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Abstract
Contextual bandit is a classic multi-armed bandit
setting, where side information (i.e., context) is
available before arm selection. A standard assump-
tion is that exact contexts are perfectly known prior
to arm selection and only single feedback is re-
turned. In this work, we focus on multi-feedback
bandit learning with probabilistic contexts, where a
bundle of contexts are revealed to the agent along
with their corresponding probabilities at the begin-
ning of each round. This models such scenarios
as where contexts are drawn from the probability
output of a neural network and the reward func-
tion is jointly determined by multiple feedback sig-
nals. We propose a kernelized learning algorithm
based on upper confidence bound to choose the op-
timal arm in reproducing kernel Hilbert space for
each context bundle. Moreover, we theoretically
establish an upper bound on the cumulative regret
with respect to an oracle that knows the optimal
arm given probabilistic contexts, and show that the
bound grows sublinearly with time. Our simula-
tion on machine learning model recommendation
further validates the sub-linearity of our cumulative
regret and demonstrates that our algorithm outper-
forms the approach that selects arms based on the
most probable context.

1 Introduction
Multi-armed bandit (MAB) is a crucial online learning prob-
lem to discover optimal decisions (a.k.a. arms) based on re-
ceived feedback signals over time [Lai and Robbins, 1985].
Importantly, contextual bandit learning extends the standard
MAB setting by allowing the learner/agent to access some
side information (i.e., context) about the environment prior to
arm selection [Lin et al., 2018]. For contextual bandit, the
context and selected arm jointly determine the distribution of
reward received by the agent, and the goal of the agent is to
maximize its cumulative reward by gradually identifying the
optimal mapping of context information into actions based on
the history of context-action-feedback.

⇤Equal contribution.

Contextual bandits have found success in many applica-
tions, including online recommendation [Mary et al., 2015],
commercial advertising [Tang et al., 2013] and medical ex-
periment design [Villar et al., 2015]. Subsequently, efficient
learning algorithms like Lin-UCB [Li et al., 2010], EXP4
[Auer et al., 2002] and their variations [Li et al., 2017] have
drawn great attention. Nonetheless, most of the prior stud-
ies assume that the context information acquired by the agent
before arm selection is perfect. While this assumption facili-
tates performance analysis of the proposed algorithms, it may
fail in certain practical scenarios, where there is randomness
and uncertainty about the context information.
To alleviate the uncertainty and randomness from environ-

ment, one can apply classification techniques, such as sup-
port vector machine (SVM) [Quinlan, 1986] and deep neu-
ral networks (DNN) [Wan, 1990], which yield a probabil-
ity distribution over possible candidate category of contexts.
For example, a recommendation system commonly recom-
mends personalized items given user features (i.e., contexts)
predicted by a neural network classifier. Thus, all the pos-
sible candidate contexts together form a context bundle with
a probability distribution of different contexts, and the ex-
act context is included in the bundle (possibly not having the
greatest probability) but unknown to the agent. In this paper,
we also use “context” and “context candidate” exchangeably.
In addition to the lack of exact context information, another

practical consideration for contextual bandit learning is that
the agent can receive multiple feedbacks instead of a single
one. In this case, the goal of the agent is to maximize its
reward modeled as a (possibly time-varying) utility function
jointly determined by multiple feedbacks rather than any of
the individual feedback. For example, when selecting an app
for a mobile device, both energy and latency can be measured
and reported to the learner/agent, and these metrics jointly
affect the performance of the selected app.
Motivated by the aforementioned practical considerations,

the focus of this work is to study a novel contextual bandit
setting where the agent can only access to a probabilistic con-
text bundle for arm selection and its goal is to maximize a
time-varying utility function jointly determined by the mul-
tiple feedback signals received at the end of each round. In
order to design an efficient learning algorithm, the key is how
the agent leverages the available probabilistic context infor-
mation to learn multiple feedback functions that jointly de-
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termine a reward. To study this problem, we consider a gen-
eral setting where each individual feedback function can be
nonlinear with respect to the selected arm and contexts, and
apply the kernel method to transfer feedback function in the
reproducing kernel Hilbert space (RKHS). We design a new
algorithm by extending upper confidence bound (UCB) tech-
niques to account for the probabilistic context information,
using the expectation of reward over the probabilistic context
distribution. For each feedback, we learn its relation with
the selected arm given a probabilistic context bundle. Then,
an arm is selected based on an estimated reward in terms
of all the estimated feedback values. Importantly, we prove
that our algorithm achieves a sub-linear regret upper bound
O(

