
HOOP: Efficient Hardware-Assisted Out-of-Place
Update for Non-Volatile Memory

Miao Cai∗
Computer Science
Nanjing University

Chance C. Coats
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Jian Huang
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Abstract—Byte-addressable non-volatile memory (NVM) is a
promising technology that provides near-DRAM performance
with scalable memory capacity. However, it requires atomic
data durability to ensure memory persistency. Therefore, many
techniques, including logging and shadow paging, have been
proposed. However, most of them either introduce extra write
traffic to NVM or suffer from significant performance overhead
on the critical path of program execution, or even both.

In this paper, we propose a transparent and efficient hardware-
assisted out-of-place update (HOOP) mechanism that supports
atomic data durability, without incurring much extra writes and
performance overhead. The key idea is to write the updated data
to a new place in NVM, while retaining the old data until the
updated data becomes durable. To support this, we develop a
lightweight indirection layer in the memory controller to enable
efficient address translation and adaptive garbage collection
for NVM. We evaluate HOOP with a variety of popular data
structures and data-intensive applications, including key-value
stores and databases. Our evaluation shows that HOOP achieves
low critical-path latency with small write amplification, which
is close to that of a native system without persistence support.
Compared with state-of-the-art crash-consistency techniques, it
improves application performance by up to 1.7×, while reducing
the write amplification by up to 2.1×. HOOP also demonstrates
scalable data recovery capability on multi-core systems.

Index Terms—Non-volatile memory, out-of-place update, log-
ging, memory persistency

I. INTRODUCTION

Emerging non-volatile memory (NVM) like PCM [28], [44],

[55], STT-RAM [25], [42], ReRAM [48], and 3D XPoint [2]

offers promising properties, including byte-addressability, non-

volatility, and scalable capacity. Unlike DRAM-based systems,

applications running on NVM require memory persistency to

ensure crash safety [19], [26], [41], [50], [54], which means a

set of data updates must behave in an atomic, consistent, and

durable manner with respect to system failures and crashes.

Ensuring memory persistency with commodity out-of-order

processors and hardware-controlled cache hierarchies, how-

ever, is challenging and costly due to unpredictable cache

evictions. Prior researches have developed various crash-

consistency techniques for NVM, such as logging [34], shadow

paging [10], and their optimized versions (see details in Table I

and § II-B). However, they either introduce extra write traffic

to NVM, or suffer from significant performance overhead on

the critical path of program execution, or even both.

∗Work done while visiting the Systems Platform Research Group at UIUC.

Specifically, although logging provides strong atomic dura-

bility against system crashes, it introduces significant over-

heads. First, both undo logging and redo logging must make

a data copy before performing the in-place update. Persisting

these data copies incurs extra writes to NVM on the critical

path of program execution [33], [38]. This not only decreases

application performance, but also hurts NVM lifetime [6],

[30], [43], [44]. Second, enforcing the correct persistence

ordering between log and data updates requires cache flushes

and memory fences [1], [29], which further causes significant

performance overheads [17], [23], [24], [40], [47].

To address the aforementioned problems, researchers re-

cently proposed asynchronous in-place updates, such as

DudeTM [29] and Redu [23], in which the systems maintain

an explicit main copy of data to perform in-place updates,

and then asynchronously apply these changes to the data

copy, or asynchronously persist the undo logs to NVM [37].

Unfortunately, it does not mitigate the problem of incurring

additional write traffic, due to the background data synchro-

nization. Kiln [54] alleviates this drawback by using a non-

volatile on-chip cache to buffer data updates. However, it

requires hardware modification to the CPU architecture and

its cache coherence protocol.

An alternative technique, shadow paging, incurs both addi-

tional data writes to NVM and performance overhead on the

critical path, due to its copy-on-write (CoW) mechanism [10].

Ni et al. [38], [39] optimized shadow paging by enabling data

copies at cache-line granularity. However, it requires TLB

modifications to support the cache-line remapping. Another

approach is the software-based log-structured memory [17],

which reduces the persistency overhead by appending all up-

dates to logs. However, it requires multiple memory accesses

to identify the data location for each read, which incurs

significant critical-path latency.

In this paper, we propose a transparent hardware-assisted

out-of-place (OOP) update approach, named HOOP. The key

idea of HOOP is to store the updated data outside of their

original locations in dedicated memory regions in NVM, and

then apply these updates lazily through an efficient garbage

collection scheme. HOOP reduces data persistence overheads

in three aspects. First, it eliminates the extra writes caused by

the logging mechanisms, as the old data copies already exist

in NVM and logging is not required. Second, the out-of-place

update does not assume any persistence ordering for store

584

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00055

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of various crash-consistency techniques for NVM. Compared with existing works, HOOP provides a

transparent hardware solution that significantly reduces the write traffic to NVM, while achieving low persistence overhead.

Approach Subtype Representative Project Read Latency On the Critical Path Require Flush & Fence Write Traffic

Logging

Undo

DCT [27] Low Yes No High
ATOM [24] Low Yes No Medium
Proteus [47] Low Yes No Medium

PiCL [37] High No No High

Redo

Mnemosyne [49] High Yes Yes High
LOC [32] High Yes No High

BPPM [31] Low Yes Yes Medium
SoftWrAP [14] High Yes Yes High

WrAP [13] High Yes No High
DudeTM [29] Low No No High

ReDU [23] High Yes No Medium
Undo+Redo FWB [40] High Yes No High

Shadow
paging

Page BPFS [10] Low Yes Yes High
Cache line SSP [39] Low Yes Yes Low

Log-structured NVM LSNVMM [17] High No No Medium

HOOP Low No No Low

operations, which allows them to execute in a conventional

out-of-order manner. Third, persisting the new updates in new

locations does not affect the old data version, which inherently

supports the atomic data durability.
Since the update is written to a new place in NVM,

we develop a lightweight indirection layer in the memory

controller to handle the physical address remapping. HOOP

enables high-performance and low-cost out-of-place update

with four major components. First, we organize the dedicated

memory regions for storing data updates in a log-structure

manner, and apply data packing to the out-of-place updates.

This makes HOOP best utilize the memory bandwidth of NVM

as well as reduce the write traffic to NVM. Second, to reduce

the memory space cost caused by the out-of-place updates,

HOOP develops an efficient garbage collection (GC) algorithm

to adaptively restore the out-of-place updates back to their

home locations. To further reduce the data movement overhead

during GC, we exploit a data coalescing scheme that combines

the updates to the same cache lines. Therefore, HOOP only

need to restore multiple data updates once, which further

reduces the additional write traffic. Third, HOOP maintains

a hash-based address-mapping table in HOOP for physical-to-

physical address translation, and ensures that load operations

always read the updated data from NVM with trivial address

translation overhead. Since the entries in the address-mapping

table will be cleaned when the corresponding out-of-place

updates are periodically written back to their home addresses,

the mapping table size is small. Fourth, HOOP enables fast

data recovery by leveraging the thread parallelism available in

multi-core computing systems.
As HOOP is developed in the memory controller, it is trans-

parent to upper-level systems software. No non-volatile cache

or TLB modifications for address translation are required.

Unlike software-based logging approaches that suffer from

long critical-path latency for read operations, HOOP provides

an efficient hardware solution with low performance overhead

and write traffic, as shown in Table I. Overall, we make the

following contributions in this paper:

• We present a hardware out-of-place update scheme to ensure

the crash-consistency for NVM, which alleviates extra write

traffic and avoids critical-path latency overhead in NVM.

• We propose a lightweight persistence indirection layer in

the memory controller with minimal hardware cost, which

makes out-of-place updates transparent to software systems.

• We present an efficient and adaptive GC scheme, which will

apply the recent data updates from the out-of-place update

memory regions to their original locations for memory space

saving and write traffic reduction.

