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Abstract

Predicting the interactions between drugs and targets plays an important role in the process of new drug discovery, drug

repurposing (also known as drug repositioning). There is a need to develop novel and efficient prediction approaches in

order to avoid the costly and laborious process of determining drug–target interactions (DTIs) based on experiments alone.

These computational prediction approaches should be capable of identifying the potential DTIs in a timely manner. Matrix

factorization methods have been proven to be the most reliable group of methods. Here, we first propose a matrix

factorization-based method termed ‘Coupled Matrix–Matrix Completion’ (CMMC). Next, in order to utilize more

comprehensive information provided in different databases and incorporate multiple types of scores for drug–drug

similarities and target–target relationship, we then extend CMMC to ‘Coupled Tensor–Matrix Completion’ (CTMC) by

considering drug–drug and target–target similarity/interaction tensors.

Results: Evaluation on two benchmark datasets, DrugBank and TTD, shows that CTMC outperforms the matrix-

factorization-based methods: GRMF, L2,1-GRMF, NRLMF and NRLMFβ. Based on the evaluation, CMMC and CTMC outperform

the above three methods in term of area under the curve, F1 score, sensitivity and specificity in a considerably shorter run

time.
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matrix–tensor.
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Introduction

One major class of in silico drug–target interaction (DTI) predic-

tion methods is machine learning methods that compensate for

the lack of 3D structures of drugs and targets in order to identify

any potential binding events. Although in vitro experiments are

the ultimate step in the drug discovery process, computational

predictions are essential to avoid expensive and laborious lab

experiments early in the process. To this end, machine learning

and other prediction methods have been developed since the

early pharmacological DTI predictions [3].

Many DTI prediction methods incorporate drug–drug or

target–target structural relationships via ‘Similarity/Distance-

Based Methods’. The main disadvantages of this approach are

that they are sensitive to the fact that only a small percent

of drugs have known interactions and some data sets are

of binary nature, even though drug–target binding affinities

are continuous in nature. Another family of solutions are the

‘Network-Based Methods’ that utilize graph-based techniques

to perform DTI prediction. Although some methods use three

networks of protein–protein similarity, drug–drug similarity

and known DTIs in a heterogeneous network, they tend to

perform poorly in DTI discovery; this may be due to the fact

that the properties of DTI networks are not favorable for such

methods [6, 13]. ‘Feature-Based Methods’ have recently been

used in DTI prediction tasks; these include support vector

machines, tree-based methods and other kernel based methods

used with 3D protein structures. Any drug–target pair can be

represented in terms of a feature vector, often with binary

labels, and a machine learning method used to classify the pair

vectors into positive or negative interacting proteins prevents

extracting the main features disadvantaging performance. To

deal with high-dimensional and noisy data in DTI predictions,

several ‘Deep Learning Methods’ have been proposed (e.g.

[27, 33]). The main disadvantages of these methods are that

a great deal of training data and high computational power

are required to train the complex model. Additionally, they

lack the transparency in interpreting results and performance

issues. The ‘Matrix Factorization Methods’, as another family of

methods used in DTI, aim to find two matrices, Yn×k and Zk×m,

whose multiplication gives the interaction matrix Xn×m with

k ≪ n,m. It is assumed that the drugs and targets lie in the

same distance space such that the distance among drugs and

targets can be used tomeasure the strength of their interactions.

Therefore, drugs and targets can be embedded in a common

low-dimensional subspace (see [16, 28]). Matrix factorization

and matrix completion have been reported to be the most

reliable methods among all the other methods based on their

performance ([1, 8]); however, they are not able to incorporate all

the available information about the drugs and targets.

In the current Big Data era, there exist numerous examples

of the ‘matrix completion problem’: impute/predict the missing

values of a matrix, given an incomplete matrix with values that

are noisy and potentially corrupt [5]. A common application is

for ‘recommender systems’ such as the ‘Netflix Prize’ [21]. Pre-

diction of themissing values has been an active area of research,

resulting in methods such as ‘Singular Value Thresholding’ [4],

‘Fixed Point Continuation’ [18] and ‘Matrix Factorization’ [30].

However, these methods ignore supporting data that could be

integrated with the main matrix.

A main challenge in DTI prediction using matrix-based

method is to perform the completion task of the sparsematrices

of drugs, X, targets, Y, along with their interactions,MXY, (shown

in Fig. 1) that are central to the field of drug repositioning (a.k.a.

Figure 1. An illustration of a sparse coupled drug–drug, MXX, drug–target, MXY

and targettarget,MYY , matrices representing the interactions.

drug repurposing). To address the true structure of many real

applications, the proposed matrix completion method has been

expanded using the following steps:

(1) ‘Coupled Matrix–Matrix Completion’ (CMMC): The matrix

completion problem is expanded to cases where the matrix

MXY is coupled with additional structural information on

the attributes X and Y involved in the matrix, such as a

matrix MXX expressing functional similarities of different

drugs, and a matrix MYY expressing relations among the

targets. It is highly desirable to directly integrate the drug–

drug similarity and target–target relation matrices (which may

also be sparse themselves) in completion of the sparse DTIs

(see Figure 1).

(2) ‘Coupled Tensor–Matrix Completion’ (CTMC): The similarity

matricesMXX andMYY can often be calculated in complementary

ways based on different criteria, resulting in multiple MXX’s and

MYY ’s (see Figure 2). For instance, the drug–drug similarities can

be assessed using different structural and functional character-

istics and in different chemical environments.When completing

the matrix MXY in these situations, instead of matrices MXX and

MYY , one must deal with tensors (in this case 3-dimensional

arrays) TXXU and TYYZ where U and Z represent the number of

different contexts forMXX andMYY, respectively. A major current

challenge in data science is that existing algorithms fail to

use the highly important structural correlations within tensors.

