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Point defects exist widely in engineering materials and are known to scatter vibrational modes, resulting
in reduction in thermal conductivity. The Klemens description of point-defect scattering is the most-
prolific analytical model for this effect. This work reviews the essential physics of the model and compares
its predictions with first-principles results for isotope and alloy scattering, demonstrating the model to be
a useful metric of material design. A treatment of the scattering parameter (�) for a multiatomic lat-
tice is recommended and compared with other treatments presented in the literature, which have been at
times misused to yield incomplete conclusions about the system’s scattering mechanisms. Additionally, we
demonstrate a reduced sensitivity of the model to the full phonon dispersion and discuss its origin. Finally,
a simplified treatment of scattering in alloy systems with vacancies and interstitial defects is demonstrated
to suitably describe the potent scattering strength of these off-stoichiometric defects.
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I. INTRODUCTION

Modeling the lattice thermal conductivity, or the heat
transported through atomic vibrations, has long been
important to a wide range of science and engineering appli-
cations, including thermoelectrics, thermal barrier coat-
ings, and thermal management in electronic materials. All
of these functional materials rely on doping and alloying
to tune their properties, and so it is important to under-
stand the impact of impurities and other point defects on
the lattice thermal conductivity [1,2].

Peierls [3] presented one of the earliest solutions for lat-
tice thermal conductivity in 1929 by evaluating the phonon
Boltzmann transport equation, which was simplified by
Callaway [4] on the basis of the relaxation-time approx-
imation. Later, Klemens [5,6] established a theory for
vibrational-mode scattering due to static imperfections in a
lattice, and provided closed-form expressions for thermal
conductivity versus defect concentration still used today
[7]. These analytical expressions based on low-order per-
turbation theory are useful for routine interpretation of
experimental results to determine the dominant phonon-
scattering sources in a material. By calculating the relative
contribution of independent scattering mechanisms such
as mass disorder and local strain effects, one can deter-
mine the dominant mechanisms of scattering in a defective
system to guide the design of thermal materials [8–11].
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First-principles techniques were developed recently to
compute the impact of point defects on thermal trans-
port. These simulations have shown very good quantitative
agreement with experiments for a range of materials and
have provided useful insights regarding the mechanisms of
phonon-defect scattering [12,13]. However, multiple cal-
culations are required to compute defect structures, evalu-
ate scattering strengths, and solve the Boltzmann transport
equation for the thermal conductivity [14–17]. Often, these
techniques are too expensive and system dependent for the
routine modeling used to determine the dominant scatter-
ing mechanisms in a system [18]. While the first-principles
methods are essential for understanding vibrational-mode
properties, and in many cases elucidate limitations of ana-
lytical phonon theories, the Klemens point-defect model
has proven to be highly descriptive across material systems
and therefore continues to be widely used [16,18–20].

The Klemens equations are defined within the osten-
sibly limiting approximation of a single-atom unit cell
and the Debye model, or linear phonon dispersion. How-
ever, by comparison with both first-principles results and
experimental results, the predictive quality of this model is
demonstrated even for complex unit-cell materials.

This paper provides a functional guide for understand-
ing the influence of point defects on phonon transport
and applying the Klemens equations to model thermal-
conductivity data. In addition, it resolves discrepancies
between popular representations of the mass-difference
model, which have led to consistent errors in model inputs
that may yield large factor differences in the predicted lat-
tice thermal conductivity (κL). This study also re-evaluates
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the limitation of these equations with regard to the Debye-
model dispersion. A mechanism is demonstrated for how
the model’s sensitivity to dispersion relation is, in prac-
tice, lifted, justifying the use of the model in systems with
arbitrary dispersion relations.

The Klemens model predicts the ratio of the defective
solid’s lattice thermal conductivity to that of a reference
pure solid (κL/κ0). The basic functional form of the ratio
is tan−1 u/u, where the disorder scaling parameter u is
related to the pure-lattice thermal-conductivity reference
(κ0), elastic properties of the host lattice through its speed
of sound (vs), the volume per atom (V0), and a scat-
tering parameter (�), which captures the lattice-energy
perturbation at the defect site:

κL

κ0
= tan−1 u

u
, u2 = (6π5V 2

0 )1/3

2kBvs
κ0�. (1)

At each composition, the values of κ0, vs, and V0 are
linearly interpolated between the end-member properties.
The perturbation caused by point defects in a lattice can
be understood as a combination of a kinetic energy pertur-
bation due to the mass difference on the defect site (�M )
and a potential-energy distortion due to both the harmonic-
force-constant difference (�K) and the structural distortion
of nearest neighbors around the defect introduced by a
site radius difference (�R) (see Fig. 1). Often, the mass
difference will be the dominant perturbation effect at a
point defect, since large site volume differences are often
energetically unfavorable in an alloy system. For simplic-
ity, the remaining equations in this section are defined
for mass-difference scattering alone (�M ), but analogous
expressions for the potential-energy terms are discussed in
later sections.

�M is the average mass variance in the system (〈�M 2〉)
normalized by the squared average atomic mass (〈M 〉2) [9,
21–23]. In the notation below, site averages are denoted by
a bar, while stoichiometric averages are denoted by angular

FIG. 1. Lattice-perturbation mechanisms of a point defect
include a mass difference (�M ), a harmonic-force-constant dif-
ference (�K), and strain scattering from site radius difference
(�R). Each contribution perturbs the lattice Hamiltonian (E)
through a different term. T is the kinetic energy of the lattice,
and U2 and U3 are the harmonic and anharmonic contributions to
the lattice potential energy.

brackets (〈〉).

�M = 〈�M 2〉
〈M 〉2

. (2)

In a compound, these averaged quantities are most
easily calculated by treating each component of the com-
pound separately. For example, a generic compound can
be expressed as A1c1A2c2A3c3 . . . Ancn (e.g., CaZn2Sb2),
where An refers to the nth component (e.g., Ca, Zn, or Sb)
and cn refers to the stoichiometry of that component (e.g.,
1, 2, or 2).