We implement HOOP in a Pin-based many-core simulator,

McSimA+ [5], with the combination of an NVM simulator. We

evaluate HOOP against four representative and well-optimized

crash-consistency approaches, including undo logging [24],

redo logging [13], optimized shadow paging [38], and log-

structured NVM [17]. We use a set of microbenchmarks

running against these popular data structures like hashmaps,

B-trees [23], [24], [40], [47], and real-world data-intensive

application workloads like Yahoo Cloud Service Benchmark

(YCSB) and transactional databases [36]. Experimental results

demonstrate that HOOP significantly outperforms state-of-the-

art approaches by up to 1.7× in terms of transaction through-

put, and reduces the write traffic to NVM by up to 2.1×,

while ensuring the same atomic durability as existing crash-

consistency techniques. HOOP also scales the data recovery as

we increase the number of threads on a multi-core system.

We organize the rest of the paper as follows. We discuss

the background and motivation in § II. We describe the design

and implementation of HOOP in § III. We evaluate HOOP in

§ IV, present its related work in § V, and conclude it in § VI.

II. BACKGROUND AND MOTIVATION

A. Atomic Durability for NVM

NVM requires atomic durability to ensure crash consistency.

Atomicity refers to a group of data updates happening in an

all-or-nothing manner in case the program crashes, while dura-

bility requires these data updates are eventually persisted in the

persistent storage. In modern memory hierarchies that consist

of volatile CPU caches and persistent memory, unpredictable

cache-line evictions make it challenging to achieve atomic

durability, because they could cause only a subset of modified

data to become durable before the system experiences an

unexpected crash or application failure [8], [52], [54].

585

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

CPU

Caches

Memory Controller

Old Data

Log Write

NVMLogs

(a) Logging

CPU

Caches

Memory Controller

Old Data NVMCopy

Data Copy

(b) Shadow Paging

CPU

Caches

Memory Controller

Logs NVM

Log Write

Index

(c) Log-structured NVM

CPU

Caches

Old Data NVMNew Data

Out-of-place Write

data packingdata coalescing

Memory Controller

(d) HOOP

Fig. 1: Illustration of different crash-consistency techniques. (a) Logging technique requires that both logs and data must

be persisted, which incurs double writes; (b) Shadow paging maintains two copies of data, it suffers from copy-on-write

overhead; (c) Log-structured NVM alleviates the double writes, but it suffers from significant overhead of index lookup; (d)

Our hardware-assisted out-of-place update reduces the write amplification significantly, while providing efficient data accesses.

Enforcing atomic durability on current computer architec-

tures is non-trivial. Commodity hardware provides instructions

for atomic data update, but this hardware-supported atomicity

only supports small granularities (8 bytes for 64-bit CPUs).

To ensure these atomic updates become durable, applications

must flush cache lines to persist data to NVM. For a group of

data updates having a larger size, they have to rely on other

crash-consistency techniques, such as write-ahead logging

and shadow paging, to achieve atomic durability. Although

these crash-consistency mechanisms support strong atomic

durability, applying them to NVM is costly. We will discuss

their details in the following section § II-B.

B. Crash-consistency Techniques

We categorize the crash-consistency techniques for NVM

into three major types: logging [34], shadow paging [10],

and log-structured NVM [17]. We summarize their recent

representative work in Table I.

Logging on NVM: Write ahead logging (WAL) is widely-

used for NVM. Its core idea is to preserve a copy before

applying the change to the original data (see Figure 1a). The

logging operations result in doubled write traffic and worsen

the wear issue with NVM [17], [38]. To reduce the logging

overhead, hardware-assisted logging schemes such as bulk

persistence [23], [24], [31], [40] have been proposed. However,

they can only partially mitigate the extra write traffic (see

Figure 8 in our evaluation).

Beyond increasing the write traffic, logging also incurs

lengthy critical-path latency [29], [41]. This issue is especially

serious for undo logging, since it requires a strict persist

ordering between log entries and data writes. Redo logging

provides more flexibility, as it allows asynchronous log trunca-

tion and data checkpointing [13], [14], [23], [31], [49], which

contributes to a shorter critical-path latency. However, it still

generates doubled write traffic eventually.

Decoupling logging from data updates with asynchronous

in-place update is another approach, as proposed in Soft-

WrAP [14] and DudeTM [29]. It decouples the execution

of durable transactions and logging, therefore, the number of

memory barrier operations can be reduced. However, it needs

to track the updated data versions, and the software-based

address translation inevitably introduces additional overhead to

the critical-path latency. And this approach still cannot reduce

the write traffic to NVM.

Despite each of these logging approaches applying various

optimizations, logging is still expensive, due to a simple

reason: they are restricted by their intrinsic extra log write

for each update, regardless of whether the update takes place

synchronously or asynchronously.

Shadow Paging: Shadow paging can eliminate expensive

cache flushes and memory fence instructions, however its write

amplification is still a severe issue. With shadow paging, an

entire page has to be copied, even though only a small portion

of data is modified (see Figure 1b). Recent work proposed

a fine-grained copy-on-write technique [38], [39] to reduce

the write amplification. In this approach, one virtual cache

line is mapped to two physical cache lines, and it ensures

data atomicity at cache-line granularity. However, it requires

frequent TLB updates to track the committed cached lines

in NVM, which would sacrifice the performance benefits

obtained from the cache-line copy-on-write optimization.

Log-structured NVM: Inspired by log-structured file sys-

tems [46], Hu et al. [17] proposed a software-based log-

structured NVM, called LSNVMM, in which all the writes

are appended into a log. Such an approach alleviates the

double writes caused by the undo/redo logging. However, it

incurs significant software overhead for read operations due

to the complicated data indexing (see Figure 1c) and garbage

collection. Although the index can be cached in DRAM, it still

requires multiple memory accesses to obtain the data location.

For instance, LSNVMM requires O(logN) memory accesses

for each data read, due to the address lookup in an index

tree, where N is the number of log entries. This significantly

increases the read latency of NVM.

C. Why Hardware-Assisted Out-of-Place Update

As discussed, the proposed crash-consistency approaches,

such as logging, shadow paging, and log-structured memory,

either increase the write amplification of NVM, or cause long

critical-path data access latency, or even both.

586

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

In this paper, we propose a new approach: hardware-assisted

out-of-place update, in which the memory controller writes the

new data to a different memory location in a log-structured

manner, and asynchronously applies the data update to its

home address periodically. It alleviates the extra write traffic

caused by the logging, and avoids the data copying on the

critical path as discussed in shadow paging. Our proposed

approach maintains a small physical-to-physical address map-

ping table in the memory controller for address translation, and

adaptively writes the data updates into their home addresses.

Therefore, it incurs minimal indirection and GC overhead. We

further leverage data packing and coalescing to reduce the

write traffic to NVM during the GC.

Our proposed hardware out-of-place update ensures the

atomic data durability by default, as it always maintains the

old data version in NVM, while persisting the updates in new

memory locations in a log-structured manner. It also does

not assume any persistence ordering for store operations as it

is implemented in the memory controller, which significantly

reduces the performance overhead caused by memory barriers.

III. DESIGN AND IMPLEMENTATION

A. Design Goals and Challenges

To perform hardware-assisted out-of-place updates effi-

ciently, we aim to achieve the following three goals: (1)

we will guarantee crash-consistency, while minimizing critical

path latency and write traffic to NVM; (2) we aim to make

trivial hardware modifications, thus minimizing the cost of our

solution, while simplifying the upper-level software program-

ming; (3) we will develop a scalable and fast data recovery

scheme by exploiting the multi-core computing resources.

To achieve hardware-assisted out-of-place update, a straight-

forward approach is to persist updated cache lines along

with necessary metadata to NVM in an out-of-place manner.

However, we have to overcome the following challenges.

First, persisting the data and metadata eagerly at a cache-

line granularity will introduce extra write traffic as well as

negatively affect system performance. Second, the indexing for

out-of-place updates could introduce additional performance

overhead to data accesses. Third, the required GC operations

for free space will introduce additional write traffic to NVM as

well as performance overhead. Inspired by the flash translation

layer for flash-based solid-state drives [4], [15], [18], we

propose an optimized and lightweight indirection layer in the

memory controller to address these aforementioned challenges.

