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Alloy scattering of phonons

Ramya Gurunathan, Riley Hanus and G. Jeffrey Snyder *

Solid-solution alloy scattering of phonons is a demonstrated mechanism to reduce the lattice thermal

conductivity. The analytical model of Klemens works well both as a predictive tool for engineering

materials, particularly in the field of thermoelectrics, and as a benchmark for the rapidly advancing

theory of thermal transport in complex and defective materials. This comment/review outlines the

simple algorithm used to predict the thermal conductivity reduction due to alloy scattering, as to avoid

common misinterpretations, which have led to a large overestimation of mass fluctuation scattering.

The Klemens model for vacancy scattering predicts a nearly 10� larger scattering parameter than is

typically assumed, yet this large effect has often gone undetected due to a cancellation of errors. The

Klemens description is generalizable for use in ab initio calculations on complex materials with

imperfections. The closeness of the analytic approximation to both experiment and theory reveals the

simple phenomena that emerges from the complexity and unexplored opportunities to reduce thermal

conductivity.

Solid-solution alloy scattering in
engineering materials

The use of solid-solution alloys and doped materials is ubiqui-
tous in materials science, as the electronic, optical, thermal,
and structural properties of a material can be tailored through
the introduction of point defects such as impurities, vacancies,
interstitial atoms or anti-site defects. In many applications,
such as thermoelectrics, thermal barrier coatings, and micro-
electronics, the influence of these point defects, or solute
atoms, on thermal conductivity must be understood and con-
trolled to engineer their properties.1–3

Typically, experimental trends of thermal conductivity versus
point defect concentration are modeled using the expression
originally derived by Klemens.4–7 These closed-form expressions
that simply use the mass and size of the defect are attractive
because of their simplicity and utility for determining the source
of phonon scattering and thermal conductivity suppression in a
solid solution. By calculating the impact of an impurity from just
its mass or size, one can uncover material design strategies to
optimize the thermal conductivity for a given technological
application.8–11 The alloy scattering model has been used
to identify the dominant phonon scattering mechanisms for
several alloy systems important to the field of thermoelectrics
including PbTe–PbSe,2 Bi2Te3–Bi2Se3,7 and Mg3Sb2–Mg3Bi2.12

While first-principles methods are essential to understanding
the details of phonon interactions,13–16 the Klemens alloy

scattering model describes the emergent phenomena across
material systems well, even given the ostensibly limiting approx-
imations, and therefore continues to be widely used.15,17–19

Klemens model of point-defect
scattering

The thermal conductivity reduction caused by point defects can
be understood as a result of the perturbation of the kinetic

energy (
1

2
Mv2 for each atom) or potential energy (

1

2
KDr2 for each

bond) of the lattice (Fig. 1). A mass difference on a defect site
(DM) perturbs the kinetic energy term, while the potential
energy term is perturbed by a force constant difference (DK).
This often arises from a structural distortion (mechanical
strain) caused by the defect that can be described by a site
radius difference (DR) (see Fig. 1). In several cases, mass

Fig. 1 Structure made up of masses M held together with springs of spring
constant K. The harmonic vibrations determined by M and K can be scattered
either by impurities of different mass or with different spring constant.
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difference is the dominant effect, with the strain effect ignored,
since large volume differences are often energetically unfavor-
able for solid solution. Additionally, the magnitude of the
strain scattering effect around a point defect is not as easily
estimated, as it should strictly be determined by structural
distortions and changes in bond strength around the defect
site.20 For simplicity, we start by introducing the equations for
only mass difference scattering, with analogous expressions for
the force constant difference added later.

The Klemens analytic model predicts the ratio of the defec-
tive solid’s lattice thermal conductivity to that of the pure solid
without defects (kL/k0). This ratio is a function of the disorder
parameter u which depends on properties of the pure material:
its lattice thermal conductivity (k0), elastic properties through
its average speed of sound (vs)†, the average volume per atom
(V), as well as a scattering parameter to capture the influence of
point defects (G = GM + GK),

kL
k0
¼ tan�1u

u
; u2 ¼

6p5V2
� �1=3

2kBvs
k0G: (1)

The GM parameter is simply the average mass variance in the

system, DM2
D E

, relative to the average mass squared, M
� �

2

(eqn (3))9,21–23

GM ¼
DM2
D E
M
� �

2
: (2)

The average mass and mass variance are most easily com-
puted by considering each element (or crystallographic site)
separately.9,21,22 Consider a generic compound with formula
unit: A1c1A2c2A3c3. . .Ancn

