 must be zero.

Lemma III.6. For any two-user AV-MAC, Cauth ⊆ C . If a two-
user AV-MAC is X1-, X2-, or X1 × X2-overwritable, then Cauth
has empty interior.

Proof. Since any coding scheme that achieves authentication
must achieve reliable communication in the no-adversary case,
any rate pair that is achievable for authentication must also be
achievable for communication with no adversary. This proves
the first claim.

Next, consider a two-user AV-MAC that is X1 × X2-
overwritable, and let P := PS |X1X2 be the guaranteed adversarial
distribution. Consider a sequence of (M1,M2, n) codes, with
M1 := 2R1n, M2 := 2R2n, R1,R2 ≥ 0. Let xi j := f j(i j) for j ∈
{1, 2} and i j ∈ [M j], and let A := {( j1, j2), ( j1, 0), (0, j2), (0, 0)}.
Then, maxs e(s) is bounded below by

max
s

e(s) ≥
∑

s

 1
M1M2

∑
(i1,i2)

P(s | xi1 , xi2 )

 e(s) (9)

=
∑

s

1
(M1M2)2

∑
(i1,i2),( j1, j2)

P(s | xi1 , xi2 )e( j1, j2, s) (10)

≥
1

(M1M2)2

∑
(i1,i2),( j1, j2),s

P(s | xi1 , xi2 )W(φ−1(A)c | x j1 , x j2 , s)

(11)

=
1

(M1M2)2

∑
(i1,i2),( j1, j2)

W(φ−1(A)c | xi1 , xi2 , s0) (12)
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≥
1

(M1M2)2

∑
(i1,i2)

( j1, j2),(i1,i2)

W(φ−1({(i1, i2)}) | xi1 , xi2 , s0) (13)

≥
1

M1M2

∑
( j1, j2),(i1,i2)

(1 − e(s0)) (14)

≥
M1M2 − 1

M1M2
(1 − e(s0)) (15)

where (12) follows by X1 × X2-overwritability. Noting that
maxs e(s) ≥ e(s0),

max
s

e(s) ≥
M1M2 − 1

2M1M2 − 1
,

which, for any positive R1 or R2, converges to 0.5 as n → ∞.
Thus, (R1,R2) is not an achievable rate pair for any (R1,R2) ,
(0, 0), and we conclude that Cauth has empty interior.

By analogous arguments, we may show that if WY |X1X2S
is X1-overwritable (resp., X2-overwritable), (R1,R2) is not an
achievable rate pair for any R1 > 0 (resp., R2 > 0). In either
case, we again conclude that Cauth has empty interior.

�

Theorem III.7. Suppose a channel WY |X1X2S is not X1 × X2-,
X1-, nor X2-overwritable. Then, Cauth = C .

The converse follows easily by Lemma III.6. Achievability
is accomplished by the same code construction presented in
[16] for achievability over a two-user byzantine MAC (see
Appendix E of [17]), with some arguments adjusted for the
change in setting. Their construction is roughly as follows:
first, the two users transmit their messages using a high-rate-
pair coding scheme for the underlying non-adversarial two-user
MAC. Subsequently, each user in turn sends a short tag that
validates its previously-transmitted message, while the other
user transmits a constant symbol. Because the channel is not
X1-, X2-, nor X1 × X2-overwritable, each of the tags can be
transmitted with vanishing authentication error probability, and
can be used to reliably validate the messages.

Remark III.8. Consider a channel that is not overwritable in
any sense, but is symmetrizable in every sense (e.g. Example
III.5). In this case, the communication error probability is
bounded away from zero. However, authentication allows the
users to obtain useful information in spite of this: when the
adversary is active, the receiver at worst correctly identifies its
presence without outputting a message pair estimate. On the
other hand, if the adversary is not actively tampering with a
transmission, the receiver can reliably decode.

IV. γ-correcting Authentication

As mentioned in Section II, previous work has deemed
the decoder successful if (î1, î2) = (i1, i2), or, if s , s0,
(î1, î2) = (0, 0). Our definition of the authentication decoder,
however, allows for partial decoding of the message pair in the
presence of an adversary. Thus, the decoder has the opportunity
to recover a message from one user, even if the adversary is
present and interference must be declared for the other user.
For certain channels, we are able to achieve positive rate pairs

while requiring this stricter form of authentication. To this end,
we define γ-correcting authentication codes. We present the
general definition below, recalling that our present focus is on
the two-user case (i.e., t = 2).