For each site n in the compound, Eq. (3) gives the
average mass variance (�M 2

n) and average atomic mass
(�M 2

n ) specifically for that site, which can be occupied by
a set of species indexed by i, including the host atom and
any substitutional defects:

�M 2
n =

∑

i

fi,n(Mi,n − Mn)
2, Mn =

∑

i

fi,nMi,n. (3)

�M 2
n is defined by a sum over i of the species site frac-

tion ( fi,n) multiplied by the mass variance at each defect
site, defined from the species mass Mi,n and average atomic
mass at that site Mn [24]. In vacancy scattering, where
the perturbation emerges from both missing mass (Mvac)
and missing bonds to nearest neighbors, a virial-theorem
derivation (see Sec. V) suggests that the mass difference
at the vacancy site should be Mi,n − Mn = −Mvac − 2〈M 〉.
Finally, to derive the mass-difference scattering parameter
�M , the stoichiometric averages of the �M 2

n and Mn values
are taken [Eq. (4)] [24]:

〈�M 2〉 =
∑

n cn�M 2
n∑

n cn
, 〈M 〉 =

∑
n cnMn∑

n cn
. (4)

II. COMPARISON WITH THE POPULAR
MASS-DIFFERENCE EXPRESSIONS

The mass-difference model expressed in Eqs. (3) and
(4) is a reformulation of the popular equation proposed in
Yang et al. [9], and follows the interpretation of Berman
et al. [21]. It is recommended for conceptual clarity. This
section reviews other popular interpretations of the mass-
difference model to understand the conceptual differences
and compare the numerical results.

A. Tamura model

The mass-difference model proposed by Tamura [23,25]
preserves the dependence of the phonon relaxation times
on the polarization vector and the spatial anisotropy of
atomic sites within the primitive unit cell, and is frequently
implemented in numerical Boltzmann-transport-equation
solvers for thermal conductivity [14,16,19,20,26–29].
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Obtaining the mass-difference parameter in the Tamura
model (�T

M ) involves performing a sum over all the
atom sites s in a simulation cell, where i again labels
the species that may occupy site s, including the host
and substitutional atoms. In a similar fashion to previ-
ous expressions, Mi,s and Ms indicate the ith-species mass
and the average mass on atomic site s, respectively. In
this case, however, the mass-difference term is weighted
by the eigenvector components corresponding to atom
s in the incident [ek(s)] and final [ek′(s)] vibrational
modes:

�T
M =

∑

s

∑

i

fi,s

(
Mi,s − Ms

Ms

)2

|[ek(s) · ek′(s)]|2. (5)

The eigenvectors are composed of the displacement
vectors [u(k, s)] of each atomic site as it participates
in a vibrational mode, weighted by the square root of
the atomic mass (ek = [

√
M1u(k, 1) . . .

√
Msu(k, s)]), and

are finally normalized such that |ek|2 = 1. These eigen-
vectors can be calculated from the density-functional-
theory (DFT) force-constant matrix [30]. The description
of mass-difference scattering here is general enough in
its formalism that it could be used to describe the per-
turbation induced on a vibrational mode regardless of
its spatial extent. Therefore, in addition to plane-wave
phonons, the vibrational modes of diffusons, locons, and
propagons within the Allen and Feldman formalism could
be treated under the same point-defect-scattering theory
[31,32].

Point-defect scattering has been studied with first-
principles techniques by applying DFT to compute the
full vibrational spectrum, using T-matrix scattering theory

and the Tamura model to compute point-defect scatter-
ing rates, and finally solving the linearized Boltzmann
transport equation to get κL [13–16,32,33]. In several
reported material systems, excellent correspondence was
shown between the results obtained from first-principles
methods as described above and the analytical Klemens
model (Fig. 2) [14,34]. It is important to remember that
the Klemens model is fit to the end-member thermal con-
ductivities but still adequately predicts the suppression of
thermal conductivity with compositional variation.

In addition to the Tamura model with full structural and
lattice dynamical dependence, a closed-form expression
is presented for the low-frequency limit, which depends
only on the atomic masses. The assumption made here is
that the displacement (u) of each atom in a low-frequency
mode is roughly equal in magnitude; therefore, one can
assume the magnitude of an eigenvector element is sim-
ply proportional to the square root of the atomic mass
(|e(k, s)| ∝ √

Ms). Following this assumption, Eq. (4) can
be derived, which is detailed in Appendix A.

B. Primitive-unit-cell model

Finally, several texts, including the original descrip-
tions by Klemens, suggest defining all parameters of the
mass-difference model on the basis of the primitive unit
cell [5,7,21,37,38]. Physically, this treatment suggests a
monatomic lattice approximation in which the atoms of
the unit cell are simply summed together in a single large,
vibrating mass. The scattering strength of the lattice can
be thought of as an ensemble average of its microstates,
or the primitive unit cells which compose it. Therefore,
the unit-cell-model mass scattering parameter (�UC

M ) can
be calculated from the fraction (Pc) of unit cells with a
mass of Mc and their deviation from the average unit-cell

(a) (b)

FIG. 2. Thermal-conductivity reductions due to point-defect scattering for two systems: (a) Si-isotope scattering at 800 K based
on DFT dispersions and T-matrix scattering theory (points) and the Klemens model (lines) and (b) Mg2Sn1−xSix scattering from
experiments (points), T-matrix theory (dotted line), and the Klemens model (solid line) at 300 K [14,35,36].
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FIG. 3. In an example two-atom primitive unit cell (shown in
a dotted line), three possible microstates exist, containing zero,
one, or two impurity atoms. In the unit-cell basis, each microstate
will contribute a term to the overall scattering parameter (�).

mass (M ). Finally, the mass differences are summed over
all possible microstates in the lattice:

�UC
M =

∑

c

Pc

(
Mc − M

M

)2

. (6)

