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Avoiding Chatter in an Online Co-Learning Algorithm Predicting Human
Intention

Carol Young

Abstract— Chatter can happen when an online learning
algorithm is used by a robot to predict human intention while
interacting with a human subject. When chatter happens, the
learning algorithm continually changes its prediction, without
reaching a constant prediction of human intention. Using the
Rescorla-Wagner model for human learning, we analyze an
expert based online learning algorithm and identify an invariant
set in the state and parameter space where chatter will occur.
Based on the chatter analysis, we also propose an improved
expert based learning algorithm where the invariant set does
not exist so that chatter can be avoided.

I. INTRODUCTION

Co-learning occurs when two learning systems are con-
sidered as a single non-linear system with its own sys-
tem dynamics. These co-learning systems are important to
consider as the amount of learning robots increases. Some
human-robot co-learning systems have been studied through
experiments, e.g., a robot learns the type of humans that
it is interacting with by using trained examples of humans
interaction to select the optimal strategy [1], [2]. Or by
jointly training reinforcement strategies in a scholastic game
framework, a robot can use an optimally learned strategy to
interact with a human [3].

A co-learning system can demonstrate chatter, which is
a specific limit cycle phenomena where two learners both
adjust their behaviors to correct for an error caused by a
mismatch of their behaviors. This correction is simultaneous,
but both new behaviors are still incompatible, which produce
an error that leads to another simultaneous correction. This
process repeats indefinitely without settling on a steady state.
This dynamic behavior has been observed in human-human
co-learning systems. In pedestrian counterflow studies, when
two pedestrians meet, they may block each other repeatedly
while trying to pass [4]. There exists evidence showing that
human behavior will shift in response to robot behaviors,
similar to the behavior shift in response to another human’s
behaviors [5], [6]. Therefore, chatter may exist in human-
robot co-learning systems and should be analyzed.

This paper utilizes online learning algorithms for robots
in a human-robot co-learning setting. An online learning
algorithm learns a concept, which is how a human expects a
robot to behave in a given situation. The algorithm takes in
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information about the situation, e.g., encountering a human,
and produces an output, e.g., a behavior that a robot can per-
form. The algorithm then receives a feedback on its behavior.
This set of information, output, and feedback is processed
sequentially, and each set is only processed once. Thus the
online leaning algorithm can be implemented without any
pre-training, requiring less memory and processing time,
while adjusting its behavior after every interaction [7].

Online learning can serve as a powerful tool in human
robot interaction, especially when the two limitations, long
learning time and unpredictable outputs, can be accounted
for [8]. This can be achieved with communication cues that
are provided from the robot to the human [9]. This can
also be achieved by designing online learning algorithms
to balance adaptiveness and consistency as shown by our
previous research [10] which presented an online learning
algorithm called Dual Expert Algorithm (DEA). DEA can
be analyzed using Markov Chains, producing provable ana-
lytical performance bounds on adaptiveness and consistency.

This paper significantly extends our previous work where
human intention was treated as random drift [10], by con-
sidering the fact that a human can also learn from a robot.
In this paper, we model the human learning behavior using a
well accepted and widely used model, called Resorla-Wagner
model [11], to describe how a human updates the internal
expectation. The DEA is used as the learning algorithm for
robots. We show that chatter can occur in this system and
we improve DEA to eliminate the chatter. The contributions
of this paper are as follows. (1) We discover the dynamical
model which triggers chatter during co-learning. We model
the co-learning system as a double feedback system with
binary outputs. The state space of this co-learning system
consists of an internal state of the human and the states of
the DEA Markov Chain. This co-learning model allows us
to compute an invariant set in the state space that leads
to chatter. (2) We improve the DEA and present a new
algorithm, called Human Aware Dual Expert Algorithm
(HADEA), which can avoid chatter during co-learning. We
rigorously prove that using HADEA, there is no chatter zone
(e.g. an invariant set in the state space of the co-learning
system). The results are justified using numerical methods
in simulations.