p
T log(T )) compared to an oracle that knows the opti-

mal arm given any probabilistic context bundle.
We apply our learning algorithm to the problem of deep

neural network (DNN) model recommendation for edge in-
ference on mobile devices. Our experiments show that our
proposed algorithm outperforms the alternative solution that
selects arms based on the most probable context. More im-
portantly, our algorithm yields a sub-linear regret with respect
to the oracle, demonstrating the effectiveness of our algorithm
and validating the regret analysis.

2 Problem Formulation
In a standard contextual bandit setting, the context xt 2 RM

is available to the agent at each round. In many cases, how-
ever, the agent only has the knowledge of a bundle of context
candidatesX =

�
x
1
, · · · , xN

 
, where |X | = N , and the true

context xt is in the bundle. At each round t, with some prior
knowledge, the agent can get a collection of probabilities for
context candidates, i.e. Prt(X ) =

�
Pt(x1), · · · , Pt(xN )

 

and
PN

i=1 Pt(xi) = 1. This can be done by using, for exam-
ple, a well-trained DNN classifier and extracting the softmax
layer output of the classifier. The extracted probabilities de-
fine a probability space over the context bundle X . Now, the
context at round t is a random variable Xt in the probability
space with the probability measure Pr

�
Xt = x

i
t

�
= Pt

�
x
i
t

�
.

Note that, with a notational change, our model can also be ex-
tended to continuous context with a probability density func-
tion. Additionally, we consider a more general case where
the agent receives multiple feedbacks. The jth feedback
(j = 1, · · · , J) with respect to action a 2 A and the ran-
dom context Xt can be expressed as

f
j
a,t = g

j
a(Xt) + ✏

j (1)

where gja(·) is a deterministic feedback function which can be
linear or nonlinear, and ✏

j is zero-mean Gaussian noise and
✏
i and ✏

j are mutually independent for i 6= j. Assume that
for j = 1, · · · , J , a kernel function kj : RM ⇥RM ! R can
be found to represent gja(·) in RKHS Fj . In other words, the
kernel function k

j corresponds to a feature map �
j : Rn !

Fj which satisfies kj(x, x0) = �
j(x)>�j(x0), 8x, x0 2 RM

,

and g
j
a(x) = �

j(x)>✓ja.
The agent’s reward is evaluated by a utility function Ut :

RJ ! R, which may change over time and is known to
the agent. Assuming that the Lipschitz constant of the util-

ity function Ut is Lt and L = maxt Lt, we have
|Ut (f1 � f2)|  L kf1 � f2k . (2)

If an action a is selected, then a reward Ut(fa,t) is obtained
by the agent where fa,t =

⇥
f
1
a,t, · · · , fJ

a,t

⇤
is the feedback

vector. By selecting actions, we seek to maximize the ex-
pected reward over both the probabilistic context space and
the noise space, which is denoted as E[Ut(fa,t)]. For the con-
venience of analysis, we further assume that E✏[Ut(fa,t)] =
Ut(E✏[fa,t]) where the expectation E✏ [·] is taken over the
noise space. Example utility functions include a linear form
Ut (f) = u>

t f or a multiplication form Ut (f) =
QJ

j=1 f
j ,

which are also common functions used in multi-objective
bandits [Roijers et al., 2017; Yahyaa and Manderick, 2015].
The best action at round t is defined as the action that leads

to the highest expected reward, i.e.
a
⇤
t = argmax

a2A
E[Ut(fa,t)] (3)

where the expectation E [·] is taken over both noise space
and context space. This best action oracle is reasonable
and common for the cases with context uncertainty, and also
considered as a benchmark in [Kirschner and Krause, 2019;
Yun et al., 2017]. With this oracle, the expected instant regret
regt at every round can be expressed as

regt = E
⇥
Ut(fa⇤

t ,t)� Ut(fat,t)
⇤

(4)
where the expectation E [·] is taken over both noise space and
context space. The algorithm needs to be designed to find
an arm selection policy based on the history information to
minimize the cumulative regret RT =

PT
t=1 regt.