B. System Overview

To support memory persistency, transactional mechanisms

have been developed as the standard approach because of

their programming simplicity [23], [24], [29], [45], [49], [54].

Instead of inventing a new programming interface for NVM,

HOOP provides two transaction-like interfaces (i.e., Tx begin
and Tx end) to programs, and enables programmers to handle

the concurrency control of transactions for flexibility, as pro-

posed in these prior studies. These interfaces demarcate the

beginning and end of a transaction which requires data atomic

Cache Hierarchy

§ 3.3

OOP Region §3.4

Data Packing

Home Region

Memory
Controller

Garbage Collection

StoreLoad

NVM
§ 3.5

out-of-place update

Mapping Table §3.3

Eviction Buffer §3.3

OOP Data Buffer §3.3

Fig. 2: Hardware-assisted out-of-place update with HOOP.

HOOP performs out-of-place writes and reduces write traffic

with data packing and coalescing. To reduce the storage

overhead, HOOP adaptively migrates data in the out-of-place

(OOP) region back to the home region with optimized GC.

durability. HOOP only needs programmers to specify a failure-

atomic region using Tx begin and Tx end, without requiring

them to manually wrapping all read and write operations, and

adding clwb and mfence instructions.

We present the architectural overview of HOOP in Figure 2.

During transaction execution, data is brought into the cache

hierarchy with load and store operations. They will access

the indirection layer to find the most recent version of the

desired cache line (see §III-C). For the updated cache lines in a

transaction, they are buffered in the OOP data buffer in HOOP.

Each entry of this buffer can hold multiple data updates as

well as the associated metadata. And persistence optimizations

such as data packing are applied to improve the transaction

performance, when flushing the updated cache lines to the

OOP region (see §III-D). With the out-of-place writes, HOOP

is crash-safe by ensuring committed transactions are persisted

in the OOP region before any changes are made to the original

addresses (i.e., the home region). As OOP region will be filled

with updated data and metadata, HOOP performs periodic GC

to migrate the most recent data versions to the home region,

and uses data coalescing to minimize the write traffic to NVM

(see §III-E). Upon power failures or system crashes, HOOP

will leverage thread parallelism to scan the OOP region and

instantly recover the data to a consistent state (see §III-F).

C. Indirection Layer in the Memory Controller

To provide crash-safety, HOOP must ensure that all updates

from a transaction have been written to NVM before any of

the modified cache lines in the transaction could be evicted

and written to the home region. To guarantee this ordering,

HOOP writes cache lines which are modified by transactions

into the OOP region instead of the home region.

OOP Data Buffer. To improve the performance of out-of-

place updates, HOOP reserves an OOP data buffer in the mem-

ory controller (see Figure 2). Each core has a dedicated OOP

buffer entry (1KB per core) to avoid access contention during

concurrent transaction execution. It stores the updated cache

lines and associated metadata (i.e., home-region address),

and facilitates the data packing for further traffic reduction.

Specifically, HOOP tracks data updates at a word granularity

587

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

CB E...A

...M1

A ...

M1 ...
2 cache lines

M2 M8
CB E

N cache lines

M2 M3 M8

Data packing

Memory Slice

Fig. 3: Data packing in HOOP.

instead of a cache line granularity during data persistence,

motivated by the prior studies showing that many application

workloads update data at a fine granularity [9], [53]. HOOP

applies data packing to reduce the write traffic during out-of-

place updates. As shown in Figure 3, data residing in several

independent cache lines are compacted into one single cache

line. Similarly, HOOP also performs metadata packing for

further traffic reduction. We show that metadata which are

associated with eight data updates are also packed into a single

cache line in Figure 3.

HOOP packs up to eight pieces of data and their metadata

into a single unit, named a memory slice (see the details

in § III-D). As for multiple updates in the same cache line

happened in a transaction, HOOP will pack them in the same

memory slice. We use a 40-bit address offset preserved in the

metadata to address the home region (1TB). As NVM could

have a larger capacity, the metadata size will also increase.

To overcome this challenge, HOOP needs to only reduce the

number of cache lines being packed (N in Figure 3). For a

home region whose size is 1 PB (250), HOOP can pack seven

units of cache lines (56 bytes) and their metadata in a memory

slice, which still occupies two cache lines.

Persistence Ordering: HOOP flushes the updated data and

metadata to the OOP region in two scenarios. First, if the

HOOP has packed eight cache lines in the OOP data buffer

during transaction execution, it will flush the packed memory

slice into the OOP region. Second, if the transaction executes

the Tx end instruction, HOOP will automatically flush the

remaining data along their metadata to the OOP region.

HOOP maintains the persistence ordering in the memory

controller, which does not require programmers to explicitly

execute cache-line flushes and memory barriers. We depict

the transaction execution of different approaches in Figure 4.

Undo logging requires strict ordering for each data update,

incurring a substantial number of persistence operations during

transaction execution. Redo logging mitigates this issue and

only requires two flush operations per transaction: one for the

redo logs and another for the data updates. Both schemes have

to perform extra writes to NVM. The optimized shadow paging

scheme can avoid additional data copy overheads. However, as

shadow paging can only guarantee data atomicity. To ensure

data persistence, it has to eagerly flush the updated cache lines,

causing severe persistency overhead. HOOP uses the OOP data

buffer to store the data updated by a transaction, and flushes

the data in the unit of memory slice. Upon Tx end instruction,

HOOP persists the last memory slice to the OOP region.

Address Mapping. To track these cache lines for future

accesses, HOOP uses a small hash table maintained in the

Tx_begin

Time

A1 B1 D1 E1...

F0 G0

Tx_end

Tx_begin

Time

E1

Tx_end

A1A0 B0 B1 D0 D1

F1 G1

F1 G1... E0

Tx_end

A0 B0 D0... E0A1 B1
... D1 E1 F1

Tx_begin

Time

A1 B1 D1 E1
...

Tx_end

F1 G1

A1 store A1 A0 undo log redo log Flush

G1 F0 G0

(d) Hardware-assisted out-of-place update

(a) Undo logging

(b) Redo logging

(c) Shadow paging

Tx_begin

A1

Time

Fig. 4: Transaction execution of different approaches. Both

undo and redo logging deliver lengthy transaction execution

times due to log writes. Shadow paging has to copy additional

data before performing in-place updates. HOOP achieves fast

transaction execution with out-of-place updates.

memory controller to map from home region addresses to the

OOP region addresses (physical-to-physical address mapping).

Compared to the software-based approaches, HOOP performs

the address translation transparently in hardware and avoids

expensive software overheads and TLB shootdown [17], [38].

Whenever a cache line is evicted from the LLC within a

transaction, the cache line is written into the OOP region.

HOOP adds an entry to the mapping table for tracking its

location. In the mapping table, each entry contains its home-

region address as well as the OOP-region address.

HOOP removes entries in the mapping table under two

conditions. First, the most recent data versions have been

migrated from the OOP region to the home region during the

GC (see details in §III-E). Second, upon an LLC miss, HOOP

will check the mapping table to determine whether the cache

line should be read from the home region or OOP region. If its

address is present in the table, it will be read from the OOP

region. HOOP will remove this entry, since the most recent

version is located within the cache hierarchy, and the existing

cache coherence mechanisms will ensure this data will be read

by any other requesting cores.

The mapping table in HOOP is essentially used to track

the cache lines in the OOP region. It is shared by all cores.

Its size is a function of the maximum number of evicted and

flushed cache lines between two consecutive GC operations in

NVM. In this paper, we use 256 KB per core as the size of the

mapping table (2 MB in total) by default. And our evaluation

(see §IV) shows this size provides reasonable performance

guarantee for data-intensive applications.