Definition IV.1. Let γ ∈ (0, 1). We say that an (M1, . . . ,Mt, n)
authentication code for a t-user AV-MAC is γ-correcting if,
with high probability in n, we can correct at least a γ fraction
of the t messages.

We revise Equation (3) slightly to account for this new
restriction in the two-user case: for fixed i1, i2, s, we define

eγ(i1, i2, s) =

W(φ−1({(i1, i2)})c | x1(i1), x2(i2), s) s = s0

W(φ−1(A)c | x1(i1), x2(i2), s) s , s0,
(16)

where A := {(î1, î2) : î j ∈ {0, i j}, ‖(î1, î2)‖ ≥ γ·2}. We then define
eγ(s) to be the average over all message pairs of eγ(i1, i2, s). In
the case of a two-user AV-MAC, 0 < γ ≤ 0.5 requires that
at least one user be corrected, and γ > 0.5 gives the reliable
communication problem (i.e. both messages must be corrected
regardless of adversarial interference). An authentication code
is γ-correcting if eγ(s) → 0 as n → ∞. We define the γ-
correcting authentication capacity region as the closure of the
set of all positive achievable rate pairs (i.e. R1,R2 > 0), and
denote it by Cauth,γ.

Lemma IV.2. Cauth,γ ⊆ Cauth for all γ ∈ (0, 1).

Proof. Let γ ∈ (0, 1) and fix an authentication code that is
γ-correcting. For any i1, i2, s, eγ(i1, i2, s) ≥ e(i1, i2, s). Thus,
maxs eγ(s)→ 0 implies that maxs e(s)→ 0, and the code is also
an authentication code in the sense of Section III. We conclude
that if a rate pair is achievable for γ-correcting authentication,
it is also achievable for authentication. �

Theorem IV.3. Let γ ∈ (0, 1). If a WY |X1X2S is X1 × X2-
symmetrizable, then Cauth,γ has empty interior.

Proof. Suppose WY |X1X2S is X1×X2-symmetrizable, let γ ∈ (0, 1)
and let P := PS |X1X2 be the guaranteed adversarial distribution.
Consider a sequence of (M1,M2, n) codes, with M1 := 2R1n,
M2 := 2R2n, R1,R2 ≥ 0. Let xi j := f j(i j) for j ∈ {1, 2},
i j ∈ [M j], and let A := {( j1, j2), ( j1, 0), (0, j2)}, and B :=
{(i1, i2), (i1, 0), (0, i2)}. Then, maxs eγ(s) is bounded below by

≥
∑

s

 1
M1M2

∑
(i1,i2)

P(s | xi1 , xi2 )

 eγ(s) (17)

=
1

(M1M2)2

∑
(i1,i2),( j1, j2),s

P(s | xi1 , xi2 )eγ( j1, j2, s) (18)

≥
1

(M1M2)2

∑
(i1,i2),( j1, j2),s

P(s | xi1 , xi2 )W(φ−1(A)c | x j1 , x j2 , s)

(19)

=
1

(M1M2)2

∑
(i1,i2),( j1, j2),s

P(s | x j1 , x j2 )W(φ−1(A)c | xi1 , xi2 , s)

(20)
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≥
1

(M1M2)2

∑
(i1,i2),s, j1,i1, j2,i2

P(s | x j1 , x j2 )W(φ−1(B) | xi1 , xi2 , s)

(21)

≥
1

(M1M2)2

∑
(i1,i2),s

j1,i1, j2,i2

P(s | x j1 , x j2 )
(
1 − eγ(i1, i2, s)

)
(22)

=
1

M1M2

∑
j1,i1, j2,i2

∑
s

P(s | x j1 , x j2 )
(
1 − eγ(s)

)
(23)

≥
(M1 − 1)(M2 − 1)

M1M2

(
1 −max

s
eγ(s)

)
(24)

where (20) follows by symmetrizability. Then,

max
s

eγ(s) ≥
(M1 − 1)(M2 − 1)

(M1 − 1)(M2 − 1) + M1M2
.