II. PROBLEM SETUP

In our previous work, we assumed that the expectation of
a human subject is only affected by drift and independent
from the performance of the learning algorithm used by the
robot. This assumption usually does not hold because the
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Fig. 1. Layout of a co-leamning system consisting of a human and a robot
with a learning algorithm

human’s expectation of the robot can change due to the
changes in robot’s behavior. Therefore, we study the mutual
influence between the changing expectation of a human and
the learning algorithm used by a robot. In this paper, we
only consider a simple case where both the human and the
robot have only two possible actions, but it will illustrate the
key idea of how to analyze the co-learning system behavior
when chatter occurs and how to solve the chatter issue. The
actions for human is denoted by A, which represents the
action taken by the human at #-th interaction. It can have
only two values, —1 or 1. For the robot, the actions it can
take are denoted by A,, representing the action taken at ¢-th
interaction, which also has the value of —1 or 1. If A; = A;,
then we say the action of the human matches the action of
the robot. Otherwise, the two actions do not match.

We model a co-learning system using two feedback loops,
as shown by Figure 1. For each human robot interaction,
the human has an expectation of what action the robot will
take for the upcoming interaction. Based on the expecta-
tion, the human takes one corresponding action out of two
possible human actions. A feedback is given to the human
by comparing the robot’s action to the human’s action. If
they match with each other, then the feedback is positive.
Otherwise, the feedback is negative. Based on the feedback
i.e. whether a feedback is positive or not, we assume the
human will adjust its internal states (characterized by some
internal parameters) and may change the expectation for the
next interaction. Similar to the human’s learning process, the
learning algorithm implemented on a robot predicts an output
based on its learned concept of human. The output selects
one robot action out of two. The feedback is also given to the
learning algorithm after an interaction to adjust its internal
parameters in order to make a correct prediction for the next
interaction. The whole co-learning system can be viewed
as a closed loop system and we can analyze its dynamic
behavior. In this section, we first introduce the models of
blocks “human mind” and “learning algorithm™ in Figure 1.

A. Human Learning Model

To model the human mind, we use a well studied psy-
chological model called the Rescorla-Wagner model [11],
which has been used to describe the human learning process
that associates a conditioned stimuli with an unconditioned
stimuli. We consider the arrival of a robot as the conditioned
stimuli and the behavior of the robot as the unconditioned

stimuli. Then the Rescorla-Wagner model describes how a
human learns to predict the robot’s behavior. The Rescorla-
Wagner model is described by

Vi=(1—7)Vic1 + YA (1

where 7y is a constant with real value in (0,1) representing
the weight the human puts on new information and V; is a
real number in the range of [—1,1], representing the internal
state of the human at the ¢-th interaction. We denote V as
the initial value of V; before the human starts interacting with
the robot, which is defined by the Rescorla-Wagner model
as being in the range of [—1,1]. Based on the initial value
of Vp, we can show the range of V; in the following lemma.
Lemma 2.1: V; € [—1,1] for all t > 0.

Proof: We will prove this lemma by induction. Assume that
Vi1 € [—1,1]. Since —1 <V,_; <1, then we have

—1(1=Y)+yA 1 <(1=Y)Vic1+YA 1 < 1(1=Y)+YA 1. (2)

Based on equation (1), we can replace (1 —¥)V,_j + YA _i
with V; and rearrange (2), which results in

—1+yA_ +1) <V, <1+7y(A4_1—1).

By definition, the value of A4,_; can only be either —1 or
1. The possible values for the lower bound —1+y(4_1+1)
are —1 or —1+2y. And the possible values for the upper
bound 1+ (A, —1) are 1 —2y and 1. Since y € [0, 1],
we have —1+2y € [—1,1], which means that the smallest
possible value for the lower bound of V; is —1. Likewise, the
upper bound 1—2% is also in the range of [—1,1]. The largest
possible value for the upper bound of V; is 1. Therefore, V; €
[—1,1] if V,_y € [-1,1]. Since the initial value Vp € [—1,1],
then by induction, V;, € [—1, 1], for any ¢ > 1. O

Once we have the internal state V; of the human, the human
action A; can be determined based on the value of V;

o] 1 V=0
T -1 ifV, <0

The human subject is only allowed to make two possible
choices of the actions represented by the two values of
A;. Correspondingly, our learning algorithm will control the
robot to produce two reactions respectively.