(e.g. Mg2Sn), where An refers to the
nth component (e.g. Mg, or Sn) and cn refers to the stoichio-
metry of that component (e.g. 2 or 1). Each site Ancn

(e.g. Sn) can
be occupied by a set of atomic species i, including the host
atom (e.g. Sn) and any substitutional defects (e.g. Si) with
species site fraction (fi,n) (e.g. 1 � x and x in Sn1�xSix). Then,

the average mass of the compound M
� �

is given by the

stoichiometry weighted average of each site average mass Mn

M
� �

¼

P
n

cnMnP
n

cn
; Mn ¼

X
i

fi;nMi;n: (3)

Here, site averages are denoted by a bar while stoichiometric
averages are denoted by angular brackets (hi). For example, the
average atomic mass for site 2 (the Sn/Si site) in Mg2Sn1�xSix is

M2 ¼ ð1� xÞMSn þ ðxÞMSi, while the atomic mass averaged

over the full solid is M
� �

¼ 2MMg þM2

� ��
ð1þ 2Þ.

Similarly, the average mass variance of the compound

DM2
D E

is given by the stoichiometry weighted average of the

all site mass variances DMn
2

DM2
D E

¼

P
n

cnDM2
nP

n

cn
; DMn

2 ¼
X
i

fi;n Mi;n �Mn

� �2
: (4)

For example, the average atomic mass variance for the Sn/Si site

in Mg2Sn1�xSi is DM2
2 ¼ ð1� xÞ MSn �M2

� �2þx MSi �M2

� �2
.

Then, because the atomic mass variance averaged over this full
solid has no contribution from the Mg site due to lack of

defects on this site, we simply have DM2
D E

¼ DM2
2

.
ð1þ 2Þ.

The Klemens model using mass difference alone (G = GM)
quantitatively describes the kL trends with alloy composition
for several material systems.3,10,13,24 The solid solution between
Mg2Sn and Mg2Si is a case in which the Klemens mass
difference model works well, and is recreated here to demon-
strate use of these equations in a multiatomic system. For a
given composition, the value of k0, V, and vs are taken to be the
linear interpolation between the values for the end-member
species (Fig. 2). Here, the inputs for Mg2Sn and Mg2Si are,
respectively, V = 25.7 and 21.5 Å3 for the average volumes per
atom, vs = 3160 and 6715 m s�1 for the average sound velocities,
and a scattering parameter of

GM ¼
ð1� xÞ MSn �M2

� �2þx MSi �M2

� �2� �
=3

2MMg þM2

� ��
3

� �2 : (5)

Using these inputs, the full kL versus composition trend
shown in Fig. 2 is calculated without fitting parameters, and
shows good correspondence with experimental measurements.
As a result, one can conclude that the contribution of the mass

Fig. 2 Lattice thermal conductivity for the full composition range of the
solid solution between Mg2Sn and Mg2Si. Red and black data points
are experimental thermal conductivity measurements,25,26 while the blue
U-curve is the prediction from the mass difference Klemens model and the
dotted black line comes from first principles T matrix scattering theory.13

Finally, the k0 curve interpolates linearly between the two end-members.
The fit helps identify mass-difference scattering as the dominant effect in
this system, as it explains the trend without needing to invoke other
scattering or softening mechanisms.

† Here, the speed of sound acts as a proxy for the Debye frequency. The equation:
oD = (6p2/V)1/3vs can be used to interconvert between the two, where V is the
average volume per atom and vs is the average speed of sound, or vs ¼
1

3

1

vL3
þ 2

vT3

	 
� ��1=3
in terms of the transverse and longitudinal speeds of sound.
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difference term in point defect scattering is the dominant effect
for this materials system and explains the experimental results
without having to invoke other scattering or lattice softening
mechanisms. This result is consistent with the fact that the cell
volume of Mg2Sn(1�x)Six is fairly constant with changes in
composition x, leading to negligible mechanical strain
contributions.