Eviction Buffer. Along with the mapping table, HOOP has

an eviction buffer to store cache lines (and their home-region

addresses) that were written back to NVM during GC. By

buffering the evicted cache lines, HOOP ensures that when a

mapping table entry is being removed during the GC, a new

mapping to the most recent version of the corresponding cache

588

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

Data

Tx:0
OOP Block

Prev Slice Next Slice

Next Slice Tx:1 Next Slice Tx:0 Next Slice

Prev Slice Next Slice Prev Slice Next Slice

OOP Region

...Head OOP Block1
Block Index

Table

Data Data Data Data Data Data Data Data

Addr Addr Addr Addr Addr Addr Addr Addr Addr

Head OOP Block1 Head OOP Block1

(a) OOP region organization

Data 0 Data 1 ... Data 7 Metadata

Home Addrs Next SliceTxID Cnt Flag
320 bit

Pad
24 bit32 bit 1 bit 3 bit 4 bit

Memory Slice

Start

(b) Data memory slice layout

Fig. 5: Layout of the OOP region. HOOP organizes the OOP

region in a log-structured manner. Each OOP block consists

of memory slices with a fixed size. There are two types of

memory slices: data memory slice and address memory slice.

line is still maintained. Therefore, the misses in the LLC will

not read stale data. Upon an LLC miss, if the address of the

missed cache line is not present in the mapping table, HOOP

will first check the eviction buffer. If the missed cache line is

not in the eviction buffer, HOOP will read the data from the

home region. As HOOP migrates data from the OOP region

to the home region at a small granularity during the GC, the

required eviction buffer size is small (128 KB by default).

D. OOP Region Organization

HOOP organizes the OOP region in a log-structured manner

to minimize fragmentation and enable sequential writes for

high throughput. The OOP region is consisted of multiple OOP

blocks (2MB per block). The OOP region has a block index

table (direct mapping table) to store the index number and

start address of each OOP block. This block index table will

be cached in memory controller for fast data lookup.

OOP Block: We present the layout of an OOP block in

Figure 5a. Each OOP block has an OOP header storing the

block metadata. The header consists of (1) an 8-bit OOP block

index number; (2) a 34-bit address pointing to the next OOP

block; (3) a 2-bit flag denoting the block state (BLK_FULL,

BLK_GC, BLK_UNUSED, BLK_INUSE). The remainder of

an OOP block is composed of memory slices with a fixed

size of 128-bytes. The fixed-size memory slices place an

upper bound on the worst-case fragmentation which can occur

within an OOP block, and HOOP can easily manage OOP

blocks with a memory slice bitmap. Further, the 128-byte size

of a memory slice means that HOOP is capable of flushing

the memory slices to the OOP region using two consecutive

memory bursts [22].

Memory Slice: We classify memory slices into two cat-

egories: data memory slices and address memory slices. As

shown in Figure 5a, a large transaction can be composed of

Algorithm 1 Garbage Collection in HOOP.

1: Definitions: Home region: Memhome; OOP region: Memoop; OOP block:
Blkoop; Memory slice bitmap: Bitmap; Mapping Table: MT ;

2:
3: for All Blkoop is BLK FULL in Memoop do
4: Read all address memory slices Saddr .
5: Create a hash map H to hold the data during GC.
6: Start from the latest start address Addr in Saddr .
7: for each start address Addr in reverse order do
8: Read all slices of the committed Tx from Memoop.
9: for all memory slices in the Tx do

10: Read the home addresses Addrhome and Data.
11: Check if Addrhome hits in H .
12: if hash entry elem exists then
13: continue.
14: else
15: Add Addrhome, Data, and txID to the H .
16: end if
17: end for
18: end for
19: end for
20: for All data in H do
21: Write the data to addr in the Memhome.
22: if addr is in MT then
23: Remove addr entry from MT
24: else
25: continue.
26: end if
27: end for
28: Update the header in Blkoop.
29: Clear the corresponding entry in block index table.

multiple data memory slices which are linked together. The

start address of these linked memory slices is stored in an

address memory slice. Address memory slices allow GC to

quickly identify committed transactions in the OOP region.

We show the internal layout of a data memory slice in

Figure 5b. With a total size of 128-byte, each memory slice can

hold eight 8-byte words of data updated during a transaction,

as well as metadata which is 64-byte in length. Each metadata

block contains the reverse mappings (home addresses) of

modified data to be used during GC and recovery processes.

It also contains an address offset (24-bit) to find the next

data memory slice, a transaction ID (32-bit) assigned by the

memory controller at the start of a transaction, a bit used to

identify the first memory slice in this transaction, a count of

the updated words (3-bit) in that slice, and a flag (4-bit) used

to identify the state of each slice for GC and recovery.

HOOP can achieve uniform aging of all cache lines within

an OOP block. In particular, HOOP persists transaction data

in the unit of memory slice. HOOP allocates OOP blocks

and memory slices in a round-robin manner. Consequently,

all OOP blocks achieve uniform wear.

E. Garbage Collection and Data Coalescing

HOOP performs GC in background. It migrates data within

the OOP region to their original locations in the home region.

In GC, we have to overcome two challenges. First, as all

updated data are preserved in the OOP region, migrating these

old data versions sequentially will cause large write traffic.

Second, GC should be crash-safe against system failures.

To overcome the first challenge, HOOP scans the committed

transactions in reverse time order and applies data coalescing
to minimize the data migration overhead. It performs GC

periodically. We depict the GC workflow in Algorithm 1. First,

589

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

HOOP reads address memory slices that have been committed

in the OOP region (line 4). And then, HOOP creates a hash

map H to store the home addresses and their modified data

(line 5). According to the start addresses preserved in the

address memory slice, HOOP reads each committed transaction

from the OOP block in reverse time order (line 7). For each

tuple <<home-region addr, TxID>, Data> in the committed

transaction, HOOP combines all data with the same address

to avoid writing to the same home location multiple times

(lines 9-17). Therefore, HOOP only maintains the entries for

the latest out-of-place updates in the hash map. Since HOOP

conducts GC at OOP block granularity (maximum of 128K

addresses), the hash table H uses only 1MB buffer space.

Once HOOP finishes scanning all committed transactions

in an OOP block, the data held in the hash map will be

migrated to the home region (line 21). During migration, the

corresponding cache line address is checked in the mapping

table (line 22). If the address hits in the mapping table, the

entry will be removed, since its most recent data version has

been persisted in the home region (line 23). After restoring all

data back to their home-region locations, HOOP updates the

OOP block header by setting its state to BLK_UNUSED (line

28), and clearing its entry in the block index table (line 29).

As for the second challenge, HOOP ensures crash-safety

during GC, because the OOP region is always in a consistent

state. When a system crash happens while reading the memory

slices (lines 4-10), writing the hash table (line 15), or migrat-

ing data (line 21), HOOP can simply replay all committed

transactions in the OOP region with data recovery (see details

in §III-F), and recover the system to a consistent state.

F. Data Recovery with Committed Transactions

Upon system crashes, HOOP will utilize the out-of-place

updated data preserved in the OOP region to recover the

system to a consistent state. During recovery, it leverages

the operating system to create multiple recovery threads. The

recovery thread reads the block index table to locate OOP

blocks. Each recovery thread would map the memory of

these OOP blocks into its address space with kmap. Then,

all committed address memory slices are read from the OOP

region to get the start address of memory slice of committed

transactions. Once HOOP collects these addresses, it sorts

them in the committed order and distributes these addresses

to recovery threads in a round-robin fashion.

Each recovery thread will process its own working set

independently. Specifically, each thread scans the committed

transactions in the OOP region in a reverse order. The thread

reads the data memory slices belonging to the transaction

and adds the tuple <<home-region address, TxID>, Data>
into a local hash-map set. It preserves only the value with

the largest commit ID (i.e., the latest updates). Once all

transactions have been completely processed by the recovery

threads, a master thread will aggregate the local hash sets into

a global one, preserving only the latest version for each home

address by checking the committed transaction ID. Finally, the

master thread splits the global hash map and leverages other

Persistent Bit

core

Home Addr

Core 0

core

TxID ... Slice Buffer

TxID ... Slice Buffer
...OOP Addr

NVM Home Region OOP Region

Home Addr OOP Addr

Indirection Layer in HOOP

1hit

2

3

45

miss

Load Store
hit

1

3

miss
2

Mapping Table

Non-volatile

Volatile

Core 1

...