If both R1 and R2 are strictly greater than 0, the right side
converges to 0.5 as n → ∞. Thus, it must be the case that at
least one of R1 or R2 is equal to zero, resulting in Cauth,γ having
empty interior. �

It is possible that a channel is not overwritable in any sense,
but is X1 × X2-symmetrizable; in this case, Cauth,γ has empty
interior, even while Cauth = C may have nonempty interior.

V. Construction for the Real Addition Binary AV-MAC

If WY |X1X2S is not overwritable, and is not X1 × X2-
symmetrizable, it is possible that Cauth,γ has nonempty interior,
even if the channel is X1- or X2-symmetrizable. The channel
presented in Example II.3 falls into this category; in this sec-
tion, we present a construction for γ-correcting authentication
over this channel.

A. A Small 0.5-correcting Authentication Code

We first present a (2, 2, 3) 0.5-correcting authentication code
for transmission over the channel detailed in Example II.3,
which outputs the real-valued sum of binary user inputs and the
adversarial state. Recall that this channel is not overwritable in
any sense, and is not X1 × X2-symmetrizable, but is both X1-
and X2-symmetrizable. Let the codebooks for users 1 and 2 be
{011, 100}, and {010, 101}, respectively. If the adversary is not
present, the possible channel outputs are in {021, 112, 110, 201}.
It is straightforward to see that an active adversary (i.e. an
adversary whose state is not 000) will always be detected,
and so regular authentication can be achieved with zero error
probability.

In fact, this choice of codebooks also forms a 0.5-correcting
authentication code. Fig. 2 gives all possible channel outputs,
resulting from any pair of inputs and any binary state sequence.
Notice that there are four distinct outputs that correspond
to multiple possible input/state sequences. In each case, the
adversary’s strategy is to choose s to be a valid codeword in
one of the users’ codebooks. While this ambiguity negates the
possibility of completely correcting these four sequences, one
user’s message can still be corrected with perfect accuracy in
every case. Specifically, with outputs of 122 and 211, we can
guarantee that x1 = 011 and 100, respectively. For outputs of

s \ x1 + x2 011+010 011+101 100+010 100+101
000 021 112 110 201
001 022 113 111 202
010 031 122 120 211
011 032 123 121 212
100 121 212 210 301
101 122 213 211 302
110 131 222 220 311
111 132 223 221 312

Fig. 2. The possible channel outputs for all possible input pairs and choices of
adversarial state in Section V-A. Outputs arising in multiple ways are shaded.

121 and 212, x2 = 010 and 101, respectively. There is a unique
triple of legitimate inputs and state sequence for every other
output, allowing for perfect recovery of both x1 and x2.

Clearly, the above construction does not give asymptotic
results. However, we can use this small code as a building
block to construct a positive rate pair sequence of codes.

B. Extending the Block Length

To extend the scheme of Section V-A to longer block
lengths, we add an outer code. For a binary message of length
R1n (resp., R2n) for User 1 (resp., User 2), first encode the
message using a (2R1n, n) (resp., (2R2n, n)) outer code designed
for error correction over the following AVC: the alphabet of
the legitimate user is X = {0, 1}, and the adversary’s alphabet
is S = {s0, 0, 1}. For a user input of x and state symbol s,
outputs are determined as follows:

y =

x if s ∈ {s0, x}
ε else,

(25)

where ε denotes an erasure. The adversary is power-constrained
so that it may choose at most bn/2c coordinates to be from
{0, 1}; the remainder must equal s0. The capacity of this channel
is positive (see Appendix A), and so codes of positive rate exist
for error correction over this channel. If the message sets of
Users 1 and 2 are the same size, the same outer code may be
used for each. Next, each bit of the (2R1n, n) (resp., (2R2n, n))
code is encoded using the appropriate codebook of the (2, 2, 3)
0.5-correcting authentication code for the two-user AV-MAC
presented in Section V-A.