3)

B. Dual Expert Algorithm

For the “learning algorithm™ block in Figure 1, we use
DEA in [10] as the learning algorithm for a robot. Algorithm
1 presents the pseudo code of DEA. In DEA, each expert
represents an action and is assigned a weight, W_; and Wj.
Line 2 indicates that DEA selects the index of the expert with
the highest weight. If the two experts have the same weights
at an iteration, then DEA selects —1. The two weights are
adjusted after DEA made a selection of action, and gets a
feedback after comparing the action with human action. If the
feedback is negative, i.e. the actions of the human and robot
do not match, then the weight associated with the selected
action will be half of its previous value. If the feedback
is positive, i.e. the actions of the human and robot match,
and the weight of the selected expert is less than 0.5, then
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Algorithm 1 Dual Expert Algorithm
1: Set Wy =W_; =0.5
2: Choose selection A, = min (argmax{W;,W_;})
3: if Error (37 —A;) then
W;L: - ?.
5. else if Correct (A, =A,) then
6 if Wy, < 0.5 then
T W;{‘ = ZWR‘
8.
9

B

else

the weight is multiplied by 2. Otherwise, the weight of the
selected expert remains the same. The algorithm will select
the next action by comparing the two weights, and the action
associated with the larger weight will always be selected. The
actions taken is determined by the weights of DEA

A: = min (argmax{W;,W_; }) )

where W_; and W; are the weights of the experts in DEA at
the t-th interation. Note A, is also the index of the winning
expert. We introduce two additional variables which will be
used in this analysis. The first variable R, is defined as

o] o2 L) AW =W -
T tog () it Wi < Wy

which represents the minimum number of errors that must
occur before the DEA switches the selection of experts,
meaning changing from one action to the another action.
The second variable s, is defined as

logy (y) if Wi =Wy

5 =
log, (%) it Wy < Wy

(6)

Here s, represents the maximal achievable value of R;.
Because the weights in DEA have an upper bound 0.5,
replacing Wy and W_ in (5) with 0.5 results in (6). Based
on this definition, R, <5, always holds.

The three variables, (A;,R;,s;) is used to define a Markov
chain of DEA as shown in Figure 2. And based on line 1 of
Algorithm 1, the initially selected action is —1. Therefore,
the initial state of DEA is (—1,1,1). The updating rules for
each variable are as follows

o —A1 ifA_1#Aand Ry =1
A= { A_1  otherwise @
R_1+1 ifA4_1=A_1and R_1 < s_1
R — R ifA_1=A_1and Ri_; =54 @)
! R_1—1 ifA 1#A_jand R_; > 1
R ifA_1#A_1and R,_; =1

ifAh 1=—1#A and R,_; =1
otherwise

5 ={ Sl ©)
St—1

We assume that the robot enacts a control law enabling

it to perform behavior 4;, and has detection capabilities to

detect the human action A;. It is obvious that the robot

cannot directly observe the human’s internal parameters y

or internal state V;, but it can observe the human’s action A;.

— match
— mismatch

ca2288

Flg. 2. DEA automata with each state defined in terms of (4 ,R,,s;). The
green arrows represent the cases where the actions of human and robot
match. The red arrows represent the cases where the actions of human and
robot do not match each other.

The behavior of the robot can influence the human’s internal
state V; but it cannot change the parameter y. That is to say,
we assume that ¥ remains as a constant during co-learning.

C. Chatter definition

Based on the mathematical models of human learning and
DEA. The chatter behavior in the co-learning system with
binary actions can be defined as follows.

Definition 2.1: If there exist a fp such that A, = —A,_1,
A =—A_1, and A; = — A, hold for all 1 > tg, then we say a
chatter occurs in the co-learning system with binary actions.

Since we only allow binary values for A, and A,, the chatter
behavior in co-learning is a limit cycle in the dynamics. This
chatter is not desired for co-learning. Therefore, we will
analyze the co-learning system to determine the condition
when chatter occurs. And based on this analysis, we modify
DEA in order to prevent chatter.

ITI. CHATTER ANALYSIS

The human is described by two internal parameters V; and
Y. where V; is the state that changes over time. We define
the set By, » to be the set of all possible values of (7,V;) that
produce output A, and takes a minimum of n errors from
time ¢ to produce the output —A,. This set is important for
chatter analysis since any human internal state V; starting in
this set will generate chatter eventually. We will compute
this set in different settings.