Therefore, prediction/estimation of the missing values inMXY or

TXYZ while considering all structural relations is a much more

practically important problem and can be termed as CTMC. To

evaluate the proposedmethods,we use cross-validation to com-

pare them with three other state-of-the-art methods, namely

GRMF [9], NRLMFβ [2] and L2,1-GRMF [7].

The rest of the manuscript is organized as follows: brief

descriptions of the three competing state-of-the-art methods

are provided in Section 2. Section 3 describes information about

the datasets used in our work, followed by Section 4, which
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Figure 2. An illustration of a sparse coupled drug–drug tensor, TXXU, drug–

target matrix, MXY and target–target tensor, TYYZ , matrices representing the

interactions.

explains our proposed methods. We then present the experi-

mental results of our work and provide relevant discussion in

Section 5 and conclude in Section 6.

Related work

In Big Data applications it is common that data are sparse

(mostly zeros) and partially missing. Missing data imputation,

especially in the context of sparse noisy data, is therefore a

central problem. A common situation is a matrix with missing

entries under the assumption that the completed matrix has

low rank. The low-rank matrix completion problem is NP hard

and highly non-convex [11], but there are various algorithms that

work under certain assumptions on the data; for instance, one

approach to low-rank matrix completion is to use the nuclear

norm as a convex relaxation of the matrix rank and use semi-

definite programming to find a completion that minimizes the

nuclear norm (see [5, 10]). Other approaches use matrix fac-

torization with non-convex optimization such as alternating

minimization ([14]) or gradient descent ([24]).

Here, we have considered four methods, two of which are

based on graph regularization that are generally used in order

to fully consider the internal structure of the drug–drug and tar-

get–target similarity matrices while keeping them unchanged;

another two use specific probability, in particular distribution,

functions in order to perform the task of DTI prediction. More-

over, a preprocessing step has been employed in order to deal

with the sparsity of the interaction matrices.

GRMF

GRMF is a two-step method proposed in [9] using weighted

K nearest known neighbors (WKNKN) as a preprocessing step

and graph regularizedmatrix factorization (GRMF) for predicting

DTIs. WKNKN is used to transform the binary into interaction

likelihood values in the given drug–target matrix. Given the

drug–target matrix Y ∈ R
n×m, where n and m denote the number

of drugs and targets, respectively, the algorithm returns the K

nearest known neighbor in descending order based on their sim-

ilarities to the ith drug, di, or the jth target, tj. Next, the authors

derived a p-nearest neighbor graph from the drug similarity

matrix, Sd, and target similarity matrix, St. Based on the given

Sd, a p-nearest neighbor graph N is then generated in the form:

Nij =















1, j ∈ Np(i)&i ∈ Np(j),

0, j /∈ Np(i)&i /∈ Np(j),
1
2
, otherwise,

(1)

for any i and j, where Np(i) denotes the set of p nearest neighbor

to drug di. GRMF minimizes the objective function

minA,B = ||Y − ABT||2F + λl

(

||A||2F + ||B||2F

)

+ λd Tr(A
T LdA) + λt Tr(B

T LtB), (2)

where A ∈ R
n×k and B ∈ R

m×k are two low-rank latent fea-

tures matrices for drugs and targets, respectively, which approx-

imates the decomposition matrix Y. For more explanation of the

method, we refer the reader to [9]. It follows by a regularization

step to prevent overfitting and a normalization step to enhance

the performance.

L2,1-GRMF

L2,1-GRMF is an improved GRMF method to address the issue

that the datasets are often located at or near a low-dimensional

nonlinear manifold, in combination with the previous matrix-

decomposition method. To this end, authors in [7] use the

Euclidean distance, L2,1, to calculate the nearest neighbor. Next,

the interactionmatrix Y is decomposed into two low-rank latent

feature matrices A and B such that Y ∼ ABT and the objective

function is written as follows:

minA,B = ||Y − ABT||2F, (3)

where || · ||F denotes the Frobenius norm with the k number of

potential features of A and B.

NRLMF

NRLMF [17] is one of the drug–target prediction methods based

on a matrix factorization technique and is one of the state-

of-the-art method. NRLMF method focuses on predicting the

probability that a drug would interact with a target. Specifi-

cally, the properties of a drug and a target are represented by

two latent vectors in the shared low-dimensional latent space,

respectively. As such, the properties of a drug di and a target

tj are described via two latent vectors ui,vj ∈ R
1×r where r

represents the dimension of the shared latent space to which

both drugs and targets are mapped. The authors in [17] model

the interaction probability pij of the drug–target pair, (di, tj) using

the following logistic function:

pij =
exp (ui vT

j )

1 + exp (ui vT
j )

. (4)

The final DTI predictionmodel then is formulated by considering

the DTIs as well as the neighborhood of drugs and targets.

NRLMFβ

NRLMFβ [2] is an algorithm that assigns to any score of NRLMF

(see Section 2.3) a new score, based on the expected value of the
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beta distribution defined by

β
(

x
∣

∣aij ,bij
)

=
xaij−1(1 − x)bij−1

B(aij,bij)
, (5)

where aij,bij > 0 denote the shape parameters of the beta

distribution, and B(·, ·) represents the beta function [31]. The beta

distribution is determined based on interaction information and

current NRLMF score and is also known as the conjugative prior

for the Bernoulli distribution [31] used in NRLMF and can reflect

the amount of interaction information for the NRLMFβ score.

Likewise, GRMF and L2,1-GRMF, given the interaction matrix Y,

new scores are utilized to calculate Sd, and St, drug similarity and

target similarity matrices.