While most model inputs are well defined, it is not
immediately clear what the fraction of unit cells (Pc)
should be. When there is a random distribution of defects
in the lattice, the fraction or probability of finding a unit
cell of mass Mc can be determined from a binomial-
distribution function (described in more detail in Appendix
D). A schematic of possible unit cells (microstates)
for a two-atom unit cell is shown in Fig. 3. In the
case where all microstates are equally likely, the results
are exactly equivalent to those produced by Eq. (4),
which is more easily implemented. The benefit of the
primitive-unit-cell interpretation arises when defect com-
plexes are present in the lattice. Recent studies have
identified these defect complexes in important engineer-
ing materials, including clustering of Na dopant atoms
in PbTe, antisite defects occurring in close proximity
in BAs, vacancy clusters in crystalline Si, and Schottky
and Frenkel defect pairs in functional oxides [39–41]. In
these scenarios, the microstates corresponding to the defect
complexes can be preferentially weighted with a larger
fraction (Pc).

C. Inconsistent usage

The dual formalisms of the scattering parameter � based
on either “per-unit-cell” or “per-atom” quantities have
led to inconsistencies in the calculation of κL in Eq. (1).
Notably, the relevant scatterer volume for the primitive-
unit-cell formalism is the volume of the primitive unit
cell (VUC) not the volume per atom (V0), because this
model treats one large mass per unit cell [5,23]. This value
enters the phonon scattering rate [Eq. (12)] and, there-
fore, the κL prediction. The primitive-unit-cell formalism

for �, while suggested in several seminal papers, is rarely
implemented to calculate thermal conductivity [5,7,23,37,
42,43]. Instead, � is most-often computed from Eq. (4)
based on “per-atom” quantities. In some of these studies,
however, the primitive-unit-cell volume, instead of the vol-
ume per atom, is used to calculate the disorder parameter
u in Eq. (1), which leads to an overprediction of the lattice
thermal-conductivity reduction (see Appendix E) propor-
tional to the number of atoms in the unit cell [8,44–46].
Often, as discussed in Sec. V on vacancies and intersti-
tial defects, there is a cancellation of errors such that the
general conclusions of these papers about the influence
of point-defect scattering in their system is still supported
[8,44–47]. This effect is discussed in greater detail in
Sec. V on the large scattering strength of vacancies and
interstitial defects.

III. MODEL DERIVATION:
UMKLAPP-SCATTERING AND

POINT-DEFECT-SCATTERING TREATMENTS

This section reviews the full derivation of the Callaway-
Klemens model to generalize beyond mass-difference scat-
tering alone, clarify assumptions made in the derivation,
and discuss the model’s dependence on phonon dispersion,
a topic attracting interest recently [18,48].

Lattice waves, or phonons, carry a substantial amount of
heat through the lattice, characterized by the lattice thermal
conductivity (κL). The efficiency of a phonon with fre-
quency ω at transporting heat is characterized by its heat
capacity (Cs), group velocity (vg = dω/dk), and relax-
ation time (τ ). The lattice thermal conductivity can then be
expressed in terms of these values by integration over the
phonon frequency up to the maximum frequency supported
by the lattice (ωm) [4,49]. If the high-temperature approx-
imation is made, the heat capacity at frequency ω directly
relates to the density of states [g(ω)] as Cs(ω) = kBg(ω),
and

κL = 1
3

∫ ωm

0
Cs(ω)vg(ω)2τ(ω)dω. (7)

The relaxation time of the phonons is limited by
the scattering sources in the crystalline material. Each
main source of scattering has an associated relaxation
time, including boundary scattering off planar defects
(τb), umklapp phonon-phonon scattering (τu), and point-
defect scattering (τPD). Their associated scattering rates
are summed according to Matthiessen’s rules (τ−1 =
τ−1

b + τ−1
u + τ−1

PD ), assuming that the scattering mecha-
nisms are uncoupled. The model for alloy scattering typ-
ically used to describe trends of thermal conductivity
versus alloy composition ignores boundary scattering, and
yields total relaxation time τ = τuτPD/(τu + τPD). Finally,
the model is best applied above the Debye tempera-
ture of the material, where the influence of the normal,
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momentum-conserving phonon interactions on thermal
conductivity can be ignored [4,6,50].

The scattering rate from a static imperfection can be
derived with use of Fermi’s golden rule to define the
transition probability (Wk,k′) from an initial state (k) to
a final state (k′). The transition probability is related to
the square of the perturbation-matrix element, a measure
of the overlap between two phonon states induced by a
perturbation of the lattice energy, and includes a lattice-
energy-conservation criteria captured by δ(E − E′). This
transition probability is then summed over all possible
final phonon states (k′), restricted by the conservation
conditions of the phonon interaction:

Wk,k′ = 2π

�
〈k| H ′ |k′〉2

δ(E − E′) (8)

The three contributions to point-defect scattering
(Fig. 1) introduced above are mass change (�M ), force-
constant change (�K), and radius change (�R), and
each perturbs a different term in the lattice Hamiltonian
(H )—the kinetic energy (T), the harmonic potential energy
(U2nd), and the third-order, anharmonic potential energy
(U3rd), respectively [5,15,51–54]. The energy perturbation
(H ′) induced by the point defect on site r with a set of link-
ages to nearest-neighbor sites (bn) is then a combination of
the effects discussed above:

H ′ = 1
2
�M

(
du(r)

dt

)2

+
∑

n

1
2
�Kbn[u(r) − u(r − bn)]2

+
∑

n

γ η(�R)[u(r) − u(r − bn)]2. (9)

The scattering due to local, static strain (η) depends
on the anharmonicity of the distorted bonds, as cap-
tured in the Grüneisen parameter (γ ). Notably, the �K
and �R effects are both captured in the changes to the
DFT-calculated interatomic force constants, which change
locally in response to both structural relaxation and an
altered chemical environment [15]. Additionally, the strain
scattering strength is scaled by the coefficient Q, which
approximates the number of distorted nearest-neighbor
bonds around a point defect. Assuming a cubic lattice with
a strain field that decays with distance cubed, Q = 4.2.
If all three effects are present in a system, they combine
according to Eq. (10), where, as before, atomic species are
indexed with i and atomic sites in the unit cell are indexed
with n [5,53]:

�n =
∑

i

fi

[
�M 2

〈M 〉2
+ 2

(
�K
〈K〉 − 2Qγ

�R
〈R〉

)2
]

, � = 〈�n〉.