Lemma 3.1: ForA;,=—1landn=1,

Ba={Wplre @V [ 10) -

Proof: In Lemma 2.1, we have already shown that V;
[—1,1] holds for all # > 0. Here, we will show that in the set
B_1,1. V; also needs to satisfy V; € 1__—]’,—|— 1,0).

Based on definition, the set B_;; produces output A; =
—1, which means the corresponding internal state of human
V; must satisfy V; < 0 according to (3). And n =1 means
it requires 1 mismatch for the human to switch to action 1.
That is to say, the action of the robot 4, at iteration ¢ is not
the same as A,, i.e., A, = 1 and at the next iteration, the action
of the human changes to be 1, i.e., A;; = 1. Therefore, we
have V;;; > 0. By (1), we have V;j = (1 — )V, +yA,. With
A =1, we have

Viei=(1=y)Vi+y>0=(1—-7)V, > —7.

Since y € (0,1), 1 —y > 0. Then we can divide 1 —7 on the
both sides of (10), which results in

(10)

r_1 .0

(I_Y)VI> 7:;"/1‘ 1 — y l_l}/

6506

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 05,2020 at 21:26:28 UTC from IEEE Xplore. Restrictions apply.



Lemma 3.2: For an arbitrary number of mismatches n > 2,

B_in={ (. plre 1),

—1
"‘GL(I—Y)“ - w)ﬂ—‘“) N0}

Proof: Same as the the proof of Lemma 3.1, since A, = —1,
we have V, < 0. And since it requires nnmma] n mismatches
for the human to switch to action 1, we have V, =V, | =--- =
Vien—1 < 0 and V,4, > 0. Additionally, g =--- =4, =
1. Utilizing the result from Lemma 3.1, we can see that
V;+n_1 must satisfy 1_T]y+1 < Vign1 < 0. With Vi, =
(1=Y)Vean—2+YAin2 and A1, 2 =1, we can derive

—1 1—y -1
+ _V+ < —+1.

(1—p? T (1-y)
Replacing V;;,_2 with (] — Y)WVisn—3+7 in (11), we have

— ;’} +1 < Vians < ﬁ;-l—l Then repeat the above

process, we have = },, +1<V, < W—H 0.
By symmetric arguments, we can also conclude that the

following Lemmas hold.
Lemma 3.3: ForA;,=1and n=1,

(11)

Bu={tire o0 e o -1) Nl

Lemma 3.4: For an arbitrary number of mismatches n > 2,

={Wnlre ),
1 1
Ve |y gt ) Mo
After obtaining the representation of the sets, we now
show that there always exist ¥ and V; that are in these sets,
i.e., these sets are not empty.
Lemma 3.5: For any finite n, By, , is not empty.
Proof: 1fA;=1or —1and n= l since 0<’]/< 1, we have
0 < 1—7 < 1 which results 1n —1 and y— > 1. Then

we have _T—H < 0 and —T —1 >0 is always satisfied.
Therefore, sets By,; and B_y; in Lemmas 3.1 and 3.3 are

not empty.
For A;, = —1 and n > 2, we can first show the inter-
-1 —1
val [(1—7)"+1’ (I_T),,_I—H) is not empty by = )n T+ 1=

—gt )+l = >0 because y>0 and 1 —y > 0.
hen we will show that there always exists a ¥ so that
, the intersection of the two interval

Wr-l—l)—l
for V; is not an empty set. Let 0 <y < 1— (1 )"_—r Note that
0<(§)_—T<lfora]ln22500<]—(7)7r<]_Wehave

1— lﬂ_lrz,s]— n-151
r>(3 (1=9"">3

Then we can derive that

—1
)nl> —2=

1
= ——F—<2. (12
(—pp1 <% 19

—1
= Ay t1>7h

Therefore, the set B_y, is not empty for n > 2.
Likewise, for A; = 1 and n > 2, we have

IR T SN S S A
iy ((l—w—l ]) a—y "

Andif 0<y <1 —(%)ﬁ, based on (12), we have

1

)n]<2:> —1<1.