Data

For evaluation of our proposed methods, we used two bench-

mark datasets: 1) Data extracted from DrugBank [32], one of the

most popular databases that is widely used as a drug reference

resource.This databasewas first released in 2006, and a database

both in bioinformatics and cheminformatics,DrugBank contains

detailed drug datawith comprehensive drug–target information.

The DTI relationships in DrugBank are originally collected from

textbooks, published articles and other electronic databases. All

data can be freely downloaded from DrugBank. 2) Data extracted

from Therapeutic Target Database (TTD) [29], which provides

therapeutic proteins, nucleic acid targets and corresponding

drug information. This database was first described in 2002 and

data in TTD were mainly collected from the literature.

DrugBank

In order to establish the DTI matrix, a total of six matrices

were created. In doing so, a total of 6784 drugs with at least

one polypeptide target and 4765 polypeptide targets that are

targeted by those drugs were extracted. They form a matrix of

size 6784× 4765 whose density is 5.7211e− 04. This represents a

sparsity of 99.94%.

As it is thoroughly discussed in Section 4, multidimensional

arrays (tensors) are used to evaluate the performance of the

proposed methods. In order to create higher order arrays in the

form of drug–drug tensors, the following slices were created:

1. Drug–drug interaction of every pair of the 6784 drugs, as

available in the DrugBank Database,

2. Drug–drug similarity as calculated by the ‘Morgan Finger-

print’ score [25] provided by the RDKit Python package

[15],

3. Drug–drug similarity as calculated by the topological torsion

score [22] also provided by the RDKit Python package.

The information for the target–target interaction are obtained

based upon the assumption that the interactions between tar-

gets are transitive; i.e. if protein p1 is similar to protein p2, which

interacts with protein p3, then protein p1 may also interact with

protein p3. The following matrices are used in order to create the

target–target tensor array:

1. The binary target–target interaction information of every

pair of the 4765 polypeptide targets, as provided by BioGri

d3.5 [26],

2. The target–target similarity score of every pair of the 4765

polypeptides, as defined by the inverse of ‘Jukes–Cantor’

distance [12].

Jukes–Cantor distance computes the maximum likelihood

estimate of the number of substitutions between two sequences

with themethod p-distance,which is proportion of sites atwhich

the two sequences are different. p is close to 1 for poorly related

sequences and is close to 0 for similar sequences. The similarity

score was taken as an inverse of Jukes–Cantor distance [12].

The entries of all the matrices are min–max normalized to

[0, 1]. All the matrices are symmetric with respect to the main

diagonal. Therefore, each entry of the main diagonal of each

matrix is 1. Table 1 summarizes the characteristics of the dataset

created and all the information pertaining to the dataset are

made available in supplementary materials (see Section 7).

TTD

We also evaluated our proposed CMMC method on TTD [29].

A total of 21853 drugs were selected, along with 1886 protein

targets,with 32487DTIs and fromamatrix of density 7.8824e−04.

Similar to those for DrugBank dataset, we calculated drug–drug

similarity score using the Morgan Fingerprint score [25] and

the target–target similarity score using inverse of Jukes–Cantor

distance [12].

Methods

In the proposed method, we develop the theoretical framework

necessary to create scalable algorithms for coupled matrix–

matrix and tensor–matrix completion. These algorithms are

applicable to the general case in which the coupled matri-

ces/tensors are sparse themselves. The algorithms are tested

against DTI databases for which the details are provided in

Section 3. It is noteworthy that the performance of these

algorithms in the task of drug repositioning should be evaluated

by expert clinicians and their reliability of the results should be

confirmed. To this end, we start by introducing the represen-

tation theory of reductive groups [20], which provides the basis

for the proposed completion algorithms, as well as providing

theoretical guarantees on the optimality of our solutions.

A reductive group in general is a linear algebraic group over

a field satisfying certain conditions. Let X be a real or complex

vector space, then the general linear group, GL(X), and special

linear group, SL(X), are reductive groups and so are the products

of reductive groups. In general, GLd(X) is the set of d×d invertible

matrices over X, together with the ‘matrix multiplication’ opera-

tion and SLd(X) is a subset of GLd(X) consisting of those elements

whose determinants are 1. An n × m real matrix can be thought

of as an element in

X ⊗ Y ∼= R
n×m,

where X and Y are vector spaces of dimension n and m, respec-

tively. The group GL(X) × GL(Y) acts on the space X ⊗ Y by

(A1,A2) · B = A1BA
t
2,

where At is the transpose of matrix A. The group GL(X) × GL(Y)

acts by linear transformations, meaning that X ⊗ Y is a ‘repre-

sentation’ of the reductive group GL(X) × GL(Y). The space of

symmetric n × n matrices can be identified with the space of

symmetric tensors S2X ⊆ X ⊗ X. The group GL(X) acts on a

symmetric matrix B by

A · B = ABAt.