(10)

The change in force constant (�K) is not an intuitive
value, but it is typically assumed that force constants

change proportionally with atomic volumes. Therefore, the
force-constant difference and local strain terms are com-
bined, and both are captured by the average change in
atomic radius, defined analogously to the mass scattering
parameter in Eqs. (3) and (4). Again, the atomic radius
change on the nth site is based on the difference between
the atomic radius of the ith species that can occupy that site
Ri,n and the average atomic radius of the site Rn. Since the
relationships between force constants and atomic volumes
are system dependent, these effects are captured in a phe-
nomenological fitting parameter ε, which can take a broad
range of values (i.e. between 1 and 500) in order to fit to
experimental data:

� = 〈�M 2〉
〈M 〉2

+ ε
〈�R2〉
〈R〉2

〈�R2〉 =
〈
∑

i

fi(Ri,n − Rn)
2

〉
.

(11)

For the point-defect scattering rate (τ−1
PD ), only two

phonon states, an incident and a final state, are involved
in the interaction. Given the conservation-of-energy con-
dition, the frequencies of the final and initial phonons are
equal. Therefore, the sum over all final scattering states
contributes the three-dimensional density of states (g) at
the phonon frequency ω [24]:

τ−1
PD = V0π�ω2g(ω)

6
, g(ω) = 3ω2

2π2v2
p(ω)vg(ω)

. (12)

In umklapp scattering, phonons scatter other phonons
by virtue of the lattice distortions they generate. The scat-
tering strength is, then, also related to the anharmonicity
of the distorted bonds via the Grüneisen parameter, γ ,
in addition to the phase velocity of the phonon produc-
ing the distortion [vp(ω) = ω/k] and the group velocity
of the final phonon state [vg(ω

′′)] [3,24]. Umklapp scat-
tering is referred to as a three-phonon process, and in the
typical picture, either two incident phonons combine to
form a final phonon state or an initial phonon splits into
two final phonon states. Unlike normal three-phonon pro-
cesses, umklapp processes do not conserve momentum, but
instead include an exchange of momentum with the crys-
tal lattice, which, given periodicity constraints, must occur
in intervals of a reciprocal-lattice vector (b = 2π/a). The
relevant conservation law is then k + k′ = k′′ + b. This
more-complex conservation law yields a less-intuitive set
of final available phonon states, and the numerical prefac-
tor of the umklapp scattering rate varies somewhat from
source to source, depending on the level of complexity
assumed for the expression of final states [2,24,55,56]:

τ−1
u = 4πaγ 2ω2kB√

2Mv2
p(ω)vg(ω′′)

T. (13)
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The umklapp scattering rate appears to have the same
motif present in the density of states: ω2/(v2

pvg). However,
because of the increased complexity of the energy and
momentum conservation in a three-phonon process, the
sum over final phonon states does not simply contribute the
one-phonon density of states g. Rather, the selection rule
for three-phonon processes is more accurately captured by
a calculation of the joint density of states, representing
allowed phonon transitions, weighted by the equilibrium
occupation numbers of the phonon modes k′ and k′′ [57].
In the Klemens model, the approximation is made that the
magnitude of the final phonon wave vector (k′′) is small
with respect to a reciprocal-lattice vector, and, as such, the
phase space for final phonon states approaches the one-
phonon density of states, contributing the factor g(ω) to
the umklapp scattering rate [57].

At this point it is typical to make the Debye approx-
imation, which suggests that vg and vp are independent
of frequency and equal to the classical speed of sound
(vs = dω/dk|k→0). Equation (7) for lattice thermal con-
ductivity simplifies, after substitution of the expressions
for relaxation time and specific heat, to the integral form
of arctan and gives the final expression for κL shown in
Eq. (1).

IV. DISPERSION-RELATION SENSITIVITY

The formalism above has shown wide applicability to
thermoelectric materials, which often have complex, non-
Debye dispersions. The examples of Si-isotope scattering
and Mg2Si1−xSnx scattering shown in Fig. 2 both show
good correspondence between the first-principles methods
and the Klemens model. Since for both materials there is
disagreement with the Debye-model dispersion implicitly
assumed in the Klemens theory, the suitability is surprising
[58,59].

Previous studies explicitly compared the κL predictions
of the Klemens model using various approximations of
the phonon dispersion relation, ranging from the Debye
model to polynomial or trigonometric fits of the dispersion
[18,48]. For example, in a study of two half-Heusler sys-
tems, three different approximations were used to describe
the phonon structure of the two materials—the Debye
model, a truncated Debye model, and a cubic polynomial
fit of the full dispersion relation. The predicted κL-versus-
defect-concentration curve was plotted for each case and
compared with experimental results. The study showed
that the prediction of the pure thermal conductivity (κ0)
depended on the choice of dispersion. However, the ratio
κL/κ0 was shown to be independent of the dispersion-
relation choice, suggesting that while full features of the
dispersion relation are required to model the thermal con-
ductivity of pure solids, the suppression of κL due to point
defects can be described more generally [18].

The dispersion-relation dependence enters the Klemens
model through the factors of density of states and the
frequency-dependent phonon velocities. In Eq. (14) for lat-
tice thermal conductivity, the relaxation times are rewritten
to isolate the contribution of the density of states [τ−1

PD =
a g(ω)ω4, τ−1

u = b g(ω) ω2], with coefficients a and b
combining any physical and material constants:

κL = kB

∫ ωm

0
v2

g(ω)g(ω)ω2 [1/b g(ω)]ω2

1 + a g(ω)ω2/b g(ω)
dω

= kB

b

∫ ωm

0
v2

g(ω)
1

1 + aω2/b
dω. (14)

The factor g(ω) cancels in each of the relaxation times as
well as the heat capacity, softening the dispersion depen-
dence of the expression. A full derivation of this form is
given in Appendix C.