1
(1 1=yt
Therefore, the set By, is not empty for n > 2. O
Next, we show that a mismatch at (t—1)-th interaction will
cause a changed output at ¢-th iteration if the human internal
parameters (7y,V;_1) are in By, , 1 at (f—1)-th interaction.
Lemma 3.6: If (y,Vi—1) € Ba,_,.1 and one mismatch at (r—
1)-th interaction, then (7,V;) € B_4,_, 1 at t-th iteration.
Proof: We will prove this Lemma by two cases.
Case 1: A,_; = —1. Since (y,V,_;) € B_y 1, we have %—l—
1 <V,_; <0 based on Lemma 3.1. And a mismatch occurs at
(t — 1)-th iteration meaning that A, _; # A, 1, ie, 4_1=1.
And based (1) and A,_; =1, we have V, = (1 —9y)V,_1 + 7.
Since 1 -7y >0, we have

1
Vi=(1=yVia+y=>(1-7)- (—ﬁl) +7y=0 and
Vi=(1=y)Vic1—y<(1—-7)-0+y=Y.

Therefore, V; € [0,7). And we compare y with the up-
per bound of V; in set By; by taking the difference y—
(W 1) ’i < 0 which means that [0,y) C By 1. There-
fore, V; is in set By ;.

Case 2: A;_1 = 1. Since (y,Vi—1) € B1,1, we have 0 <V,_1 <
%_T — 1 based on Lemma 3.3. And a mismatch occurs at
(t — 1)-th iteration meaning that A, _; = —1. And based (1)
and A,y =—1, wehave V, =(1—79)V,_1 —7. Since 1 —y >0,
we have

Vi=(1-=7)Vi-1—y=(1-7)-0—y=—y and
l

Therefore, V; € [—7,0). And we compare —y with the lower
bound of V; in set B_y; by taking the difference —y —
%—l— 1) =1 > 0 which means that V; is within the set
~1,1- O
We can then give a sufficient condition for chatter to occur
if the robot used DEA as its learning algorithm.
Lemma 3.7: Forthe DEA,ifA4_1=—-A_1.Ri_1=m_1=
1 and (y,Vi—1) € Ba,_,,1, then a chatter will occur.
Proof: Since A,_j = —A;_; and R,_; =1, based on the 4-th
condition in (8), R, = 1. And by (7), 4 = —A_1.
According to Lemma 3.6, if the state at the (r—1)-th
iteration is within the set By, ; and A,_; = —A,_;, then
(7,Vi) € B_a, ,,1 meaning A; = —A,_1. This means that at
the ¢-th iteration, A; = —A;_1 =A_1 = —A;, i.e. a mismatch
occurs at the ¢-th iteration. Then the conditions in Lemma
3.6 are also satisfied the ¢-th iteration, which results in
a mismatch at the (r+41)-th iteration. Thus for all future
iterations, mismatches will keep occurring. This leads to
chatter according to Definition 2.1. O
We can conclude that chatter occurs if the initial values for
the human’s internal state Vj satisfy the following condition.
Theorem 3.8: For DEA, if (y,Vp) is in set B_y 1, then
chatter will occur.
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Algorithm 2 Human Aware Dual Expert Algorithm Addition
1: if A # A = min(argmax {W_;,W;}) then
w2 WL <05

: A7 05 otherwise

— match

- SB

Fig. 3. The automata of HADEA with each state defined as (4,,R;,s;)
Proof: The initial state of DEA is given as Ry =sg =249 = 1.
And since Vy < 0, we have Ag = —1 which means A9 = —Ay.
Then by Lemma 3.7, the system will produce chatter. [

IV. HUMAN AWARE DEA

In this section, we present a revised DEA which can pre-
vent chatter during the co-learning process. The algorithm is
called Human Aware DEA (HADEA). Algorithm 2 presents
the pseudo code which we add between line 4 and line 5
in algorithm 1 to create HADEA. The meaning of these
lines are that, if the learning algorithm will change the index
of selected expert in the next iteration, i.e. 4, # A, then an
additional weight increase may be performed at the current
iteration. For example, the initial values of HADEA are
W_1 =W; = 0.5 and the action is chosen to be A; = —1.
If the action of the robot matches with the human’s action,
the weights remain the same and the algorithm goes to the
second iteration. But if actions do not match, i.e. A; = —Aj,
then the weight W_; of expert representing action —1 is
reduced to 0.25. Using the updated weight, we have W; =
0.5 > W_;. Therefore, A=1 and A; # A. And the algorithm
goes to line 6. Since Wy = 0.5, it remains to be 0.5 after
running line 6 and the algorithm goes to the second iteration.
At the second iteration, by line 2, A3 = 1. If an error occurs,
then Wi is decreased to be 0.25. Then using the updated
weights, we have W) = 0.25 =W_;. Therefore, A = —1 and
A2 # A. In this case, W_; is increased to 0.5. This is when
an additional weight increase is performed.