An n×m×p tensor (i.e. a multi-dimensional array) is an element

in the representation X ⊗ Y ⊗ Z ∼= R
n×m×p of the reductive group
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Table 1. Summary of datasets

Matrices Notation Dimension Source

Drug–Target Interaction MXY 6784 × 4765 DrugBank [32]

Drug–Drug Interaction MXX,1 6784 × 6784 DrugBank [32]

Drug–Drug Similarity: Morgan fingerprint MXX,2 6784 × 6784 Structure: DrugBank [32] Score: [25]

Drug–Drug Similarity: topological torsion MXX,3 6784 × 6784 Structure: DrugBank [32] Score: [22]

Target–Target Interaction MYY,1 4765 × 4765 Biogrid [26]

Target–Target Similarity MYY,2 4765 × 4765 Sequence: DrugBank [32] Score: Inverse of Jukes–Cantor [12]

Drug–Target Interaction MXY,t 21853 × 1886 TTD [29]

Drug–Drug Similarity: Morgan fingerprint MXX,t 21853 × 21853 Structure: TTD [29] Score: [25]

Target–Target Similarity MYY,t 1886 × 1886 TTD [29] Score: Inverse of Jukes–Cantor [12]

GL(X)×GL(Y)×GL(Z), where Z ∼= R
p. For a coupled matrix–tensor,

we get the representation

(X ⊗ Y) ⊕ (Y ⊗ Z ⊗ W),

of the group GL(X)×GL(Y)×GL(Z)×GL(W). Using the above frame-

work, the CMMC problem depicted in Figure 1 can be identified

with the representation

(S2X) ⊕ (X ⊗ Y) ⊕ (S2Y),

whereas the CTMC problem depicted in Figure 2 can be repre-

sented by

(S2X ⊗ U) ⊕ (X ⊗ Y) ⊕ (S2Y ⊗ Z),

of the group GL(X) × GL(Y) × GL(Z) × GL(U). These reformulation

of the problem induces metrics with which the sparse matri-

ces could be optimally completed. For the remainder of the

section, we assume that the data under consideration lie in a

representation V of a reductive group G.

Determining optimal metrics for CMMC and CTMC

Most methods for matrix and tensor completion rely upon the

choice of a fixed metric, such as the Euclidean or nuclear norm.

If there is a high correlation between the rows/columns in a

matrix, or between different tensor slices, then a different met-

ric given by the data itself could be adopted. For a machine

learning problem including data points in n-dimensional space,

R
n, ‘Mahalanobis distance’ [19], which is computed from the

covariance matrix of the data, could also be utilized. Equivalent

to the Mahalanobis distance is using the Euclideanmetric ‘after’

a linear change of coordinates that normalizes the covariance

matrix of the data to the identity. A proper action on group G

could perform the change of coordinates in the vector space X

such that it preserves the mathematical structure of the data.

The ‘Kempf–Ness’ theorem (see below, [23]) shows that there is

essentially a unique change of coordinates that is optimal in a

certain sense. It is known that the group G has a uniquemaximal

compact subgroupK. The spaceXhas some Euclideanmetric and

without loss of generality one may assume that K is contained

in the orthogonal group SO(X).

Theorem 1. Consider the map ϕ : G → R given by ϕ(g) = ‖g · x‖2,

then either ϕ does not have a critical point, or every critical point

is aminimumand the set of critical points is a coset,Kg, for some

g ∈ G.

The theorem implies that there is a unique optimal metric,

which is the Euclidean metric after the change of coordinates

given by g. The action of K does not change the metric. To avoid

a degenerated case, in the absence of any critical point, one

may choose a slightly smaller reductive group G instead (e.g.

SL instead of GL) or utilize a regularization that is compatible

with the representation theory setup. Thus, the choice of G

determines the optimal metric that can be used to solve the

CMMC and CTMC problems.

The next step is to determine the optimal metric for CMMC

and CTMC. Assuming m data points x1, x2, . . . , xm in X ∼= R
n

with respective mean 0 and an invertible covariance matrix A,

then x = (x1, . . . , xm) ∈ V = Xm ∼= R
n×m and the function

ϕ : SL(X) → R, defined by ϕ(g) = ‖g · x‖2, has a critical point,

namely g = A− 1
2 . The optimal metric is exactly the Mahalanobis

distance. However, if the data points x1, x2, . . . , xm are not thus

distributed, then a better choice of G yields a more optimal

metric. Determining an optimal choice of G for CMMC induces

a metric and regularization terms that are directly used in the

algorithm. Given a tensor v ∈ V = X ⊗ Y ⊗ Z, one can optimize

ϕ(g,h, k) = ‖(g,h, k) · v‖2, (6)

for (g,h, k) ∈ G = SL(X) × SL(Y) × SL(Z), using alternating

optimization: first optimizing for g ∈ SL(X) while fixing h and

k followed by optimizing h having g and k fixed and lastly,

optimizing k while fixing g and h, until the desired convergence.

Each optimization step reduces to the case of m data points

x1, x2, . . . , xm in X ∼= R
n with mean 0 and an invertible covariance

matrix A, which was discussed above. It can be shown that this

procedure converges to an optimal solution and in practice only

a few iterations are needed.

In the CTMC case, there are more potential choices for G that

may yield amore optimalmetric. For exampleG2 = SL(X)×SL(Y)×

SL(Z) × SL(U) or G3 = SL(X) × SL(Y).

Developing the CMMC and CTMC algorithms

Assuming the actual data for x ∈ X are not known yet y = ω(x),

where ω : X → Y is a projectionmap, is given. In order to estimate

themissing data, ‖g·x‖2 isminimized over all g ∈ G and x ∈ Xwith

the constraint ω(x) = y. However, a unique optimal solution is no

longer guaranteed for this optimization, because even the low-

rank matrix completion problem does not always have a unique

optimal solution. An approach to finding an optimal g and x is to

use alternating optimization. Starting with the element g as the

identity, one can find x with ω(x) = y, such that ‖x‖2 is minimal.

An optimal g can be now found such that ‖g · x‖2 is minimal,

and this procedure is repeated until a desired convergence is

obtained. In some cases, such as for the CTMC case, finding an

optimal g is in itself an iterative procedure. In that case one

can alternate a fixed number of iteration steps for g with an

optimization step for x.
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In order to improve the algorithms for CMMC and CTMC, we

start by assuming that two symmetric matrices MXX ∈ S2X and

MYY ∈ S2Y are given in a way that they are coupled with an

incomplete matrix MXY ∈ X ⊗ Y, where X = R
nX and Y = R

nY .