...

Core N TxID Slice Buffer

OOP Data Buffer

4

L1 cache

Lower Level Caches

A' B' C'A B C

Data1

Home Addr Data

Home Addr Data

Eviction Buffer

Fig. 6: The load and store procedure in HOOP.

recovery threads to write the data to their home locations in

parallel, and to ensure the data durability with cache flush

instructions. After that, every recovery thread will unmap

the memory mapped space with kunmap. The mapping table,

eviction buffer, and OOP region are cleared, programs can

read the latest data at the home region. Similar to the GC,

the data recovery is crash safe as well. HOOP will maintain

the committed transactions in the OOP region until the data

recovery is finished. When system crashes or failures happen

during the recovery, HOOP can restart the recovery procedure.

G. Put It All Together

In this section, we demonstrate how HOOP handles load
and store operations during transaction execution, as shown

in Figure 6. The Tx begin instruction sets the transaction

state bit for the processor. store operations send this trans-

action state bit to the L1 cache along with the data. The

Tx end instruction will clear the transaction state bit and

acts like a barrier to ensure durability of the committed

transaction. HOOP allows the upper-level programs to handle

the transaction concurrency control for flexibility. For instance,

applications can use locking or optimistic concurrency control

to resolve inter-transaction data dependencies. In this paper,

we use the locking mechanism for simplicity. HOOP adds one

bit per cache line to indicate whether a cache line has been

modified by a transaction or not. This allows HOOP to track

the state of these cache lines in the memory hierarchy.

Load Operation: A load instruction will read the trans-

action status bit from the status register in the processor core,

thereby specifying the access is to failure-atomic region. This

load instruction is then added to the load queue while it

awaits address generation and disambiguation. Once this load

is sent to the L1 cache (1), a compulsory miss will most

likely occur and the cache controller will generate a request

to the lower level caches (2). If there is a cache miss in the

590

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II: System configuration.
Processor 2.5 GHZ, out-of-order, x86, 16 cores

L1 I/D Cache 32KB, 4-way

L2 Cache 256KB, 8-way, inclusive

LLC 2 MB, 16-way, inclusive

tRCD-tCL-tBL-tWR-tRAS-tRP-tRC-tRRD-tRTP-tWTR-tFAW

10-10-8-10-24-10-34-4-5-5-20(ns)

NVM
Read/Write = 50ns/150ns, Capacity: 512 GB
Row buffer read/write: 0.93/1.02 pJ/bit
Array read/write: 2.47/16.82 pJ/bit [28], [40]

cache hierarchy (3), HOOP will use its home-region address

to access the address mapping table in the memory controller.

In the event of a mapping table hit, the requested data will

be read from the OOP region (4) and home region (5) in

parallel [20], since only the updated data is packed in OOP

region. As the OOP address stored in the mapping table can

either points to a location in the OOP data buffer, or an OOP

block in NVM, HOOP can always obtain the latest version of

the updated data. Since each memory slice packs maximum

eight cache lines, the unpacking procedure introduces trivial

overhead (a few cycles) by traversing the metadata cache line

(see Figure 5b). As applications usually have access locality,

the data with continuous addresses could be updated inside

the same transaction, and thus packed in the same memory

slice, which further reduces the unpacking overhead. With the

original data in the home region, HOOP can reconstruct the

latest version of the cache line with low overhead. In the event

of a mapping table miss, HOOP will first check whether the

requested cache line is cached in the eviction buffer or not. If

yes, HOOP will directly load the data from the eviction buffer.

Otherwise, the cache line will be fetched from the home region

using the home-region address (5).

Store Operation: We show the store operation in Fig-

ure 6. If the store (1) has a cache miss in the L1 cache, the

cache coherence mechanism will fetch the cache line in the

cache hierarchy (2). Eventually, the latest version of the cache

line will be retrieved from another cache or NVM. Once the

cache line is loaded into the L1 cache, it will be updated and

the persistent bit in the cache line will be set. Because the vast

majority of L1 caches are virtually-indexed and physically-

tagged (VIPT), the TLB will perform the virtual-to-physical

address translation and then return the physical address to

the L1 cache. As a result, the cache controller will send the

modified data and its home-region address to HOOP (3).

HOOP stores the updated data in the OOP data buffer. The

metadata content in the OOP data buffer will also be updated.

In particular, a transaction ID (TxID) will be assigned by

the memory controller. Other metadata like the home-region

address and slice count are also stored in the OOP data buffer.

If a transaction has filled the buffer, HOOP will allocate a free

memory slice and persist the memory slice in NVM (4). At

the end of a transaction, the processor executes the Tx end
instruction, and HOOP ensures all data in the OOP data buffer

is flushed to the OOP region.

H. HOOP Implementation

We implement HOOP in McSimA+, a Pin-based many-core

simulator [5], with the combination of an NVM simulator. We

TABLE III: Benchmarks used in our experiments.
Workload Description Stores/TX Write/Read

Synthetic

Vector [23] Insert/update entries 8 100%/0%
Hashmap [24] Insert/update entries. 8 100%/0%

Queue [47] Insert/update entries. 4 100%/0%
RB-tree [40] Insert/update entries. 2–10 100%/0%

B-tree [40] Insert/update entries. 2–12 100%/0%

Real World
YCSB [23] Cloud benchmark. 8–32 80%/20%
TPCC [36] OLTP workload. 10–35 40%/60%

configure the simulator to model an out-of-order processor

with 16 cores and NVM. The detailed system configuration

is described in Table II. We use 512 GB of NVM in our

experiment, and 10% of its capacity as OOP region by default.

The GC in HOOP will execute periodically (in every ten

milliseconds by default). Its read and write latencies are

configured as 50 ns and 150 ns, respectively. We will vary the

NVM latency and bandwidth in our sensitivity analysis. HOOP

requires minimal modifications to the memory controller, with

the integration of a mapping table (2MB), an OOP data buffer

(1KB per core), and a cache-line eviction buffer (128KB).

HOOP requires one persistent bit per cache line to track the

cache lines that need to be persisted in NVM. We use CACTI

6.5 [35] to estimate the area cost of HOOP. Based on the

Sandy Bridge processor package (64KB L1 cache and 256KB

L2 cache per core, 20MB LLC, and integrated memory con-

troller), we model the area overhead with the increased buffer

size. HOOP introduces only 4.25% area overhead. According

to a recent study [51], the released Intel 3D XPoint DIMM

has employed a buffer in its memory controller, which makes

us believe HOOP is a practical solution.

I. Discussion and Future Work

HOOP can be extended to support multiple memory con-

trollers with the two-phase commit protocol [16]. In the

Prepare phase, the cache controller will send the modified

data in a transaction to the OOP data buffer. When the

processor executes the Tx end instruction, the cache controller

waits for all outstanding flushes to be acknowledged by the

memory controllers. In the Commit phase, the cache controller

sends the commit message with the transaction identity to

all memory controllers. Memory controllers will acknowledge

the received commit messages and ensure the corresponding

data in the OOP data buffer is flushed to the OOP region.

As for data recovery, once multiple memory controllers reach

a consensus regarding the committed transactions through

defined communication protocols, HOOP can recover the data

to a consistent state by checking the OOP blocks in reversed

time order. Moreover, to reduce the mapping table size in

HOOP, we can condense multiple mapping entries into one

by exploiting the data locality [12]. We wish to explore this

in the future.