3 Algorithm
In this section, we first introduce the feedback prediction al-
gorithm and then, given the predicted feedbacks and confi-
dence widths, design a UCB-based algorithm with probabilis-
tic contextual information.

3.1 Feedback Prediction
In order to select an action, the algorithm should be able
to predict the feedbacks corresponding to each action,
which then determines the resulting reward. Note that we
cannot simply treat the overall utility function as a sin-
gle feedback signal and directly predict it given incom-
ing contextual information as in prior studies [Kirschner
and Krause, 2019], because the utility function in terms
of multiple feedbacks is changing over time in our set-
ting. To accomplish feedback prediction, we can estimate
the parameter ✓

j
a in feedback functions by kernel-based

empirical risk minimization based on the history Hj
a,t =��

X , P r⌧ (X ), f j
a,⌧

�
, ⌧ = 1, · · · , t

 
, j = 1, · · · , J . Denote

the set of rounds when arm a is selected before round t as
Ta,t =

�
⌧
1
a , ⌧

2
a , · · · , ⌧

na,t
a

 
, where na,t is the number of

times that arm a has been selected prior to round t. The kernel
based empirical risk minimization is to solve the following
problem

✓̂
j
a,t = argmin

✓j
a

1

na,t

X

⌧2Ta,t

(E[�j(Xt)]
>
✓
j
a � f

j
a,⌧ )

2 + �k✓jak2

(5)
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where � � 0 is a hyper-parameter.
Denote �j

a,t =
h
E
⇥
�
j(X⌧1

a
)
⇤
,· · ·,E

h
�
j(X⌧

na,t
a

)
ii

and

yj
a,t =

h
f
j
a,⌧1

a
, f

j
a,⌧2

a
, · · · , f j

a,⌧
na,t
a

i>
. By solving the opti-

mization problem (5), the parameter ✓ja,t is estimated as

✓̂
j
a,t = Cj

a,t

�1
�j

a,ty
j
a,t (6)

whereCj
a,t = �j

a,t�
j
a,t

>
+�I. Then, the estimated feedback

with respect to candidate xi
t can be calculated as

f̂
i,j
a,t = �

j(xi
t)

>
✓̂
j
a,t (7)

whose confidence width [Deshmukh et al., 2017; Kirschner
and Krause, 2019] is

w
i,j
a,t =

q
�j(xi

t)
>(Cj

a,t)
�1�j(xi

t). (8)

As the algorithm may not have access to the mapping func-
tion �

j(x), we need to represent Eqn. (7) and Eqn. (8) by
kernel function. By the Woodbury matrix identity, we have

f̂
i,j
a,t = �

j(xi
t)

>(�j
a,t�

j
a,t

>
+ �I)�1�j

a,ty
j
a,t

= �
j(xi

t)
>�j

a,t(�
j
a,t

>
�j

a,t + �I)�1yj
a,t

(9)

and

�w
i,j
a,t

2
= �

j(xi
t)

>
�
j(xi

t)�

�
j(xi

t)
>�j

a,t(�
j
a,t

>
�j

a,t + �I)�1�j
a,t

>
�
j(xi

t).
(10)

Denote ki,j
a,t = �j

a,t

>
�
j(xi

t) and Kj
a,t = �j

a,t

>
�j

a,t.
The pth entry in kj

a,t is E
⇥
�
j(X⌧p

a
)
⇤>

�
j(xi

t) =
P|X |

n=1 P (xi
⌧p
a
)kj(xn

⌧p
a
, x

i
t). Similarly, the entry of Kj

a,t in

the pth row and qth column is E
⇥
�
j(X⌧p

a
)
⇤>E[�j(X⌧q

a
)] =

P|X |
n,m=1P (xn

⌧p
a
)P (xm

⌧q
a
)kj(xn

⌧p
a
, x

m
⌧q
a
). Now, the estimated

feedback can be represented as

f̂
i,j
a,t = ki,j

a,t

>
(Dj

a,t)
�1yj

a,t (11)

and the confidence width is

w
i,j
a,t =

r
1

�
kj(xi

t, x
i
t)�

1

�
ki,j
a,t

>
(Dj

a,t)
�1ki,j

a,t (12)

where Dj
a,t = Kj

a,t + �I.