For vacancy scattering, the perturbation to lattice energy
emerges from both the missing mass and the missing bonds
to its neighbors. Klemens suggests that the scattering parameter
G for this case can be modeled as a mass difference scattering

with Mi;n �Mn ¼ �Mvac � 2 M
� �

, where Mvac is the mass of the
vacant atom. This leads to a B10 � stronger scattering para-
meter than a typical point defect.27 Indeed, vacancy scattering
has been demonstrated to induce a large reduction in thermal
conductivity in several thermoelectric compounds,28–35 although
the enhanced scattering effect of vacancies is often overlooked.
Recent data analysis suggests that the same mass difference
model describes interstitial defect scattering as well.8,36,37

The mass difference model captured in eqn (3) and (4) follows
the recommendation originally proposed by Berman et al., and is
suggested here for its conceptual clarity. Several discussions,
including those of Klemens,4,7,21,38,39 describe this model as
being equivalent to a monatomic lattice approximation, which
involves a summation of the atoms in the unit cell into one large,
vibrating mass. This alternate description of a compound has
led to ambiguity in the meaning of the volume V. A misinter-
pretation has resulted in some studies over-approximating the
mass scattering effect by a factor equal to the number of atoms
in the unit cell. Typically, however, a cancellation of errors due to
an underestimation of the effect of vacancies allows the broader
conclusions of the studies about the importance of point defect
scattering in a materials system to remain valid.8,29–31,35

As mentioned previously, the strain due to a defect that is
larger or smaller than the host atom perturbs the lattice energy
through its potential energy term. Therefore, the force constant
variance (DK2) is typically expressed through the average variance
in atomic radius (DR2) scaled by a fitting parameter (e). As before,
the atomic radius variance on the nth site is defined from the
atomic radius of the ith species which may occupy that site, Ri,n,

and the average atomic radius of the site, Rn. Although there
exist theoretical models40 or heuristical correlations20 for e, it is
considered here as an adjustable parameter that typically varies
between 1–500 in order to fit the experimental data.

G ¼
DM2
D E
M
� �

2
þ e

DR2h i
R
� �

2
DR2
� �

¼
X
i

fi Ri;n � Rn

� �2* +
(6)

Complex systems and the Tamura
Model

The mass difference perturbation model used by Klemens
works surprisingly well for even complex systems with large
unit cells. This suggests that the validity of the essential physics

transcends the stated assumptions, allowing the model to be
applied towards complex, engineering materials. For example,
the Debye model or linear phonon dispersion is often assumed,
which coarsens over the complexities of real band structures.
It can be shown that there is some cancellation of band
structure properties, particularly stemming from the density
of states dependence of several quantities in the model, which
allows for this reduced sensitivity to band structure.37

The simple mass and volume perturbations can be general-
ized for materials with complex phonon dispersions or even
non-crystalline materials. Tamura defines a similar mass
difference perturbation parameter for each phonon eigenstate
(ek(s)) that can be implemented in numerical Boltzmann trans-
port equation solvers for thermal conductivity.13,15,18,19,23,41–45

In many thermal conductivity solvers, the Tamura model is the
standard treatment for isotope-phonon scattering in pure
compounds.43,44 The mass difference parameter in the Tamura
model (GT

M) is given as a sum over all the s atom sites in a
simulation, where i again labels the species that may occupy
site s including the host and impurity atoms

GT
M ¼

X
s

X
i

fi;s
Mi;s �Ms

Ms

� �2

ekðsÞ � ek0 ðsÞð Þj j2: (7)

The description of scattering here is general enough that it
could be used to describe the perturbation induced to any
vibrational mode. Therefore, in addition to plane wave phonons,
which are only strictly defined in periodic crystals, the vibra-
tional modes of amorphous solids, codified in the Allen and
Feldman formalism as diffusons, locons, and propagons, are
describable within the same alloy scattering theory.46–48

A place for analytical theory

The analytical alloy scattering model is a simple tool for
predicting the thermal conductivity of disordered materials.
The success of alloy scattering models, even in complex, non-
ideal systems demonstrates their widespread applicability.
When applied correctly, it can identify potent scattering effects
and illuminate the route for optimally tailoring the thermal
properties via defect engineering.8,32,36,49 Even the large
thermal conductivity reduction induced by vacancies and inter-
stitial atoms appears to be well described within the simple
model by including the effect of removing or forming the
nearest neighbor bonds. The study of thermal conductivity
has benefited from these simple, physics-based models for over
70 years, as they are easily implemented, elucidate underlying
mechanisms, and can even help point to exotic physics when
they fail to describe a system. In the past, qualitative and
quantitative comparison to analytical models in specific mate-
rials systems has led to the identification of breakdowns in the
Born approximation,50 novel scattering cross-sections asso-
ciated with impurity clusters or low-dimensional materials,16

and proposed phonon-trapping effects.51 Their lasting rele-
vance supports the argument for continued work on analytical,
physical expressions in emerging fields of materials science
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even as new techniques in simulation and materials infor-
matics become widespread.
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