IV. EVALUATION

Our evaluation demonstrates that (1) HOOP significantly im-

proves the transactional throughput for NVM system (§IV-B);

(2) It reduces critical-path latency (§IV-C) and write traffic

(§IV-D) by avoiding the extra logging; (3) It suffers from

591

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

(a) Transaction throughput (higher is better)

(b) Critical path latency (lower is better)

Fig. 7: Transaction throughput and critical path latency for system benchmarks. HOOP improves transaction throughput by

74.3%, 45.1%, 33.8%, 27.9%, and 24.3% compared with Opt-Redo, Opt-Undo, OSP, LSM, and LAD, respectively. For critical

path latency, HOOP also achieves a critical path latency close to a native system without any persistence guarantee.

minimal GC overhead (§IV-F) in NVM, and (4) conducts data

recovery (§IV-G) instantly by exploiting multi-core processors;

(5) HOOP approach also scales for future NVM (§IV-H).

A. Experimental Setup
We evaluate HOOP with a set of synthetic workloads and

real-world applications as shown in Table III. In the experi-

ment, we run eight threads for each workload. For synthetic

workloads, we issue insert and update operations randomly

against five popular data structures, such as vector, hashmap,

queue, RB-tree, and B-tree using transactions, respectively.

Each workload has two different data sets consisted of 64 bytes

and 1 KB items, respectively. For real-world benchmarks, we

run two typical workloads from the WHISPER benchmark

suite [36]: YCSB and TPC-C. We use an N-store [7] database

as the back-end store, where each thread executes transactions

against its database tables. In YCSB, the ratio of reads to

updates is 20:80, following the Zipfian distribution [11]. And

each key-value pair size is 512 bytes and 1 KB, respectively.

In TPC-C, we use its new order transactions which are the

most write intensive workloads.
We compare our approach with several state-of-the-art so-

lutions [13], [17], [24], [38], [39]. Specifically, we use four

optimized crash-consistency techniques: redo logging, undo

logging, shadow paging, and log-structured memory.

• Opt-Redo: We implement hardware-based redo logging fol-

lowing the work [13]. It supports asynchronous data check-

pointing, log truncation, and combination. After checkpoint-

ing the data, it performs in-place update, and truncates logs.

• Opt-Undo: We implement hardware-based undo logging

based on the work ATOM [24]. It enforces the log and data

ordering in the memory controller to reduce the critical-path

latency of persistence operations.

• OSP: We implement optimized shadow paging based on

SSP [38], [39]. In the shadow paging scheme, each virtual

cache line is associated with two cache lines, and page con-

solidation scheme is used to improve the spatial efficiency.

• LSM: We implement the log-structured NVM based on

the prior work LSNVMM [17]. We implement its address

mapping tree using skip list [3], and cache it in DRAM

for fast index lookup. For fair comparison, we conduct GC

operations in LSNVMM at the same frequency as HOOP.

• LAD: We implement the logless atomic durability based on

the work LAD [16]. It caches the updates from a transaction

in the memory controller until they are committed to NVM.

B. Improving Transaction Throughput

We show the normalized throughput of running each bench-

mark in Figure 7a. We use the hardware-based optimized redo

logging as the baseline. HOOP performs better than all other

five state-of-the-art approaches, while ensuring crash consis-

tency. Specifically, HOOP improves transaction throughput by

74.3%, 45.1%, 33.8%, 27.9%, and 24.3% compared with Opt-

Redo, Opt-Undo, OSP, LSM, and LAD, respectively. Com-

pared with a native system without any persistence support

(Ideal in Figure 7), HOOP delivers 20.6% less throughput.

Opt-Redo persists both the data and metadata for a single

update using two cache lines, which wastes memory band-

width. Compared with Opt-Redo, Opt-Undo maintains the

ordering of data and undo log in the memory controller, which

reduces the persistency overhead. LAD removes the logging

overhead, however, it persists updated data at cache-line gran-

ularity. HOOP uses a word granularity for data packing, in

which eight data updates and their metadata can be packed

into two cache lines. Thus, HOOP can consumes less memory

bandwidth, compared with the schemes without data packing.

HOOP outperforms OSP by 33.8%. OSP applies a light-

weight copy-on-write mechanism to address the write amplifi-

cation issues caused by page-level shadow copying. However,

OSP may suffer from three performance issues. First, to

enforce the transaction durability, it must persist the updated

cache lines frequently. This eager persistence greatly affects

the transaction throughput. Second, updating the virtual-to-

physical address mapping frequently during transaction exe-

cution would cause frequent TLB shootdowns on multicore

machines. Third, page consolidation in the optimized shadow

paging approach incurs addition data copy overhead.

592

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Write traffic produced by different approaches.

As discussed in § II, LSM uses a software-based approach to

log the data updates, and it leverages an index tree for address

mapping, which incurs significant index lookup overhead.

HOOP utilizes the data packing to further reduce the write

traffic to NVM, resulting in 27.9% improvement of overall

performance, compared with LSM. We next show how HOOP

improves the critical-path latency for each transaction.

C. Reducing Critical-Path Latency

We define the critical path latency as the time taken to

execute the entire transaction, starting from the Tx begin to

Tx end. We use the critical-path latency of the native system

as the baseline, and show the results in Figure 7b.

HOOP achieves a significantly shorter critical-path latency

than other approaches. It reduces the critical-path latencies by

45.1%, 52.8%, 44.3%, 60.5%, 21.6% on average, compared

with Opt-Redo, Opt-Undo, OSP, LSM, and LAD, respectively.

HOOP achieves a critical-path latency close to the native

system, being 24.1% longer on average. This is because HOOP

leverages the OOP data buffer to persist each data update at

small granularity, reducing the persistency overhead.

To further understand the data unpacking overhead in

HOOP, we profile the number of memory read operations.

The results show that one LLC miss incurs 1.28 memory

load operations on average for all these workloads, Note that

this analysis includes the synthetic workloads that generate

random data access patterns. Our experiments demonstrate

that HOOP introduces minimal overhead to the miss penalty

of LLC. This is for three reasons. Beyond taking advantage

of the access locality of workloads, HOOP provides two

mechanisms to achieve reduced read latency. First, its GC will

run periodically, after which a LLC miss will directly read

from the home region. Second, HOOP will issue read requests

in parallel (parallel reads) upon the case that data needs to be

read from both the home and OOP region. It is worth noting

that the possibility of parallel reads is low (3.4% on average).

According to our profiling analysis, these benchmarks have a

LLC miss ratio of 12.1% on average, and only 28.3% of the

LLC misses will incur parallel reads.

Opt-Undo enforces the log and data ordering at the memory

controller, which separates data persistence operations from

store operations [24]. However, it still performs worse than

Opt-Redo, due to the strict persist ordering between log and

data residing in the critical path of transaction execution.

Furthermore, the asynchronous log truncation and data check-

pointing in Opt-Redo accelerate its critical path execution.

OSP delivers a longer critical-path latency than HOOP by

44.3%, due to the expensive TLB shootdown. LSM incurs long

Fig. 9: Energy consumption of different approaches.

TABLE IV: Average data reduction in the GC of HOOP.

Tx Num. Vector Queue RBtree Btree Hash map YCSB TPCC

101 29.1% 24.3% 23.5% 26.3% 27.7% 23.2% 24.3%

102 50.2% 51.8% 53.4% 48.2% 52.4% 49.6% 50.1%

103 74.1% 76.4% 73.5% 70.6% 71.2% 70.1% 72.0%

104 85.3% 82.2% 81.1% 83.2% 82.5% 81.3% 83.2%

critical-path latency, due to the software-based index update

and lookup. LAD utilizes the queues in the memory controller

to cache the updated data, however, it still persists data at

cache-line granularity upon transaction commits.

D. Reducing Write Traffic to NVM

Reducing write traffic is important to extend the lifetime

of NVM devices. In this section, we measure the write traffic

caused by these crash-consistency techniques. We define the

write traffic as the number of bytes written for data persistence

on a per-transaction basis. We use the native system without

persistence support as the baseline (ideal case). We show the

normalized write traffic of various benchmarks in Figure 8.