3.2 Multi-Feedback Probabilistic Contextual UCB
Based on the results of empirical risk minimization, the
proposed algoritm, multi-feedback probabilistic contextual
UCB, is given in Algorithm 1.
At each round, the algorithm needs to get the estimated

expected reward and the corresponding expected confidence
width. To do so, the algorithm first calculates estimated
feedbacks and corresponding confidence widths according to
Eqn. (11) and Eqn. (12), respectively. Then, given the utility
function Ut : RJ ! R, the estimated reward with respect
to the ith context candidate is predicted as Ut(f̂ ia,t) where

Algorithm 1Multi-Feedback Probabilistic Contextual UCB
1: Inputs :

Arm set A, a horizon T , kernel function k
1
, · · · , kJ and

parameter ↵ and �.
2: for t = 1, · · · , T do
3: Receive a set of probabilities Prt(X ) for the candi-

dates in the context bundle X
4: for a 2 A do
5: Calculate E[Ut(f̂a,t)] and E[wa,t] according to

Eqn. (13) and Eqn. (14).
6: end for
7: at = argmaxa2A(E[Ut(f̂a,t)] + L�E[wa,t])
8: Receive feedback fa,t =

⇥
f
1
a,t, · · · , fJ

a,t

⇤
.

9: Update yj
a,t+1,K

j
a,t+1 andDj

a,t+1
10: end for

f̂ ia,t = [f̂ i,1
a,t , f̂

i,2
a,t , · · · f̂

i,j
a,t, · · · ]>. As the exact context is not

given, the estimated feedback f̂a,t is a random vector over the
probabilistic context space. Hence, the estimated expected
reward over the probabilistic context space is written as

E[Ut(f̂a,t)] =

|X |X

i=1

Pt(x
i
t)Ut(f̂

i
a,t). (13)

The confidence width is important for arm exploration, but
it is not trivial to get the expected confidence width. Here, we
calculate the upper bound of the expected confidence width
over the probabilistic context space by exploiting Lipschitz
continuity of the utility function. Concretely, if L is the Lip-
schitz constant of the utility function, the upper bound of ex-
pected confidence width over the probabilistic context space
is calculated as

E[wa,t] =

|X |X

i=1

Pt(x
i
t)

JX

j=1

w
i,j
a,t. (14)

The detailed derivation of Eqn. (14) will be given in
Lemma 4.2.
With the estimated expected reward and the correspond-

ing expected confidence width, the selected arm is at =
argmaxa2A(E[Ut(f̂a,t)] + L�E[wa,t]), where � is a hyper-
parameter to balance the exploration and exploitation.

4 Regret Analysis
In this section, we analyze the regret with respect to an ora-
cle that also has the probabilistic context information and es-
tablish an upper bound on cumulative regret of Algorithm 1
which shows the cumulative regret sub-linearly increases
with O(

p
T log T ), followed by the proof sketch.

4.1 Cumulative Regret Bound
The following theorem provides an upper bound on the cu-
mulative regret of Algorithm 1.
Theorem 4.1. Assume at each round t, the utility function

Ut(fa,t) 2 [0, 1] satisfies E✏[Ut(fa,t)] = Ut(E✏[fa,t]) with
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Lipschitz constant Lt and L = maxt Lt, and the kernel func-

tion is k
j(x, x0)  ck such that �

j (x) ⌫ 0. At each round t,

the agent receives a probabilistic context set X and the cor-

responding probability set Prt (X ), selects arm from A by

Algorithm 1 and get J different feedbacks. With probability

1 � �, the cumulative expected regret RT of Algorithm 1 is

bounded by

RT  2L�J |A||X |

s

2q�mT log(
(T + 1)ck + �

d
1

�m �

)

= O(
p
T log T )

(15)

where �m is the maximum rank ofKj
a,t, q = max(1, ck

� ) and

� = (
q

log(2TJ|A|/�)
2 + c

p
�).