Without loss of generality, one may assume that MXX and MYY

are nonnegative definite. Suppose that the only known entries

of MXY are at positions �XY = ((i1, j1), (i2, j2), . . . , (ik, jk)). This

constraint can be written as ωXY(MXY) = vXY where vXY ∈ R
k

is some fixed vector, and ωXY : X ⊗ Y → R
k maps a matrix

C to (Ci1 , j1,Ci2 ,j2 , . . . ,Cik ,jk )
t. One may use the matrices MXX and

MYY as regularization of the matrix completion problem of MXY.

For some fixed regularization parameters λX, λY , the objective

function to minimize is defined by

H := ‖gX MXY g
t
Y‖2F + λX Tr(gX MXX g

t
X) + λY Tr(gY MYY g

t
Y), (7)

over all triples (g,h,MXY) with g ∈ SLn, h ∈ SLm and MXY ∈ R
n×m

with the constraint

ωXY(MXY) = vXY.

Here ‖C‖2F = Tr(CCt) is the square of the Frobenius norm. for some

arbitrary matrix C.

The drug–drug and target–target interaction matrices, MXX

and MYY , respectively, may be incomplete as well, which in that

case the following constraints are imposed

{

ωXX(MXX) = vXX,

ωYY(MYY) = vYY,

as well as the convex constraints that impliedMXX andMYY being

nonnegative definite. As a result, besides MXY, both drug–drug

and target–target matrices,MXX andMYY , are updated and hence

the problem narrows down to a quadratic programming with

convex constraints.

For the CTMCmethod, the drug–drug and target–target inter-

actions/similarities tensors, which are obtained from several

sources, are given by matrices TXXU ∈ S2X ⊗ U of size nX ×

nX × nU and TYYZ ∈ S2Y ⊗ Z of size ny × nY × nZ. In that case,

there exist two additional transformations gU and gZ, which are

diagonal matrices with determinant 1 and positive entries on

the diagonal. For some fixed regularization parameters λX, λY, the

objective function to minimize hence becomes

G := ‖gX MXY g
t
Y‖2F + λX

nU
∑

i=1

(gU)i,i Tr(gXTi
XXUg

t
X)

+ λY

nZ
∑

j=1

(gZ)j,j Tr(gYT
j
YYZg

t
Y), (8)

over all triples (g,h,MXY) with g ∈ SLn, h ∈ SLm and MXY ∈ R
n×m.

Moreover, the objective functionG alsominimizes all the number

of layers added to TXXU, denoted as nU, and number of layers

added to TYYZ, denoted as nZ. Here Ti
XXU ∈ R

nX×nX denotes the i-th

slice of the tensor TXXU.

The transformations are used to balance the various sources

of drug–drug and target–target interactions, and just like gX and

gY, gU and gZ are updated iteratively. If entries of the tensors TXXU

and TYYZ have missing entries, certain constraints are adopted

in addition to the one which assumes that all the slices are

nonnegative definite.

To further explain the CMMC and CTMC methods, we con-

sider thematrixMXY representing the interaction between drugs

X and targets Y. Entries are typically within the interval [0, 1].

Only a small percent of the entries of matrix MXY are non-

zero and many are unknown. Without loss of generality one

may assume the interaction matrix MXY is symmetric and is

considered together with two other matrices: drug–drug simi-

larity/interaction (MXX) and target–target similarity/interaction

(MYY) matrices. It is noteworthy that both rows and columns of

matrix MXX have the same labels as the rows of MXY and both

rows and columns of matrix MYY have the same labels as the

columns of MXY.

After forming the coupled structures, the next step is to

determine the optimalmetric for CMMC/CTMCmethods asmost

methods formatrix (tensor) completion rely upon the choice of a

fixed metric, such as the Euclidean metric (nuclear norm). Here,

the optimal metric will be determined using Algorithm 1.

Intuitively, minimizing the objective function given in

Eq. (7) (and same for Eq. (8)) results in finding an optimal metric

under which the distance between interaction matrix MXY and

the matrix gX MXY g
t
Y is minimal. This also applies to two other

matrices,MXX andMXY, as well. It is worthmentioning again that

gX and gY are symmetric invertiblematriceswhose determinants

equal to 1. To this end and to help better understanding the

methods, the self-contained executable codes for the two

proposed methods, CMMC and CTMC, have made publicly

available (see Section 7).

Scalable algorithms for CMMC and CTMC

A main challenge to the prediction of DT interaction lies in the

fact that only a small fraction of the entries in the tensors and

matrices are known [1]. It appears that the output, i.e. the com-

pleted data, is many times larger then the input of the known

entries. In fact, dealing with the large sized tensors may become

intractable due to the lack of memory or computational power.

It seems possible, however, that the output and the intermediate

results can be compressed because of the following observation

in a special case. Suppose that x ∈ R
n×m is a matrix with missing

entries and n ≪ m. Assuming that only the entries in the

positions (i1, j1), . . . , (ik, jk) are known with k ≪ mn, evaluation

of x at the positions (it, jt) t = 1, 2, . . . , k defines a map ω :

R
n×m → R

k where only ω(x) = y is known. The optimal solution

to minimizing ‖g · x‖2 where g ∈ SLn and x ∈ R
n×m satisfying

ω(x) = y has a very special form, namely x = h · z with h ∈ SLn
and z ∈ R

n×m with the property that the only nonzero entries of

z are zit ,jt , t = 1, 2, . . . , k. Therefore, instead of storing the matrix x

with mn entries, it is only needed to remember the matrix h and

the nonzero entries of z, a total of n2 + k ≪ mn numbers.