At this point, the factor v2
g remains as a phonon-

structure-related quantity in the model. Therefore, the dis-
persion dependence is not eliminated from the model, but
is softened.

However, the partial cancellation of dispersion-relation
quantities through the factors of density of states in the
model inputs helps justify this model’s application to a
wide range of complex, functional electronic materials.

V. SCATTERING DUE TO VACANCIES AND
INTERSTITIAL DEFECTS

The Klemens-Callaway model is best defined for ran-
domly dispersed substitutional defects. However, ini-
tial work on other off-stoichiometric defects, including
vacancies and interstitial defects, showed large phonon-
scattering effects and these warrant further investigation.

Several investigations of thermoelectric compounds
show large thermal-conductivity reductions due to vacancy
scattering [44–47,60–63]. In several of these cases, the
reduction in κL is attributed to mass-difference scatter-
ing alone. However, it was identified that the volume in
Eq. (12) was incorrectly defined as the volume of the unit
cell rather than the volume per atom, leading to overpre-
diction of the thermal-conductivity change [8,44–47].

However, the large perturbation effects of vacancies
are still well described by the Klemens theory [64,65].
In this case, the lattice-energy perturbation comes from
missing kinetic energy (T′) related to the mass of the
removed atom and missing potential energy related to the
removed bond between two atoms, or double the potential
energy per atom (2U′). Within the harmonic approximation
(E = T + U2nd), the kinetic-energy and potential-energy
perturbations of a single atom should be equal (T′ = U′)
according to the virial theorem, allowing one to relate the
potential-energy perturbation to the average atomic mass
in the lattice (

〈
M

〉
). In the calculation of �, the pertur-

bation at a vacancy site can be represented by the mass
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(a) (b)

FIG. 4. Both vacancy-site-scattering data and interstitial-site-scattering data from the literature (points) can be described by a simple
treatment of broken (or added) bonds based on the virial theorem (line). Normalized thermal-conductivity reductions for systems with
(a) stoichiometric vacancies, where [] represents a vacancy [44,45,62] and (b) stoichiometric interstitial atoms [8,66].

difference Mi,n − Mn = −Mvac − 2
〈
M

〉
in Eqs. (4) and (5),

where Mvac is the mass of the vacant atom [64,65].
This simple treatment of vacancy scattering performs

well in many defective solids, some of which are repro-
duced in Fig. 4(a). The experimental data shown would not
be described by standard mass difference alone and require
the perturbation induced by a missing bond. Results for the
mass-difference-only curve versus the full inclusion of the
term for broken bonds are compared in Appendix E, which
shows how an incorrect definition of volume can lead to a
cancellation of errors.

The suitability of the vacancy model suggests that
interstitial atoms may be describable with an identical
treatment. Interstitial or filler atoms represent the reverse
situation, where an extra mass (Mint) is added onto a site
and a new bond forms between the interstitial atom and
a neighbor; therefore, a perturbation of T′ + 2U′ should
apply, yielding essentially the same mass difference as
before (Mi,n − Mn = Mint + 2

〈
M

〉
). The interstitial-atom

sites have a stoichiometry corresponding to the ratio of
interstitial sites to lattice sites. While interstitial scatter-
ing requires more-detailed study across additional material
systems, the initial data represented in Fig. 4(b) support the
application of the virial-theorem treatment.

VI. CONCLUSION

The analytical point-defect-scattering model provides
a simple route to identify scattering mechanisms in a
system. In several systems, comparisons of alloy scat-
tering models with different scattering terms excluded,
such as strain scattering or broken bonds, provide a lens
into the most-potent scattering effects and a route to opti-
mally tailor the thermal properties via defect engineering
[8,41,46,66]. The systems best described by this model

are those with well-defined crystal structures, randomly
dispersed point defects, and low-magnitude perturbations,
such that regions of high mass contrast and high defect
concentration may require verification [19]. However, the
large thermal-conductivity reduction induced by vacancies
and interstitial atoms is still described by these analytical
equations using the virial theorem to model the perturba-
tion due to the formation or removal of nearest-neighbor
bonds.

In addition, the suitability of the alloy model for arbi-
trary dispersion relations suggests that the ratio of alloy
scattering to umklapp scattering predicted by the model is
fairly dispersion relation independent. This reduced sen-
sitivity to dispersion can be understood through a partial
cancellation of the density of states in the phonon relax-
ation times and heat capacity. As a result, it is found that
these equations are justifiable in describing the impact of
point defects on the thermal properties of materials with
complex atomic and phonon structures attracting attention
in fields such as thermoelectrics and microelectronics.
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APPENDIX A: TAMURA-MODEL
LOW-FREQUENCY LIMIT

This section describes the low-frequency approximation
of the Tamura model. The Tamura expression with full
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structural and lattice dynamical dependence is given in
Eq. (5) and is reproduced below:

�T
M =

∑

s

∑

i

fi,s

(
Mi,s − Ms

Ms

)2

|[ek(s) · ek′(s)]|2. (A1)

In addition, an approximation is described in the low-
frequency limit to yield a closed-form expression, which
depends only on the atomic masses. The assumption made
here is that the displacement (u) of each atom in a low-
frequency mode is roughly equal in magnitude; therefore,
the magnitude of an eigenvector element is proportional to
the square root of the atomic mass [|e(k, s)| ∝ √

Ms]. This
suggests that the squared polarization vector dot product
{|[ek(s) · ek′(s)]|2} weights the mass difference on a site
depending on its mass relative to the other atoms in the
formula unit, or an approximate factor of (Ms

2
/〈M 〉2). This

treatment results in Eqs. (3) and (4), as depicted below:

�LF
M = 1

〈M 〉2

∑
n cn(Mn)

2 ∑
i fi(1 − Mi,n/Mn)

2
∑

n cn
= 〈�M 2〉

〈M 〉2
.