HOOP delivers the lowest number of NVM writes, compared

with other five approaches. Both Opt-Redo and Opt-Undo

introduce additional writes for each data update, resulting in

heavy write traffic during transaction execution. Opt-Undo

mitigates this issue through log removal, generating lower

write traffic than Opt-Redo by an average of 9.1%. However,

they introduce 2.1× and 1.9× more NVM writes than HOOP.

HOOP has lower write traffic than OSP, LSM, and LAD

by an average of 21.2%, 12.5%, and 11.6%, respectively.

To further understand why HOOP reduces write traffic, we

profile the data size updated by transactions, and the data size

migrated in the GC of HOOP. We define the data reduction

ratio as the percentage of bytes modified by transactions

which are not written back to the home region, due to data

coalescing during the GC in HOOP. We measure the average

data reduction ratio of HOOP, when varying the number of

transactions. We show the profiling results in Table IV. As the

number of transactions increases, HOOP reduces more write

traffic. When the number of transactions exceeds 104, HOOP

needs to write only a small portion of data (less than 15%)

back to their home region by exploiting the data locality.

E. Improving Energy Efficiency of Using NVM

To quantify the energy efficiency of using NVM, we collect

both read and write traffics, and use the energy model for

NVM read/write discussed in [28], [40]. We list the energy

parameters in Table II, and show the results in Figure 9.

HOOP achieves the best energy efficiency, although it could

593

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: GC efficiency with different timing thresholds.

Fig. 11: Recovery performance of 1GB OOP region with

various number of recovery threads and memory bandwidth.

incur extra read operations due to parallel reads and GC

operations. Compared with the competitive approaches OSP,

LSM, and LAD, HOOP reduces the energy consumption by

37.6%, 29.6%, and 10.8% on average.

F. Performance Impact of Garbage Collection

To measure the GC efficiency in HOOP, we vary the

triggering threshold from 2 milliseconds to 14 milliseconds.

We measure the transaction throughput of the five synthetic

benchmarks, and show the results in Figure 10.

As expected, when the period is short, GC is triggered more

frequently to migrate updated data from the reserved OOP

region to the home region. However, an eager policy like

this reduces the possibility of data coalescing. As a result,

more NVM bandwidth is consumed by the GC process for

writing updated data back to their home locations. And the

cycles per transaction is increased by 6.8%–17.8%, as we

double the GC frequency. As the trigger threshold becomes

longer, the transaction throughput increases constantly. This

is because a larger number of data modified by transactions

can be coalesced in the reserved OOP region, significantly

reducing NVM write traffic. As shown in Figure 10, almost

all benchmarks achieve their peak throughput, when the period

is about 8–10 milliseconds. When the period exceeds 11

milliseconds, the performance could be constrained by the

GC, since there is not enough NVM space to hold committed

transactions in the reserved OOP region, and on-demand GC

has to take place on the critical path.

G. Fast Data Recovery

To facilitate data recovery upon system crashes or failures,

HOOP leverages multiple threads to accelerate recovery pro-

cedure. In this experiment, we vary the number of threads

performing recovery and the available memory bandwidth to

measure the time taken to recover the system state. We show

the experimental results in Figure 11.

As the available memory bandwidth increases, it linearly

takes less time to recover the system. When the NVM band-

width exceeds 25 GB/s, it only takes 47 milliseconds for

HOOP to recover 1GB of data in the reserved OOP region,

(a) NVM read latency (ns). (b) NVM write latency (ns).

Fig. 12: YCSB throughput with various NVM latency.

Fig. 13: YCSB throughput with various mapping table size.

which is 2.3× faster than the NVM system with only 10

GB/s memory bandwidth. As the number of recovery threads

increases, HOOP scales the data recovery with the parallel

scanning of committed transactions in the OOP region. For

low-bandwidth NVM, the memory controller becomes the

bottleneck, as we further increase the number of recovery

threads, which would saturate the memory bandwidth.

H. Sensitivity Analysis

We now perform a sensitivity study of HOOP to understand

how various mapping table size and NVM latency will affect

its performance. We use YCSB benchmarks that generate a

mix of 20% read and 80% update requests against an N-store

database. Each key-value pair size is 1KB. We show their

results in Figure 12 and Figure 13.

As shown in Figure 12, as we decrease the read latency

from 250 nanoseconds to 50 nanoseconds, we keep the write

latency as the default value (150 nanoseconds), and vice versa.

We observe that HOOP performs better as we decrease the

NVM latency. This is expected as the performance of both the

load/store operation and GC operation will be improved.

As expected, HOOP obtains better performance with a larger

mapping table size. When the mapping table size is small,

the GC has to be triggered more frequently, because there

is not much space to index the out-of-place updates in the

OOP region. Based on our experiments, the mapping table

with 2MB size provides a reasonable performance. As we

further increase the mapping table size, the performance is

only slightly increased, because the GC will be executed

in every ten milliseconds by default (see § IV-F). Delaying

the GC would further increase the application performance

as we increase the mapping table size, however, once the

mapping table is becoming full, HOOP will kick off the GC.

Therefore, consider the tradeoff between the mapping size and

GC frequency, we use 2MB mapping table and set the GC

frequency as ten milliseconds by default in HOOP.

V. RELATED WORK

Crash consistency for NVM. Many approaches have

been proposed to reduce the crash-consistency overheads with

594

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

NVM [16], [21], [23], [24], [29], [37], [40], [47]. Mnemosyne

defers data checkpointing and log truncation to eliminate

them from the critical path of transaction execution [49].

SoftWrAP [14] and DudeTM [29] adopt shadow memory

to alleviate the redo logging from the critical path. They

keep the data updates in DRAM and persist log entries

to NVM asynchronously. Although they reduce the critical-

path overhead, persisting log entries still incurs additional

write traffic. Furthermore, durable transactions have ordering

requirements within and between transactions. Prior work like

DCT [27], LOC [32] and HOPS [36] relax this for improved

performance. For instance, DCT [27] applies deferred commit

to achieve this, HOPS [36] proposes new ISA primitives to

decouple the ordering from durability, and BPFS [10] adopts

the similar techniques. Our work HOOP has the same goal

as those work, and exploits the hardware-assisted out-of-place

update in memory controllers to relax the persistence ordering.

Hardware-based logging. Hardware-based logging ap-

proaches, such as those for undo logging [24], [37], [47], redo

logging [13], [14], [23], [29], [31], [32], [49], and undo+redo

logging [40], have been proposed to eliminate the costly cache

flushes and enforcement of persistence ordering. However,

they inevitably incur additional write traffic to NVM. HOOP

reduces the logging traffic significantly with the proposed

hardware-assisted out-of-place updates, data packing, and data

coalescing techniques, according to our experimental results.

In-place update. Recent work Kamino-Tx [33] and

Kiln [54] proposed in-place updates for reducing data per-

sistence overhead. However, supporting in-place updates in

modern memory hierarchy is non-trivial. They either require

the integration of a non-volatile last-level cache into the

chip, or have to preserve a shadow copy for data updates,

which incurs significant storage cost. HOOP requires mini-

mal hardware cost by implementing the out-of-place update

mechanism in modern memory controllers, and runs optimized

garbage collection periodically to reduce the storage cost for

the reserved OOP region.

VI. CONCLUSION

Enforcing data persistence on NVM is expensive. In this

paper, we propose a new hardware-assisted out-of-place up-

date approach, named HOOP, to reduce memory persistency

overheads. We further improve HOOP with the proposed data

packing and coalescing techniques in memory controllers.

Our evaluation shows that HOOP achieves a low critical-path

latency, which is close to that of a native system providing

no persistence guarantee. HOOP also provides up to 1.7×
higher throughput and 2.1× less write traffic than state-of-

the-art crash-consistency techniques, while ensuring the same

strong atomic durability guarantee.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-

ments and feedback. We also thank Moinuddin K. Qureshi

for an initial discussion on this work. This work was partially

supported by NSF grant CNS-1850317 and CCF-1919044.