Results

For the demonstration of all the methods except CTMC,

three matrices are created. For the first step, three matrice
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Table 2. Metrics of results produced by the algorithms using binary interaction matrices obtained from DrugBank.

CMMC WKNKN + CMMC

Mean SD Mean SD

Runtime (s) 0.337 0.026 0.551 0.033

AUC 0.664 0.072 0.664 0.072

F1 0.184 0.110 0.184 0.110

Sensitivity 0.164 0.085 0.164 0.085

Specificity 0.997 0.011 0.997 0.011

GRMF WKNKN + GRMF

Mean SD Mean SD

Runtime (s) 1302.294 251.657 1299.383 252.889

AUC 0.629 0.078 0.645 0.083

F1 0.061 0.068 0.072 0.078

Sensitivity 0.120 0.085 0.114 0.076

Specificity 0.986 0.025 0.988 0.031

L2,1-GRMF WKNKN + L2,1-GRMF

Mean SD Mean SD

Runtime (s) 1288.877 261.152 1279.952 254.770

AUC 0.636 0.078 0.648 0.076

F1 0.062 0.071 0.074 0.078

Sensitivity 0.117 0.076 0.104 0.063

Specificity 0.986 0.026 0.990 0.027

NRLMF WKNKN + NRLMF

Mean SD Mean SD

Runtime (s) 1.551 0.086 1.546 0.076

AUC 0.597 0.077 0.602 0.080

F1 0.050 0.062 0.051 0.063

Sensitivity 0.116 0.079 0.115 0.090

Specificity 0.976 0.047 0.980 0.062

NRLMFβ WKNKN + NRLMFβ

Mean SD Mean SD

Runtime (s) 37.938 0.570 37.883 0.665

AUC 0.596 0.077 0.602 0.081

F1 0.050 0.062 0.051 0.063

Sensitivity 0.116 0.079 0.116 0.090

Specificity 0.976 0.047 0.980 0.063

s consisting of drug–drug interaction, DTI and target–target

interaction are created (see Section 3). Next, all the methods are

evaluated using drug–drug similarity,DTI and target–target simi-

laritymatrices. For the demonstration of CTMC,which is capable

of handling multiple sources of information in a preserved

tensor form, additional layers in the form of similarity scores

and/or interaction information are added. Detailed information

about different layers and similarity information are provided in

Table 1.

CMMC performance evaluations using DrugBank

For performance evaluations, we consider the CMMC algorithm

along with three other algorithms outlined in Section 2. For

every iteration, a subset of the interaction matrix, SXY ⊂ MXY,

is created by randomly selecting approximately 10% of the rows

and columns ofMXY. This results in amatrix,SXY, of size 678×477,

which corresponds to 1% of the total number of elements ofMXY.

Next, 10% of the entries are randomly selected and replaced by

0.5, as a surrogate for a value that is neither 0 nor 1, and all four

algorithms are used to predict those values.We then average the

performance of all algorithms over 100 iterations.

The comparison is divided into two parts; first, we consider

drug–drug and target–target interaction matrices coupled with

the interaction matrix MXY for which Table 2 represents the

results.Next, themethods are compared using the coupled drug–

drug and target–target similarity matrices,MXX and MYY respec-

tively, coupled with the interaction matrix MXY. The results are

shown in Table 3. The methods are compared based on the

total runtime, area under the curve (AUC), F1 score, sensitivity,

specificity and accuracy. The threshold columns represent the

most appropriate threshold for calling a predicted value either

positive or negative to optimize the F1 score calculated over the

100 iterations.
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Table 3. Metrics of results produced by the algorithms using similarity matrices obtained from DrugBank.

Algorithm Runtime (s) AUC F1 Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

CMMC 0.374 0.088 0.761 0.078 0.078 0.060 0.167 0.101 0.994 0.014

GRMF 1289.686 145.483 0.631 0.079 0.062 0.069 0.115 0.079 0.987 0.023

WKNKN + GRMF 1292.219 142.135 0.650 0.076 0.075 0.071 0.116 0.105 0.985 0.071

L21GRMF 1290.000 136.695 0.637 0.078 0.064 0.072 0.115 0.073 0.987 0.026

WKNKN + L21GRMF 1289.366 143.215 0.648 0.081 0.076 0.076 0.111 0.078 0.988 0.040

NRLMF 1.593 1.106 0.601 0.079 0.053 0.061 0.119 0.096 0.974 0.072

WKNKN + NRLMF 1.582 0.079 0.615 0.091 0.062 0.070 0.127 0.128 0.973 0.085

NRLMFβ 38.537 1.468 0.600 0.079 0.053 0.061 0.119 0.096 0.974 0.072

WKNKN + NRLMFβ 39.080 2.036 0.615 0.615 0.062 0.070 0.127 0.130 0.973 0.085

Table 4. Metrics of results produced by the algorithms using similarity matrices obtained from TTD.

Algorithm Runtime (s) AUC F1 Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

CMMC 3.378 0.307 0.846 0.037 0.084 0.070 0.122 0.093 0.996 0.008

GRMF 4176.739 136.152 0.701 0.064 0.031 0.029 0.095 0.067 0.990 0.013

WKNKN + GRMF 4143.534 120.312 0.683 0.057 0.083 0.074 0.091 0.086 0.991 0.036

L21GRMF 4148.855 121.843 0.699 0.064 0.030 0.031 0.095 0.071 0.989 0.018

WKNKN + L21GRMF 4156.066 111.406 0.690 0.057 0.083 0.076 0.087 0.071 0.993 0.025

NRLMF 4.228 0.639 0.621 0.066 0.030 0.025 0.072 0.057 0.990 0.019

WKNKN + NRLMF 4.579 0.351 0.651 0.063 0.054 0.052 0.077 0.051 0.996 0.009

NRLMFβ 65.611 3.659 0.621 0.066 0.030 0.025 0.072 0.057 0.990 0.019

WKNKN + NRLMFβ 67.278 3.810 0.651 0.063 0.054 0.052 0.077 0.051 0.996 0.009

Table 5. AUC Results for different λX and λY .