This new updating rule generates a different automata of
HADEA compared to DEA, which is shown by Figure 3.
This new algorithm produces the same updating equations
for A, by (7), and s; by (9). However, the updating equation
for R; has changed as

Ri_1+1 ifA_1=A,_1 and R,_;1 <s_1
R ifA_1=A_1and R_1=5_1
R={ R_1—1 if&_1 #A;_1and R_1 >0 (13)

l if A{_l %AI—I':RI—I :0 and SIZI
2 if 4_1#A_1,R_1=0and 5, > 1

In order to show that HADEA does not generate chatter,
we show that all possible values of human’s internal states
(v,V:) do not lead to chatter.

Theorem 4.1: 1f A; = A;, then there is no chatter after ¢.
Proof: If A; = A, then from (1) and (3), A;11 =A,. Because
A; =A4 =—1 means V; <0, then V, | = (1 —7y)V, —y. With

1—y>0,V,<0and —y <0, we have V,, ; <O and A, ; =
—1=A,. Similarly, if A, = A, =1, then V;4; = (1 —9)V; +
Y > 0 which results in A,y =1 =A,. From (7), 411 = A.
Therefore, A, 1 = A;11. Repeat the above argument, we show
that there will be no chatter after ¢ if A; = A;. O
Lemma 4.2: For a set By, . if n, > 2 and A, # A,. then
the set By, n,,, is identical to the set Ba, », 1
Proof: 1f n, > 2 and A, = —1, from Lemma 3.2, we have

Vi € [(]__;,)ng +1, (l—;)}"-'—l + 1). Using (1) and A, =1, yields

Vi =(—1Wity>(1-7)- [W“] 4y and

w+1=(1—y)vr+r<(1—y)-[ +1]+y. (14)

—1
(1—yy-!
Reorganizing (14) gives V; 41 € [(l_;)l,,,_l +1, (1_;)],,,_2 + 1)
which would be in set B_i,_;. Likewise, for A; =1,
from Lemma 3.4, we have V; GJ
Using (1) and A, = —1, we fin
“_;},‘_2 -1, (l_;),,,_l - 1) which would be in set By, _1.

Therefore, after an error occurs at ¢-th iteration, if n, > 2,
then BA:+1:“:+I = BA::":—]‘ u

Theorem 4.3: If A, = —A, and R, # n,, then there is no
chatter after ¢.

Proof: First we consider R, > n,. Since A; # A, an error
occurs at time ¢. This can lead to two cases.

If n, =1, then by Lemma 3.6, we have (7,V;) € B4, 1 and
(7,Viq1) € B_4, 1 meaning that A, = —A;. And since R, >
n = 1, the HADEA updating equations (7) and (13) will give
the result that R, . =R, — 1 and A, ;.1 = A,. Since A, | =A; 41,
by Theorem 4.1, there is no chatter in the future.

If n; > 2, then by Lemma 4.2, A, 11 =A;, and n, 1 =n, — 1.
And since R; > n, > 1, then based on the HADEA updating
rules (7) and (13), we have R, =R, — 1 and A1 = A,.
Then we have Ry 1 =R, —1>mny =n,—1 and A, 1 # Ay
where the only changing variable is n,. After n, — 1 iterations,
we will have R;n,—1 > Ny4n,—1 = 1, which is the case where
n; = 1. Therefore, after (¢t +n, — 1) iterations, there is no
chatter.

Now we consider n, > R;. Since A; # A,, an error occurs
at iteration ¢. This can lead to two distinct cases depending
onif R, =1o0rR; > 1.

If R, =1, then by (7), we have A1 = —4,. And since
n >R, =1 by Lemma 4.2, we know A, 1 =A,. Then we
will have A, 11 = A, 1. By Theorem 4.1 there is no chatter.