Remark 4.1. Theorem 4.1 shows that, for the bandit setting
with probabilistic contexts and multiple feedbacks, our pro-
posed algorithm can achieve a sub-linear cumulative expected
regret bound O(

p
T log T ). This demonstrates the effective-

ness of our proposed algorithm.
Remark 4.2. Compared with the cumulative regret bound of
kernel-UCB in the standard bandit setting [Chowdhury and
Gopalan, 2017; Deshmukh et al., 2017], the cumulative re-
gret bound of the proposed algorithm is scaled by Lipschitz
constant L, number of feedbacks J and size of context bun-
dle |X |. As a result, the regret in our setting is more difficult
to be reduced than that in the standard setting. Nonetheless,
by the proposed algorithm, the cumulative regret can still be
guaranteed to be sub-linear.

4.2 Proof Sketch
The proof sketch of Theorem 4.1 is given below. Compared
with other UCB algorithms [Abbasi-Yadkori et al., 2011;
Deshmukh et al., 2017; Kirschner and Krause, 2019], the
consideration of probabilistic context, multiple noisy feed-
backs and Lipschitz utility function adds new challenges to
the regret bound proof. First, since the algorithm predicts
feedbacks instead of the reward, the predicted feedbacks
can be guaranteed to converge to the expected feedbacks by
Lemma 1 in [Deshmukh et al., 2017], but we still need to
bound the gap between the estimated reward and the true ex-
pected reward. Second, since the proposed algorithm only
has probabilistic contexts, we can bound the expected reward
estimation error by the expected confidence width, but it is
still challenging to get the sum of the confidence width over
time. Next, we show several important lemmas to address the
aforementioned challenges.
First, by exploiting the Lipschitz continuity of utility func-

tion, the confidence width of estimated reward is bounded
in Lemma 4.2, which also explains the setting of confidence
width in Algorithm 1.
Lemma 4.2 (Concentration of Empirical Risk Minimization).
Assume the utility function Ut(·) is in a linear form or multi-

plication form with Lipschitz constant L. With probability at

least 1� �
T , for 8a 2 A, we have

���E
h
Ut(f̂a,t)

i
� E [Ut(fa,t)]

���  L�E[wa,t] (16)

where � = (
q

log(2TJ|A|/�)
2 + c

p
�).

Proof. Let gi,ja,t = g
j
a

�
x
i
t

�
and gi

a,t =
⇥
g
i,1
a , · · · , gi,ja

⇤>.By
the assumption E✏[Ut(fa,t)] = Ut(E✏[fa,t]), we have

���E
h
Ut(f̂a,t)

i
�E [Ut(fa,t)]

���=

������

|X |X

i=1

Pt

�
x
i
t

�⇣
Ut

⇣
f̂ ia,t

⌘
�Ut

�
gi
a,t

�⌘
������


|X |X

i=1

Pt

�
x
i
t

�
L

���f̂ ia,t � gi
a,t

���L

|X |X

i=1

Pt

�
x
i
t

� JX

j=1

���f̂ i,j
a,t � g

i,j
a,t

��� .

(17)

By Lemma 1 in [Deshmukh et al., 2017], we have���f̂ i,j
a,t � g

i,j
a,t

���  �w
i,j
a,t with probability at least 1 �

�
JT . Thus, with probability at least 1 � �

T , we have���E
h
Ut(f̂a,t)�Ut(fa,t)

i���  L�
P|X |

i=1 Pt(xi
t)
PJ

j=1 w
i,j
a,t =

L�E[wa,t].

Then, by using Lemma 4.2, we will bound the regret by the
expected confidence width in the next lemma.
Lemma 4.3 (Regret Bound by Confidence Width). As-

sume that the utility function Ut(·) satisfies E✏[Ut(fa,t)] =
Ut(E✏[fa,t]) with Lipschitz constant L. With probability at

least 1� �
T , the cumulative regret satisfies

RT =
TX

t=1

regt  2L�
TX

t=1

E[wat,t] (18)

where � = (
q

log(2TJ|A|/�)
2 + c

p
�).