CMMC DrugBank TTD

λX = 0.00 ; λY = 1.00 0.6300 0.4902

λX = 1.00 ; λY = 0.00 0.7005 0.8372

λX = 0.10 ; λY = 0.05 0.7545 0.8445

λX = 0.05 ; λY = 0.10 0.7580 0.8464

λX = 0.05 ; λY = 0.05 0.7610 0.8460

All the methods have been tested over the same dataset

with andwithout the pre-processing step, calledWKNKN [8] (see

Section 2.1). This allows us to replace a given binary values with

an interaction likelihood value in any of the matrices. Authors

in [8] reported notable improvement in their method using the

so called pre-processing step. However, as it is shown in Tables 2

and 3, although WKNKN improves the average value for AUC, F1

score, sensitivity and specificity as well as accuracy, it results

in higher standard deviation (SD) values as well. Therefore, the

pre-processing step WKNKN may also affect the robustness of

themethods. On the other hand, it is noteworthy that the results

under the proposedmethods, CMMC and CTMC, are not affected

by WKNKN and it shows the proposed methods do not neces-

sarily require any pre-processing step. The reason lies in the fact

that thesemethods only use the known interactions given in the

original DTImatrixMXY to iterate whereas drug–drug and target–

target similarity/interactionmatrices,MXX andMYY, respectively,

to converge to the completed MXY matrix; moreover, WKNKN

only affects the values that are marked 0.5 as a surrogate for the

‘missing’ values, hence it does not affect the results for CMMC.

As a result, it also shows the robustness of the CMMC algorithm.

Table 6. Metrics of results produced by CTMC using data from
DrugBank.

CTMC Method

Runtime (s) AUC F1

Mean SD Mean SD Mean SD

0.513 0.045 0.775 0.080 0.169 0.110

Sensitivity Specificity Accuracy

Mean SD Mean SD Mean SD

0.169 0.082 0.997 0.011 0.997 0.011

The best performances in terms of AUC, F1 score, sensitivity,

specificity and accuracy across different algorithms are high-

lighted in Tables 2 and 3, based upon which, one may observe

the following:

Performance based on AUC: The average value of AUC was cal-

culated for each method with and without employing the pre-

processing step, WKNKN. The AUCs for CMMC are reportedly

higher than all the other methods. The highest average values of

AUC was calculated for the three methods outlined in Section 2

based on similarity and interaction matrices are 0.637 and 0.636,

respectively. These values are remarkably smaller than those of

CMMC, which are 0.761 and 0.664, respectively. The reason that

using similarity matrices for both drug–drug and target–target

yields a higher AUC lies in the fact that similarity matrices con-

tain more useful information as oppose to interaction matrices

that are binary and often times sparse.
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Table 7. Performance of the CTMC algorithm adding slices obtained from DrugBank.

TXXU TYYZ # of Slices Runtime (s) AUC F1 Sensitivity Specificity

Mean SD Mean SD Mean SD Mean SD Mean SD

MXX,1 MYY,1 2 0.154 0.013 0.664 0.072 0.184 0.110 0.164 0.085 0.997 0.011

MXX,1,MXX,2 MYY,1 3 0.171 0.016 0.723 0.076 0.179 0.109 0.168 0.080 0.995 0.029

MXX,1,MXX,2 MYY,1,MYY,2 4 0.180 0.014 0.778 0.078 0.180 0.107 0.164 0.071 0.998 0.005

Metrics of results produced by the CTMC algorithm, stratified by the number of slices used in each coupled tensor. Here,MXX,1 denotes binary drug–drug interaction

matrix, andMXX,2 represents drug–drug similarity matrix with Morgan fingerprint scores. As for the targets,MYY,1 denotes binary target–target interaction matrix and

MYY,2 represents target–target similarity matrix as an inverse of Jukes–Cantor distance of amino acid sequences [12] (see Table 1 for more details on matrices MXX,1 ,

MXX,2,MYY,1 and MYY,2).

Performance based on F1 scores: In terms of F1 scores, although

the average scores reported for CMMC method, using similarity

and interaction matrices, correspond to small numbers, 0.078

and 0.062, respectively, they still represent higher values than

those of other methods.

Performance based on sensitivity and specificity: As shown in

Table 3, reported average sensitivity and specificity values for

CMMC are recorded as 0.167 and 0.994, respectively, using sim-

ilarity information, and 0.164 and 0.997 while utilizing inter-

action information based on Table 2. These values are higher

compared to other methods even after using the pre-processing

step, WKNKN.

Performance based on runtime: The main advantage of CMMC

algorithm over the others methods described in Section 2 is the

total time that it takes to perform the method over the dataset.

The runtime is obtained by averaging the total running time over

each iteration. As shown in Tables 2 and 3 recorded runtime for

CMMCalgorithm is notably smaller than those of othermethods,

which represents a faster process.