If R, > 1, then by the HADEA updating equations (7)
and (13), we have R,y =R, —1 and A4,; = A. And by
Lemma 4.2, we can derive that A;,; =A; and m, .y =n, — 1.
Therefore, we have m 1 =m — 1 >Ry =R, — 1 and A, #
Ary1 after an iteration with both n, and R, decreased by 1.
By induction, after a total of At =R, — 1 iterations, n, , >
R, = 1, which as shown above for the case of R, = 1.

1 1
e~ b 1)
the range for V;; is in

In summary, all possible situations that satisfy A, = —4,
and R; # n; have been discussed. None of these situations
lead to chatter. Therefore, we can conclude that if A, = —A;
and R; # n;, then there is no chatter. O
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Fig. 4. Simulation results for DEA based off of y and V;.
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Fig. 5. Simulation results for HADEA based off of y and V.

Theorem 4.4: 1If A, # A, and R, = n;, then there is no
chatter when using HADEA.

Proof: 1If A; # A, and R, = n,, then using equations (7), (13),
and Lemma 4.2, we have R,y =R, —1 and n,.y =n, — 1.
After At =R, — 1 iterations, R, o, =N a, =1 and A, 5, =
—Aiia- By Lemma 3.6, Ay a1 = —Appa and np g = 1

The following cases must be considered to show that no
chatter happens. The first case is if s;yar+1 > 1. The second
case is if ;a1 = 1.

If §;1ar+1 > 1then by (13) and (7), we have Riiap1 =
2 and A 4arr1 = —Ar1a. Then we will have the condition
R a4t F Mipner and A p41 = —As s arg1. By Theorem 4.3,
there will be no chatter in the future.

If 5, ap1 = 1, then by (13), Ryjprp1 =1 and A ypryg =
Aiya:- In the following, we will discuss two cases Ay x41 =
—land A a4 =1.

If Arsare1 = —1, then by (7), (8), (9), we have §; 1,12 =
2, Riyary2 =2 and Agary2 = —Agars1, And by Lemma
3.6, Ajiaren = —Aiiarer and miaa2 = 1. Then we have
Riiai42 F My and Ay pr42 = —A; a2 By Theorem 4.3,
there will be no chatter in the future.

If Asas1 =1, then sa2 = 1, Rgap2 = 1 and

= 0 Errors until steady state
1 Error until steady state
= 3 Errors until steady state

Initial V 0

Aiiar+2 = —Asary1- By Lemma 3.6, Ajjari2 = —Argarst
and n; a2 = 1. This is now the same as the previous case,
Arrars1 =—1, and so this case also does not produce chatter.

Since all the cases have been discussed, all of them do not
produce chatter. Therefore, if A; # A, and R, = n, then there
is no chatter when using HADEA. O

Combining Theorem 4.1, Theorem 4.3, and Theorem 4.4
we conclude that there is no values of ¥ and V; that can
produce chatter for the HADEA.

V. SIMULATION

To support the chatter analysis for DEA and HADEA,
simulations were run for both algorithms. Each algorithm

was initialized with Ry = 1, s =1 and Ay = 1, and was
run using the Rescorla-Wagner model to model the human.
Different values of (y,Vp) of the Rescorla-Wagner model
were sampled. For the sample of Vp, we divide the range
[—1,1] into 50 even portions and take one value from each
portion as the sampled value for V. For the sample of 7,
we divide the range (0,1) into 50 even portions and take
one value from each as the sampled value. The amount of
iterations that an algorithm took to reach a steady state, i.e.
A = A;, was recorded for each (y,Vp) pair. If a steady state
was not reached after 50 iterations, then the co-learning was
considered to have a chatter give the sample pair (y,Vp).
Figure 4 shows the simulation result for DEA. The red area
indicates the values of y and V where chatter occurs. These
data points match the set B_1 1, which is consistent with our
analysis. Figure 5 shows the steps required to reach steady
state when HADEA is used. There is no chatter present e.g.
no red region. The values in B_1 1 only requiring 3 steps to
reach the steady state, which matches with our analysis.

VI. CONCLUSION

In this paper, we have used the Rescorla-Wagner and DEA

models to show that a human robot co-learning system can
demonstrate chatter. Upon identifying chatter, we developed

the HADEA and showed that HADEA can avoided chatter.
Besides, HADEA has a drastically increased consistency
over DEA, with only a limited decrease in adaptiveness.
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