Proof. By similar proof techniques for standard UCB
[Abbasi-Yadkori et al., 2011; Kirschner and Krause, 2019],
with probability at least 1 � �

T , the instant regret for round t

is bounded as

regt=E
h
Ut(fa⇤

t ,t)�Ut(f̂a⇤
t ,t) + Ut(f̂a⇤

t ,t)�Ut(fat,t)
i

 L�E[wa⇤
t ,t] + E

h
Ut(f̂a⇤

t ,t)
i
� E [Ut(fat,t)]

 L�E[wat,t] + E
h
Ut(f̂at,t)

i
� E [Ut(fat,t)]

 2L�E[wat,t]

(19)

where the first and third inequalities hold by Lemma 4.2
and the second inequality holds by the arm selection policy
in Algorithm 1. Thus, the cumulative regret is bounded as
Eqn. (18).

The next challenge is to bound the sum of confidence
width, which is expressed as

TX

t=1

E[wat,t] =
TX

t=1

|X |X

i=1

Pt(x
i
t)

JX

j=1

q
�j(xi

t)
>(Cj

a,t)
�1�j(xi

t).

(20)
We cannot directly use Sylvester’s determinant theorem or
Schur’s determinant identity like in the proofs of Lemma 11
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in [Abbasi-Yadkori et al., 2011] and Lemma 7 in [Deshmukh
et al., 2017]. Thus, we first derive Lemma 4.4 to get an up-
per bound of E[wat,t], and then get the sum of the expected
confidence width in Lemma 4.4
Lemma 4.4 (Sum of Confidence Width). Assume kernel

function k
j
is chosen such that mapping function �

j(x) ⌫ 0,
we have

TX

t=1

E[wat,t]  J |X |

s

2q�mT log(
(T + 1)ck + �

d
1

�m �

) (21)

where �m is the maximum rank of Kj
a,t, q = max(1, ck

� ).

Proof. First, we bound E[wj
a,t] by w̄

j
a,t where

w̄
j
a,t =

q
E[�j(Xt)]>(C

j
a,t)

�1E[�j(Xt)]. Let

w
i,j
at,t =

q
�j(xi

t)
>(Cj

a,t)
�1�j(xi

t). Then, we have

⇣
Pt(x

i
t)w

i,j
at,t

⌘2
= Pt(x

i
t)�

j(xi
t)

>(Cj
a,t)

�1
Pt(x

i
t)�

j(xi
t)

 E[�j(Xt)]
>(Cj

a,t)
�1E[�j(Xt)]

(22)

where the inequality holds because �
j(x) ⌫ 0 and

thus E[�j(Xt)] =
P|X |

n=1 Pt(xn
t )�

j(xn
t ) � Pt(xi

t)�
j(xi

t).
By taking squared root of both sides of Eqn. (22),
we have Pt(xi

t)w
i,j
a,t  w̄

j
a,t, and thus E[wj

a,t] =
P|X |

i=1 Pt(xi
t)w

i,j
a,t  |X |w̄j

a,t. Since
PT

t=1 w̄
j
at,t can be

bounded by Lemma 8 in [Deshmukh et al., 2017], i.e.
PT

t=1 w̄
j
at,t 

r
2q�mT log( (T+1)ck+�

d
1

�m �
), the inequality (21)

can be proved.

By substituting Eqn. (21) into Eqn. (18), we can get the
cumulative regret bound in of Algorithm 1 in Theorem 4.1.

5 Simulation Results
We now apply Algorithm 1 to the problem of DNN model se-
lection for mobile devices and show its performance in terms
of average reward and cumulative regret. Importantly, our re-
sult demonstrates that compared to the oracle that knows the
optimal arm given a probabilistic context bundle, the cumu-
lative regret achieved by our algorithm increases sub-linearly
over time, validating our theoretical regret analysis.