(A2)

In the original paper by Tamura, the low-frequency limit
is instead

�LF
M =

∑
n cn(Mn)

2 ∑
i fi(1 − Mi,n/Mn)

2

∑
n cnMn

2

= 1

〈M 2〉

∑
n cn�M 2

n∑
n cn

〈M 2〉 =
∑

n cnMn
2

∑
n cn

. (A3)

FIG. 5. The predictions of the low-frequency Tamura model
and Eqs. (3) and (4) are compared for the example of point-defect
scattering in a Mg2Sn1−xSix solid solution. The low-frequency
Tamura model typically overpredicts the thermal-conductivity
reduction due to point-defect scattering.

As shown, this expression can be rearranged to a
form similar to Eq. (4). However, the expression is sub-
tly different, as it includes an averaging of the squared
atomic masses (〈Mn

2〉), rather than the average mass,
which is finally squared (〈Mn〉2). Through comparison with
experimental and simulated thermal-conductivity data,
the mass-difference term provided in Eq. (4) is veri-
fied to give more accurate predictions, while Eq. (A3)
can deviate by 30%–40%. Figure 5 compares the results
obtained with the low-frequency Tamura model and Eq. (4)
for a Mg2Sn1−xSix solid solution. Moreover, the mass-
difference parameter from Eq. (A3) suffers from a lack of
generalizability to arbitrary unit cell sizes, such that a dou-
bling of the unit cell leads to an increase in the predicted
scattering rate.

APPENDIX B: DERIVATION OF RELAXATION
TIMES

This section details the derivations of the point-defect
and umklapp relaxation times from Fermi’s golden rule to
understand their dependence on phonon velocity and the
dispersion relation.

1. Point-defect scattering

Point defects act as a static perturbation, and there-
fore the scattering rate can be determined using Fermi’s
golden rule based on first-order perturbation theory. Pre-
vious work showed that higher-order perturbation terms
have negligible effects on the lattice energy [25,26]. The
probability of scattering from state k to state k′ (Wk,k′)
is proportional to the square of the perturbation-matrix
element, a measure of the overlap between two phonon
states due to a perturbation of the lattice energy, with
conservation of energy enforced through the δ(ωk − ωk′)
term:

Wk,k′ = 2π

�2 〈k| H ′ |k′〉2
δ(ωk − ωk′). (B1)

The perturbation-matrix element includes a coefficient
(C) that captures the physics of the perturbation induced
by the point defect, while a(k) and a∗(k′) are creation
and annihilation operators to represent the change in occu-
pation numbers of the k and k′ states as a result of the
phonon-impurity interaction:

〈k| H ′ |k′〉 = C(k, k′)a(k)a∗(k′) (B2)

Substitution of the full form of the creation and annihi-
lation operators gives the following expression:

〈k| H ′ |k′〉2 = �2

M 2ω2 C2(k, k′)[N (N ′ + 1) − N ′(N + 1)],

(B3)

where N refers to the number of phonons in a given state.
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It has been shown that the term in square brackets
reduces to 1 in the integral over the constant energy surface
corresponding to final k′ states [5].

Here the coefficient (C) is calculated for the mass-
difference case, in which the perturbation stems from an
atom with mass M ′ = M0 + �M sitting at site R. The per-
turbations due to force-constant fluctuation and strain are
similar in form. The energy perturbation (E′) to the lattice
due to mass difference comes in through the kinetic energy
term

E′(R) = 1
2
�M (R)u̇2(R), (B4)

where u̇(R) signifies the time derivative of the unit-cell
displacement:

The real-space perturbation is written in terms of a
reciprocal-space vector (Q) by taking the Fourier trans-
form:

�M̃ (Q) = 1
S

∑

R

�M (R)eiQR, (B5)

where S refers to the number of sites in the lattice [23,25].
The expression for C2 picks up a factor of �M̃ (Q)

�M̃ (Q′), which is given by

�M̃ (Q)�M̃ (Q′) = 1
S2

∑

R,R′
�M (R)�M (R′)ei(Q′R′−QR).

(B6)

If the approximation is made that the point defects are
randomly distributed over the lattice, the sum over lattice
sites can instead be written as an average squared mass
difference (�M 2) times the number of defect sites in the
lattice (Si) [23,25]:

�M̃ (Q)�M̃ (Q′) = 1
S

Si

S
�M 2 = 1

S
fi�M 2. (B7)

The velocity u̇ is again written in terms of creation and
annihilation operators, which contribute a frequency and
polarization-vector dependence to yield the full expression
for C2 [42]:

C2 = 1
4S

fi(�M )2ω4|[ek(s) · ek′(s)]|2. (B8)

Equation (B8) can then be substituted into Eq. (B1) for
the transition probability to obtain the simplified expres-
sion shown below:

Wk,k′ = π

2S
fi

�M 2

M 2 ω2δ(�ω)|[ek(s) · ek′(s)]|2. (B9)

To get the scattering rate, one must then sum Wk,k′ over
all possible final phonon states k′. Given the conservation-
of-momentum constraint (|k| = ∣∣k′∣∣), this constitutes an

integral over a constant-energy surface or sphere of radius
k in k space. In the conversion from a sum over discrete
k states to an integral over k states, a volume factor of
Vtot/(2π)3 is picked up, where Vtot is the volume of the
crystal:

τ−1
PD = Vtot

(2π)3

∫
Wk,k′d3k′. (B10)

The spherical surface integral is evaluated noting
that (i) d3k′ = k′2 sin �dkd�dφ, (ii) ωk = ωk′ = vp(ω)k′,
(iii)

∫
sin �dkd�dφ = 4π , (iv) δ(�ω) = δ(�k)/vg(ω),

and (v) V0 = Vtot/S is the volume per site:

τ−1
PD = V0

4π
fi

(
�M
M

)2

|[ek(s) · ek′(s)]|2 ω4

v2
p(ω)vg(ω)

.