Decoding is as follows: first, each 3-bit block of the received
sequence is decoded as described in Section V-A. For each
block, we may guarantee that at least one of the users is
correctable. If the other user’s message is not correctable, its
output in that coordinate is set to ε. The resulting output of
this first stage of decoding is one length-n codeword for each
user, each with some number of bits erased. For each 3-bit
block, the adversary’s choice of state determines which user
is targeted (see our discussion in Section V-A); the adversary
must split its time between the two users, so at least one user
has been targeted in at most half of its coordinates.

Without loss of generality, suppose User 1 is targeted in at
most as many positions as is User 2. As a worst-case scenario,

IEEE WPS 2020 - International Workshop on Privacy and Security for Information Systems

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 29,2020 at 03:36:36 UTC from IEEE Xplore.  Restrictions apply. 



we assume that the adversary has targeted half of the bits of
User 1’s codeword. The effective channel is then the AVC
described above and detailed in Appendix A. Since our (2R1n, n)
code was designed for this channel, we successfully decode
with high probability.

In all, this construction gives a (2R1n, 2R2n, 3n) 0.5-correcting
authentication code for the real-addition binary-input two-
user AV-MAC. In other words, the rate pair (R1/3,R2/3) is
achievable for any rates R1 and R2 that are achievable over the
erasure AVC described above (see Appendix A). Consequently,
we have shown that the rate pair (0.25, 0.25) is achievable over
this two-user AV-MAC.

VI. Conclusions

In this paper, we gave authentication capacity results for
the two-user AV-MAC. For a classical definition of authenti-
cation, we showed that the authentication capacity region is
characterized by an extension of the AVC channel condition
overwritability. We then introduced the concept of γ-correcting
authentication, and showed that Cauth,γ ⊆ Cauth, and that Cauth,γ
has empty interior when the channel is X1 ×X2-symmetrizable.
Finally, we showed that positive γ-correcting authentication
rate pairs are achievable when the AV-MAC satisfies certain
conditions. Ongoing work includes extending our results to
the t-user AV-MAC, and the development of computationally
efficient constructions for γ-correcting authentication.
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Appendix A
Consider the AVC described in Section V-B. For s ∈ Sn,

define `(s) = 1
n
∑n

i=1 `(si), where `(s) = 0 if s = s0, and
`(s) = 1 otherwise. The stipulation that the adversary may
choose at most bn/2c coordinates of its sequence to be in {0, 1}
is equivalent to the state constraint `(s) ≤ Λ, where Λ = 0.5.
There are no constraints on the input sequence. Note that our
AVC is only symmetrizable using the following choice of PS |X:

PS |X(s | x) =

1 if s = x
0 else.

(26)

Let
Λ0(PX) := min

PS |X∈P

∑
x∈X

∑
s∈S

PX(x)PS |X(s | x)`(s),

where P denotes the set of all distributions PS |X satisfying the
symmetrizability condition. In our case, P consists only of the
distribution in (26). It is straightforward to see that Λ0(PX) = 1
for any distribution PX on the input symbols, and thus that
Λ < Λ0(PX) for any distribution PX . So, by Theorem 3 of [15],
the capacity of the state-constrained AVC is given by

C(Λ) = max
PX

I(PX ,Λ) := max
PX

min
Y:PXS Y∈C0(Λ)

I(X; Y) (27)

where C0 is the set of joint distributions PXS Y (x, s, y) =

PX(x)PS (s)W(y | x, s), and C0(Λ) denotes those such that
E[`(S )] ≤ Λ. Observe that PXS Y ∈ C0 if and only if X and
S are independent, and

Y =

X if S = X, s0

ε else.
(28)

Letting PX(1) = p, PS (0) = q0, PS (1) = q1, we have

C(Λ) = max
p∈(0,1)

min
q0+q1≤0.5

I(X; Y) (29)

where

I(X; Y) = H(Y) − H(Y | X) (30)

= (1 − p)(1 − q1) log2
1

1 − p
+ p(1 − q0) log2

1
p

(31)

+ (1 − p)q1 log2
q1

(1 − p)q1 + pq0
(32)

+ pq0 log2
q0

(1 − p)q1 + pq0
. (33)

We conclude that C(Λ) = 0.75, where the capacity is achieved
at p = 0.5, q0 = q1 = 0.25.
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