5.1 Application to DNN Model Selection
The recent breakthrough in DNN model compression has
made it possible to run DNN inference on edge devices (e.g.,
mobile phones and tablets). While they can have similar in-
ference accuracies, different DNN models have different la-
tencies and energy consumption under different system con-
ditions. Thus, it is crucial to select an optimal DNN model
for edge inference with the best user experience. This is chal-
lenged by the fact that, although the basic configuration of an
edge device (e.g., CPU, OS, RAM) requesting a DNN model
is exposed to the model provider, the device’s actual resource

Phone 1 Phone 2 Tablet 1 Tablet 2
InceptionV2Q 0.45 J 0.07 J 6.18 J 1.41 J
InceptionV4Q 1.88 J 0.22 J 11.66 J 6.59 J
InceptionV4F 5.04 J 1.14 J 37.29 J 10.87 J
MobileNetV1Q 0.13 J 0.03 J 2.00 J 0.69 J
MobileNetV1F 0.18 J 0.04 J 2.00 J 0.60 J

Table 1. Average Energy Consumption

Phone 1 Phone 2 Tablet 1 Tablet 2
InceptionV2Q 0.33s 0.11s 2.60s 0.57s
InceptionV4Q 1.40s 0.35s 4.45s 2.53s
InceptionV4F 2.01s 1.23s 18.95s 4.58s
MobileNetV1Q 0.10s 0.05s 0.83s 0.22s
MobileNetV1F 0.13s 0.07s 0.60s 0.25s

Table 2. Average Latency

management and system condition (e.g., available system re-
sources) that decide the latency and energy of the deployed
DNN model can only be known probabilistically.
Concretely, the available DNNmodels for selection consti-

tute the set of arms, an edge device’s actual system condition
is the context, and we consider DNN inference latency l and
energy consumption e as the two feedback signals. Our goal
is to select optimal DNN models for edge devices that arrive
sequentially. For evaluation purposes, we run experiments
and collect measured data of five image classification DNN
models from TensorFlow Hub running on two cellphones
(Vivo V1838A and Google Pixel 3a) and two tablets (Sam-
sung - Galaxy Tab A7 and Vankyo MatrixPad Z4). The en-
ergy consumption and latency measurement results are shown
in Tables 1 and 2, respectively. We use these four devices to
represent four types of actual system conditions (i.e., context
in our study) in an edge device requesting a DNN model. In
other words, when an edge device arrives, its actual system
condition is assumed to fall into one of the conditions as spec-
ified by the four different devices in our evaluation. While we
can further run experiments on these devices under different
usage scenarios to have more fine-grained types of contexts,
our current setup is enough to validate our theoretical analy-
sis. Note that although an edge device’s basic hardware con-
figuration is accessible to the DNN model provider, its actual
system condition (i.e., context in our problem) is only known
probabilistically for DNN model selection.
We assume that the utility function for a DNNmodel selec-

tion decision is a weighted linear combination of energy con-
sumption and latency, while noting that other utility functions
can also be considered (e.g., the energy-delay product func-
tion) provided that they satisfy E✏[Ut(fa,t)] = Ut(E✏[fa,t])
where the expectation E✏ [·] is taken over the noise space.
In general, the weights in our linear utility function can
change for different devices (e.g., energy consumption plays
a more important role for devices with a small battery ca-
pacity). For illustration, we assume that the utility function
can be either U(e, l) = �0.36e � 0.54l + 1 or U(e, l) =
�0.25e � 0.65l + 0.9, which is randomly determined. We
compare our algorithm with kernel contextual bandit algo-
rithms that utilize the exact context and the most probable
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(a) Reward

(b) Regret
Figure 1. Performance Comparison.

context, respectively. We randomly generate the Prt(X ) as
input at each round. We use the radial basis function kernel
k(x, x0) = exp(�⇢kx� x

0k22).