(B11)

Finally, the relaxation time can be written in terms of the
three-dimensional phonon density of states [g(ω)] given in
Eq. (12):

τ−1
PD = πV0

6
fi

(
�M
M

)2

|[ek(s) · ek′(s)]|2g(ω)ω2. (B12)

As discussed before in relation to the Tamura model (Sec.
II A), the scattering parameter � = fi (�M/M )2 |[ek(s) ·
ek′(s)]|2 Substituting � into the equation and setting V0 =
Vat in accordance with the virtual crystal approximation,
Eq. (12) is reproduced:

τ−1
PD = V0π�ω2g(ω)

6
. (B13)

2. Umklapp scattering

The umklapp scattering rate follows a similar derivation;
however, the conservation rule is more complicated since
the process involves three phonon modes (k, k′, k′′) as well
as momentum exchange with the lattice via the addition or
subtraction of a reciprocal-lattice vector (b). The deriva-
tion here is adopted from the derivation of Klemens for
strain scattering off a point defect; however, in this case,
the strain is produced by another phonon rather than a point
imperfection [42].

k + b = k′ + k′′. (B14)

The umklapp perturbation-matrix element is similar in
form to that of point-defect scattering, but now includes
three creation or annihilation operators since the pro-
cess involves the change in occupation number for three
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phonon modes. Additionally, the coefficient (CU) is depen-
dent on the anharmonicity of the lattice:

〈i| H ′ |f 〉2 = [CU(k, k′, k′′)a(k)a∗(k′)a∗(k′′)]2

= �3

M 3ωω′ω′′ C
2
U(k, k′, k′′)

× [(N + 1)(N ′ + 1)(N ′′ + 1) − NN ′N ′′].
(B15)

In the Klemens model, the phonon mode k′′ is
treated as a Fourier strain component producing a per-
turbation of the lattice energy. If a uniform dilata-
tional strain (�) is assumed, the Fourier component
can be written as iω′′/vp(ω

′′)
√

S in the limit k′′ → 0.
The elastic strain impacts force constants, and there-
fore induces a frequency shift modeled with use of the
Grüneisen model [42]:

ω(k) = ω0(k)[1 − γ (k)�]. (B16)

The coefficient CU then represents the lattice-energy
change associated with a uniform dilatational strain,
defined with use of the Grüneisen model, and the form of
the uniform dilatation as k′′ approaches 0:

CU(k, k′, k′′) = −2i√
Svp(k′′)

γ Mωω′ω′′. (B17)

The final component of the squared matrix element
[shown in Eq. (B15)] is the term in square brackets, repre-
senting the difference in occupation of phonon modes from
the initial state to the final state. In the high-temperature
limit, this term can be written in terms of the Bose-
Einstein distribution such that it reduces to kBTω/�ω′ω′′.
The full form of the squared matrix element simplifies to
the following form:

〈i| H ′ | f 〉2 = �2

M
4γ 2ω2

Sv2
p(k′′)

kBT. (B18)

Just as before, the scattering probability is defined with
use of Fermi’s golden rule [Eq. (B1)], where the initial and
final states are now represented as |i〉 and | f 〉 for simplic-
ity. As before, the scattering rate is calculated by summing
over Wi, f for all possible final states. This is achieved
by performing a sum over all k′ and b, which then fixes
the value of k′′ as a result of the conservation condition
[Eq. (B14)]:

τu =
∑

k′,b
Wi, f . (B19)

It is assumed that k′ is restricted to spheres of radius
1
2 (k + b), which is suggested to be true as long as the dis-
persion relation is not modified by the zone structure [55].

Therefore, the sum can be once again replaced by a surface
integral over this sphere, and picks up a volume factor of
Vtot/(2π3), where Vtot is the volume of the crystal:

τ−1
u =

∑

b

Vtot

(2π)3

∫
Wi,f d3k′. (B20)

Following the same integral simplifications discussed in
the derivation of τPD, the scattering rate due to umklapp
processes is as follows:

τ−1
u = V0πγ 2ω2

Mv2
p(ω

′′)vg(ω′)

∑

b

(k + b)2. (B21)

Finally, the approximation is made that k is small in
magnitude in comparison with the reciprocal-lattice vector
b = 2π/a such that (k + b)2 = 4π2/a2. For a cubic-close-
packed material with a rhombohedral primitive unit cell,
the volume per site V0 is a3(

√
2)−1, and the scattering rate

reduces to the following form:

τ−1
u = 4πaγ 2TkB√

2M

ω2

v2
p(ω)vg(ω′′)

. (B22)

APPENDIX C: DERIVATION OF THE ARCTAN
EQUATION

The lattice thermal conductivity with umklapp and
point-defect scattering simplifies to a popular function with
the form tan−1. The derivation of this form is shown here
to highlight the cancellation of phonon velocities in the
relaxation times.