REFERENCES

[1] “Libraries and Examples for Persistent Memory Programming,” https:
//github.com/pmem/, 2018.

[2] “Intel Optane DC Persistent Memory,”
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-technology/optane-for-data-centers.html, 2019.

[3] “Skip List,”
https://en.wikipedia.org/wiki/Skip list, 2019.

[4] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong,
and W.-m. Hwu, “Flatflash: Exploiting the byte-accessibility of ssds
within a unified memory-storage hierarchy,” in Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19), Providence, RI, USA,
2019.

[5] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “Mcsima+: A manycore
simulator with application-level+ simulation and detailed microarchitec-
ture modeling,” in 2012 IEEE International Symposium on Performance
Analysis of Systems & Software, Austin, TX, USA, 21-23 April, 2013,
2013, pp. 74–85.

[6] S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Write-
Rationing Garbage Collection for Hybrid Memories,” in Proceedings
of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’18), Philadelphia, PA, 2018.

[7] J. Arulraj, A. Pavlo, and S. Dulloor, “Let’s talk about storage & recovery
methods for non-volatile memory database systems,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015, pp.
707–722.

[8] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
PVLDB, vol. 8, no. 7, pp. 786–797, 2015.

[9] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy and Endurance,” in
Proceedings of 42nd International Symposium on Microarchitecture
(MICRO’09), New York, USA, 2009.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’09), Big Sky, Montana, Oct. 2009.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC’10), Indianapolis,
Indiana, Jun. 2010.

[12] G. Cox and A. Bhattacharjee, “Efficient Address Translation for Archi-
tectures with Multiple Page Sizes,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’17), Xi’an, China, 2017.

[13] K. Doshi, E. Giles, and P. J. Varman, “Atomic persistence for SCM
with a non-intrusive backend controller,” in 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2016,
Barcelona, Spain, March 12-16, 2016, 2016, pp. 77–89.

[14] E. Giles, K. Doshi, and P. J. Varman, “Softwrap: A lightweight frame-
work for transactional support of storage class memory,” in IEEE 31st
Symposium on Mass Storage Systems and Technologies, MSST 2015,
Santa Clara, CA, USA, May 30 - June 5, 2015, 2015, pp. 1–14.

[15] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings,” in Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS’09), Washington, DC, USA, March, 2009.

[16] S. Gupta, A. Daglis, and B. Falsafi, “Distributed Logless Atomic
Durability with Persistent Memory,” in Proceedings of 52st International
Symposium on Microarchitecture (MICRO’19), Columbus, OH, 2019.

[17] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda, “Log-structured
non-volatile main memory,” in 2017 USENIX Annual Technical Con-
ference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017.,
2017, pp. 703–717.

[18] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified Address
Translation for Memory-mapped SSDs with FlashMap,” in Proceedings
of the 42nd Annual International Symposium on Computer Architecture
(ISCA’15), Portland, OR, 2015.

[19] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in
transaction systems,” in Proceedings of 41st International Conference
on Very Large Data Bases (VLDB’15), Kohala Coast, Hawaii, 2015.

595

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

[20] Intel, “6th generation intel processor families for s-platforms,” White
Paper, 2018.

[21] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-Atomic Persistent Memory
Updates via JUSTDO Logging,” in Proceedings of 21th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’16), Atlanta, GA, 2016.

[22] B. Jacob, S. Ng, and D. Wang, Memory Systems. Morgan Kaufmann,
2007.

[23] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
Proceedings of the 51th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018,
2018, pp. 178–190.

[24] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA’17), Austin, TX, USA, February, 2017.

[25] T. Kawahara, “Scalable spin-transfer torque RAM technology for
normally-off computing,” IEEE Design & Test of Computers, vol. 28,
no. 1, pp. 52–63, 2011.

[26] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA’17), Toronto, ON, Canada, 2017.

[27] A. Kolli, S. Pelley, A. G. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, Atlanta,
GA, USA, April 2-6, 2016, 2016, pp. 399–411.

[28] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
International Symposium on Computer Architecture (ISCA’09), Austin,
TX, 2009.

[29] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’17), Xi’an, China, April, 2017.

[30] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in Proceedings of the 46th Annual International Symposium on
Computer Architecture (ISCA’19), Phoenix, AZ, 2019.

[31] Y. Lu, J. Shu, and L. Sun, “Blurred persistence in transactional persistent
memory,” in IEEE 31st Symposium on Mass Storage Systems and
Technologies (MSST’15), Santa Clara, CA, USA, May, 2015.

[32] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency
for persistent memory,” in 32nd IEEE International Conference on
Computer Design, ICCD 2014, Seoul, South Korea, October 19-22,
2014, 2014, pp. 216–223.

[33] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with kamino-tx,” in Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April
23-26, 2017, 2017, pp. 499–512.

[34] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz,
“ARIES: A transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans.
Database Syst., vol. 17, no. 1, pp. 94–162, 1992.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A Tool to Model Large Caches,” HP laboratories, 2009.

[36] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An
analysis of persistent memory use with WHISPER,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’17),
Xi’an, China, 2017.

[37] T. M. Nguyen and D. Wentzlaff, “Picl: a software-transparent, persis-
tent cache log for nonvolatile main memory,” in Proceedings of the
51th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’18), Fukuoka, Japan, October, 2018.

[38] Y. Ni, J. Zhao, D. Bittman, and E. L. Miller, “Reducing NVM writes with
optimized shadow paging,” in 10th USENIX Workshop on Hot Topics
in Storage and File Systems, HotStorage 2018, Boston, MA, USA, July
9-10, 2018., 2018.

[39] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “SSP: Eliminat-
ing Redundant Writes in Failure-Atomic NVRAMs via Shadow Sub-
Paging,” in Proceedings of 52st International Symposium on Microar-
chitecture (MICRO’19), Columbus, OH, 2019.

[40] M. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA’18), Vienna, Austria, 2018.

[41] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA’14), Minneapolis, MN, USA, June, 2014.

[42] Ping Zhou and Bo Zhao and Jun Yang and Youtao Zhang, “Energy Re-
duction for STT-RAM using Early Write Termination,” in Proceedings of
2009 International Conference on Computer-Aided Design (ICCAD’09),
San Jose, CA, 2009.

[43] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of phase change memories
via start-gap wear leveling,” in Proceedings of the 42nd International
Symposium on Microarchitecture (MCIRO’42), Austin, TX, 2009.

[44] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in 36th International Symposium on Computer Architecture (ISCA’09),
June, 2009, Austin, TX, USA.

[45] R. Ramakrishnan and J. Gehrke, Database Management Systems, 3th
Edition. McGraw-Hill Education, 2002.

[46] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” in Proceedings of the Thirteenth
ACM Symposium on Operating System Principles (SOSP’91), Asilomar
Conference Center, Pacific Grove, California, USA, October, 1991.

[47] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: a flexible
and fast software supported hardware logging approach for NVM,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’17), Cambridge, MA, USA, October, 2017.

[48] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, p. 80, 2008.

[49] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: lightweight
persistent memory,” in Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’11), Newport Beach, CA, USA, March, 2011.

[50] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan,
“Espresso: Brewing java for more non-volatility with non-volatile mem-
ory,” in Proceedings of the 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’18), Williamsburg, VA, 2018.

[51] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistency memory,”
https://arxiv.org/pdf/1908.03583, will appear at FAST’20, 2019.

[52] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level systems,”
in Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015,
2015, pp. 167–181.

[53] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-Efficient
Encryption for Non-Volatile Memories,” in Proceedings of 20th In-
ternational Conferrence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’15), Istanbul, Turkey, 2015.

[54] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: closing
the performance gap between systems with and without persistence
support,” in Proceedings of the 46th Annual International Symposium
on Microarchitecture (MICRO-46), Davis, CA, 2013.

[55] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in 36th
International Symposium on Computer Architecture (ISCA’09), Austin,
TX, 2009.

596

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2020 at 09:43:57 UTC from IEEE Xplore. Restrictions apply.