5.2 Results
In Fig. 1(a), we show the average reward achieved by differ-
ent algorithms. Naturally, the algorithm with the exact true
context achieves the highest reward. Nonetheless, the reward
of our algorithm is greater than that of the straightforward al-
gorithm that utilizes the most probable context as if it were
the true context (similar to a standard UCB algorithm). The
reason for the low reward achieved by using the most proba-
ble context is that the stored possibly erroneous contexts can
be uncorrelated with the received feedback, thus resulting in
biased estimation of the feedback functions and hence inac-
curate reward prediction further.
In Fig. 1(b), to validate the sub-linear regret, we com-

pare the cumulative regret of our algorithm to the oracle that
knows the optimal arm for any probabilistic context bun-
dle. We use entropy of context’s probability distribution
H(Prt(X )) as a measure for how random the provided con-
text bundle is. We denote Hmax = log2 |X | as the largest
entropy and ⌘ (0  ⌘  1) as a threshold to bound random-
ness for different rounds, where H(Prt(X ))  ⌘Hmax. The
smaller ⌘, the more concentrated probabilistic distribution
Prt(X ) of a context bundle (or, less randomness). If ⌘ = 0,
then the distribution only reveals the exact context. The result
shows that the regret of our algorithm is sub-linearly increas-
ing, regardless of randomness of probabilistic bundle.

6 Related Work
Contextual bandits have been studied in various settings due
to their wide applications [Langford and Zhang, 2008]. The
study [Li et al., 2010] proposes Lin-UCB algorithm, assum-
ing a linear relationship between its context and expected re-
ward, which applies ridge regression for estimated feedback.
As for the nonlinear contextual bandits, [Valko et al., 2013]

and [Deshmukh et al., 2017] both propose kernelized con-
textual bandit as a nonlinear version of Lin-UCB by finding
linear members in RHKS. [Allesiardo et al., 2014] utilizes
neural networks to predict the rewards given the context and
proposed a multi-expert approach to decide the parameters
of networks. [Zhou et al., 2019] provides a formal regret
bound for neural network-based contextual UCB. [Badani-
diyuru et al., 2014] introduces the concept of contextual ban-
dits with budget constraints, and proposes a resourceful con-
textual bandits algorithm that provably achieves O(

p
T ) re-

gret bound. Another variant of contextual bandit considers
that not all contextual information is accessible [Bouneffouf
et al., 2017]. Similarly, [Wang et al., 2016] assumes the ex-
istence of hidden features and arm vectors from context to-
gether and proposes hLin-UCB algorithm.
Among the studies on probabilistic contextual bandits, a

relevant one [Kirschner and Krause, 2019] considers that
the agent only knows the probability distribution of context.
The major difference is that we consider multiple feedbacks
and a time-varying utility function. Another one is [Yun et

al., 2017], which studies contextual bandit with perturbation
noise on observed context. The authors assume a linear re-
ward function with a single feedback, and propose an al-
gorithm called NLin-Rel that achieves O(T

7
8 ) regret bound

under the assumption of identical noise. Different from this
work, we consider a utility function in terms of multiple non-
linear feedback functions with probabilistic contexts.
As for multiple feedbacks, [Lu et al., 2019] proposes an al-

gorithm based on Pareto optimality to solve a multi-objective
problem under contextual settings, resulting in a regret bound
that increases sub-linearly under the assumption of a linear
feedback function. Another relevant work is [Wanigasekara
et al., 2019], which considers a multi-objective online con-
textual ranking system with the assumption that some param-
eters in both feedback and reward are unknown. By setting
linear feedback and logistic utility, the proposed UCB-based
algorithm is shown to significantly increase the click-through
rate. In contrast, we use a more general time-varying utility
function to combine multiple feedback signals and consider
probabilistic contexts.

7 Conclusion
In this paper, we consider a new setting of bandit learning
with multiple feedback signals, time-varying utility functions
and probabilistic context information. For this setting, we
propose a multi-feedback probabilistic kernelized UCB algo-
rithm to choose the optimal arm in order to minimize the ex-
pected cumulative regret. We derive an upper bound of the ex-
pected cumulative regret incurred by our proposed algorithm,
with respect to the best action that maximize the expected re-
ward, and show that the bound grows sub-linearly with time.
We apply the proposed algorithm to DNN model selection.
The simulation results further validate the sub-linearity of the
cumulative regret.
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