CMMC performance evaluations using TTD dataset

To further evaluate the performance of the proposed method

CMMC algorithm, we consider another database TTD as

described in Section 3.2. Based on the results provided in

Section 5.1, since the CMMC algorithm performed better using

similarity scores given in Table 3 than interaction information

shown in Table 2, we consider using similarity scores in order

to evaluate the performance of CMMC algorithm over the TTD

dataset. Specifically, the drug–drug similarity matrix, MXX,t, and

target–target similarity,MYY,t, along with the interaction matrix,

MXY,t (see Table 1). The performance of CMMC method along

with four other methods, GRMF, L2,1-GRMF, NRLMF and NRLMFβ,

based on the average AUC, F1 score, sensitivity and specificity

over TTD dataset are shown in Table 4. Best results are marked

bold. CMMC method obtains the best results in terms of average

AUC, F1 score, sensitivity and specificity compared to the other

method during a shorter period of time.

CTMC performance evaluations

In order to evaluate the performance of the CTMC algorithm,

multidimensional arrays of drug–drug and target–target similar-

ity/interaction were created using the information provided in

Table 1. The results are shown in Table 6. In order to perform the

evaluation, we incorporate both similarity and interaction infor-

mation between drugs and targets in order to form the drug–

drug and target–target tensors, TXXU and TYYZ, respectively. As

shown in Table 6, CTMC outperforms all the methods including

CMMC in terms of average AUC and sensitivity. The results in

terms of F1 score, specificity and accuracy remain the same as

CMMC while using similarity information, as shown in Table 3.

As stated before, the difference is more remarkable when the

similarity scores are used for coupling, most likely because the

similarity matrices are rather complete, whereas the interaction

matrices are sparse.

Comparing the performance of the two proposed methods

CMMC (coupled with similarity matrices) and CTMC, shown in

Table 3 and Table 6, respectively, it is notable that CTMC slightly

outperforms CMMC in terms of average values of AUC, F1 score,

sensitivity, specificity and accuracy.

Table 7 demonstrates the improvement of performance as

more layers are added. Initially, the interaction matrices are

coupled for CTMC. This specific case is equivalent to CMMC as

one could consider matrices as a two-way tensors. The evalua-

tion results in comparable, albeit better, AUCs. As another layer

is added in the drug–drug tensor, TXXU, namely the drug–drug

similarity scores from Morgan Fingerprint, the AUC improves by

approximately 10% as it is shown in Table 7. Similarly, adding

another layer to the target–target tensor, the AUC improves by

approximately 5%. Adding the third layer to drug–drug tensor,

however, does not improve the performance. It is likely due to the

fact that the similarity information, calculated by different algo-

rithms from the same database (DrugBank [25]), does not provide

any new information hence does not improve the results.

Lastly, the recorded runtime for the CTMC algorithm, which

incorporates more information and carries out more calcula-

tions, is nonetheless faster than the other algorithms.

Sensitivity analysis

The optimal regularization parameters for λX and λY included

in Eqs. (7) and (8) are chosen based on the performance of the

algorithm during the execution of CMMC and CTMC methods.

In order to determine how sensitive the proposed methods are

based on the changes of the arbitrary-then-fixed parameters λX

and λY , as well as studying the roles of these parameters, the

results under CMMCmethod have been compared from Tables 2,

3 and 4 against different variants of λX and λY. The results are

shown in Table 5. As setting either parameters λX or λY to zero

simplymeans to ignore the role of one of the drug–drug or target–

target matrices, it negatively impacts the performance. We have

set λX and λY to zero and the results are shown in Table 5.

Whilemainly depending on the nature of the database in use,

specifically the drug–drug and target–target similarity/interac-

tion matrices, MXX and MYY , it was found that the smaller the

values of λX and λY, the better the prediction performance.

Conclusion

In this manuscript, two methods, CMMC and CTMC, for predic-

tion of DT interactions inspired by matrix-factorization meth-

ods are presented. The experiments were performed with and
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without considering the preprocessing step WKNKN. The algo-

rithm was first used to help with the sparsity of the similarity/

interaction matrices. Using this, certain unknown interactions,

i.e. 0’s values, were replaced by the likelihood values using K

nearest neighbor method. Next, experiments were performed

over coupled drug–drug, drug–target and target–target matri-

ces, considering drug–drug similarity scores and target–target

interactions. In order to test the CMMC method, we considered

three matrices consisting of drug–drug similarity (calculated

using Extended–Connectivity Fingerprint), drug–target and tar-

get–target interactions. For the CTMC method, in addition to

the matrices, extra layers for drug–drug tensors were assigned

to drug–drug interaction. In forming the target–target tensor,

we included target–target similarity scores in addition to their

interactions. Ten percent of the entire profile of the known DTI

was intentionally left out and the two methods were run and

tested in terms of predicting the known interactions. CMMC and

CTMC showed strong ability in order to predict new DTI.

As future work, one may incorporate additional interaction

and similarity information as well as different similarity scores

utilizing different datasets. For instance, in order to form the

drug–drug tensor, in addition to considering any possible inter-

action between drugs, various similarity scores could be cal-

culated using different databases and based on distinct ways

of calculating similarity scores, namely, Morgan fingerprint and

‘Avalon fingerprint’ while using different databases. Addition-

ally, a pre-processing step to perform tensor completion ahead

of applying CTMCwould likely further improve the performance.

Key points

• Matrix-Factorization Methods: A group of machine-

learning-based methods that is used to help predict

missing data using matrix factorization and matrix

completion.
• CMMC: A novel matrix-factorization-based method,

Coupled Matrix–Matrix Completion, which outper-

forms several methods in the same category in a

shorter runtime.
• CTMC: A novel tensor-based method, Coupled Ten-

sor–Matrix Completion, which is capable to incorpo-

rate more information in terms of different similar-

ity scores as well as interaction details from various

sources.

Supplementary Data

The processed datasets obtained from DrugBank along with

the source codes of the two proposed methods, CMMC and

CTMC, are made publicly available and can be accessed

through: https://umich.box.com/s/pgxh00op2sovhqvepq1

kfcn8khi4mfwf.
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