Equation (7) gives an expression for the lattice ther-
mal conductivity in terms of the frequency-dependent heat
capacity, phonon group velocity, and phonon lifetime,
which is reproduced as follows:

κ = 1
3

∫ ωm

0
Cs(ω)vg(ω)2τ(ω)dω. (C1)

In the high-temperature limit it can be simplified to the
following form:

κ = kB

2π2

∫ ωmax

0

ω2

v2
p(ω)vg(ω)

v2
g(ω)

τu

1 + τu/τPD
dω. (C2)

Next, the phonon velocities are pulled out of the
coefficients of the relaxation times [A = a(v2

pvg)
−1,
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B = b(v2
pvg)

−1]:

κ = kB

2π2

∫ ωmax

0
v2

g(ω)
1

vg(ω)v2
p(ω)

ω2

× [1/b(v2
pvg)

−1]ω2

1 + a(v2
pvg)−1ω2/b(v2

pvg)−1 dω. (C3)

The phonon velocities in the specific heat, umklapp
relaxation time, and the point-defect relaxation time will
cancel to yield the final simplified form:

κ = kB

2π2b

∫ ωmax

0
v2

g(ω)
1

1 + aω2/b
dω. (C4)

If the approximation can be made that the factor v2
g is

largely frequency independent, then the integral above has
a solution in the form of tan−1:

κ = kBv2
g

2π2b(b/a)1/2 tan−1
[

ωmax

(b/a)1/2

]
. (C5)

The pure-lattice thermal conductivity κ0 can be cal-
culated from Eq. (C4) when the point-defect scattering
coefficient a is set to 0. The resulting value of the
pure-lattice thermal conductivity κ0 is (kBv2

gωmax)/(2π2b).
Therefore, the κD/κ0 ratio simplifies to the following
form:

κ

κ0
= tan−1 u

u
, u = ωmax

(b/a)1/2 . (C6)

APPENDIX D: PRIMITIVE-UNIT-CELL
MASS-DIFFERENCE MODEL

The primitive-unit-cell mass-difference model describes
a system in which all individual atom sites in a primitive
unit cell are coarse grained into a single, vibrating mass.
Therefore, all quantities are defined on a per-unit-cell
basis. The parameter can be defined through a statisti-
cal mechanics model, where the lattice can be described
as a sum of microstates, which represent the unit cells
in the lattice. Therefore, the full mass-difference param-
eter is determined by taking the mass difference of each
microstate weighted by the probability of finding that
microstate in the lattice (Pmic):

� =
∑

mic

Pmic�mic. (D1)

In the case that impurities are randomly distributed on a
given sublattice, the probabilities can be calculated with
use of the binomial-distribution theorem. As an exam-
ple, say there is a host compound AxByCz with impuri-
ties A′, B′, and C′, which substitute in the A, B, and C

sublattices, respectively. If fi is the atomic site fraction
of the ith impurity as before, then the overall compo-
sition of the alloy is given by [A(1 − fa)A′( fa)]x[B(1 −
fb)B′( fb)]y[C(1 − fc)C′( fc)]z.

The various microstates that may compose this lattice
can be defined by all possible fillings of the A, B, and C
sublattices with host atoms versus impurity atoms. Thus,
each sublattice is treated as a binomial distribution in
which a number of sites (set by the stoichiometry) can each
have one of two outcomes: the site can be occupied by an
impurity atom with a probability of fi or it can be occu-
pied by a host atom with a probability of (1 − fi). By the
binomial-distribution formula, the probability that r of the
total x sites on the A sublattice will be replaced by impurity
atoms is given by

(x
r

)
f r
A (1 − fA)x−r.

Now, it is possible to consider the probability of an
example microstate (Pmic) such as a unit cell with two
impurity atoms in the A sublattice, one impurity atom in
the B sublattice, and no impurity atoms in the C sub-
lattice. This full probability would have the following
form:

Pmic = PA(2)PB(1)PC(0), (D2)

Pmic =
[(

x
2

)
f 2
A (1 − fA)x−2

] [(
y
1

)
f 1
B (1 − fB)y−1

]

×
[(

z
0

)
f 0
C (1 − fC)z

]
, (D3)

where the shorthand PA(2) refers to the probability of
having two impurity atoms in the A sublattice. � associ-
ated with that microstate would be based on the difference
between the mass of that specific microstate (Mm) and
the average mass of a unit cell in the lattice. So, for the
example microstate above, � would have the following
form:

�mic =
(

1 − Mmic

M

)2

, (D4)

Mmic = MA(x − 2) + MA′(2)

+ MB(y − 1) + MB′ + MC(z). (D5)

APPENDIX E: ELABORATED EXAMPLE OF
VACANCY SCATTERING

This section provides a full example of the vacancy-
scattering model applied to literature values. The thermal-
conductivity measurements from Wang et al. [44] are used
for La1−xCoO3−y with La and O vacancies. The mass-
difference scattering strength is given by the following
expression:
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�M = (1/5){x(0 − M1)
2 + (1 − x)(MLa − M1)

2 + 3[y(0 − M3)
2 + (1 − y)(MO − M3)

2]}
〈M 〉2

, (E1)

where M1 is the average mass of the La site and M3 is the
average mass of the O site. Here the average atomic mass
in the compound 〈M 〉 = (M1 + MCo + 3M3)/5.

In the original text by Wang et al. [44], the full thermal-
conductivity reduction is explained using mass-difference
scattering alone, without the perturbation due to broken
bonds. However, in this case, the volume in Eq. (12) was
incorrectly defined as the volume of the primitive unit

cell when defining the point-defect relaxation, whereas it
should have been defined as the volume per atom. This
error compensates for the missing broken-bond term, such
that the curve reported in the paper still adequately rep-
resents the data, and the main conclusions about the point-
defect scattering strength hold. However, by virial-theorem
treatment, the above equation can be adjusted by tripling
the mass difference on both vacancy sites as shown below:

�M = (1/5){x(−MLa − 2〈M 〉)2 + (1 − x)(MLa − M1)
2 + 3[y(−MO − 2〈M 〉)2 + (1 − y)(MO − M3)

2]}
〈M 〉2

. (E2)

Figure 6 includes (i) the model in the original paper
by Wang et al. [44] using the unit-cell volume (VUC), (ii)
the revised mass-difference-only model, where the volume
per atom (V0) is used, and (iii) the model with the virial-
theorem treatment for broken bonds, where V0 is used. As
in the original paper by Wang et al. [44], it is assumed that
x = y in the defect chemical formula.

[44]

FIG. 6. The mass-difference model with the unit-cell volume
error is compared with the mass-difference-only model described
in this study as well as the vacancy model with virial-theorem
treatment for broken bonds, which best captures the κL reduction
[44].
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