BSTC: A Novel Binarized-Soft-Tensor-Core Design for
Accelerating Bit-Based Approximated Neural Nets

Anonymous Author(s)

ABSTRACT

Binarized neural network (or BNN) promises tremendous perfor-
mance improvement over traditional DNNs through simplified bit-
level computation and significantly reduced memory access/stor-
age cost. In addition, it has other advantages of low-cost, low-
energy and high-robustness, showing great utilization potential
in resources-constrained, volatile and latency-critical applications,
which are critical for future HPC and embedded execution. How-
ever, the promised significant performance gain of BNN inference
has never been fully demonstrated on general-purpose processors,
particularly on GPUs, due to: (i) the challenge to extract and lever-
age sufficient fine-grained bit-level-parallelism to saturate GPU
cores when batch is small; (ii) the fundamental design conflict be-
tween bit-based BNN algorithm and underlying word-based archi-
tecture; (iii) architecture & performance unfriendly BNN network
design. To address (i) and (ii), we propose binarized-soft-tensor-
core as a software-hardware codesign approach to construct bit-
manipulation capability for modern GPUs to effectively harvest
the emerging bit-level-parallelism. To tackle (iii), we propose intra-
and inter-layer fusion techniques so that the entire BNN inference
can be packed into a single GPU kernel, to avoid high-cost frequent
launching. Experiments demonstrate that our design can achieve
over 1000x speedup for raw inference latency and 10x for inference
throughput over the state-of-the-art full-precision simulated BNN
inference for AlexNet on ImageNet.

1 INTRODUCTION

Binarized-neural-networks (BNNs) evolve from the conventional
binarized-weight-networks (BWNs) [11, 20, 39], which was first
observed that if weights could be binarized into +1, floating-point
mul could be degraded to add (mul +1) and sub (mul -1). Then, it
was observed that if both the weights and inputs can be binarized,
the floating-point add and sub can be further degraded to logical
bit operations (i.e., xnor and popc), known as BNN [12, 20, 39].

BNNs have several advantages over conventional DNNs: (I) Low
computation demand. Each 32 floating-point or integer mul-add
operations can be aggregated into a single popc-xnor operation,
significantly reducing latency and hardware design complexity.
(IT) Low memory demand. The entire memory hierarchy (e.g., reg-
isters, cache, scratchpad, main memory, etc) may sustain 32x or
more storage and bandwidth compared to full-precision DNNs.
(IIT) Low energy consumption. Due to reduced hardware complexity
and smaller chip-area, BNN-based devices are much more energy
efficient. (IV) Security. BNNs recently show improved robustness
against adversarial attacks than normal DNNs [16] and can be exact
encoded for formal verification and property analysis [9, 34].

The primary concern about BNN is accuracy, which is becom-
ing a popular topic for DNN algorithm research. Recently, with
advanced training techniques being introduced [2, 3, 20, 42], BNN
accuracy has been improved significantly. The top-5/1 training ac-
curacy for BNN-based AlexNet on ImageNet has been enhanced
from 50.4/27.9% [12, 42] to 75.7/46.1% [2] within two years, with
respect to 80.2/56.6% [2] from the full-precision design. Although

BNN’s accuracy is still a bit inferior, it shows great advantages in
almost all the other computation aspects, e.g., low-cost, low-latency,
low-energy and high robustness. BNN is unlikely to replace full-
precision DNN strategies, but for many practical utilization such
as smart edge and mobile phones, recommendation systems, auto-
driving and other resource-constrained environments, when certain
accuracy bar is surpassed, other essential metrics such as real-time
bound and cost become more significant. BNNs can provide attrac-
tive solutions for these special domains [25, 33]. There has also
been an effort to map BNN-like learning structures to quantum
annealers for demonstrating quantum supremacy [4].

While most existing research either focus on improving BNN
accuracy, or exploring the design space for ASIC/FPGA implementa-
tion, the promised tremendous gain on BNN inference performance
(32x memory and 10x computation reduction) has barely been
demonstrated on economy-of-scale general-purpose processors
such as GPUs. This is due to the following reasons. First, it is chal-
lenging to extract sufficient fine-grained parallelism for small batch
or non-batching cases, leading to extremely poor utilization of GPU
resources (e.g., as low as 1% for BNN [35]). Second, there is a funda-
mental design conflict between bit-based algorithms (e.g., in BNNs)
and the word-based general-purpose architectures such as CPUs
and GPUs, which are traditionally designed and optimized for pro-
cessing words or subwords and thus lack explicit bit-manipulation
support. Third, current BNN network designs are mainly proposed
from algorithm & accuracy perspectives, lacking contributions from
architecture & performance aspects. Consequently, they are not
particularly hardware-friendly and performance-oriented. For ex-
ample, only convolution and fully-connect layers in BNN models
are binarized; the rest layers such as batch-normalization and pool-
ing all consists of expensive full-precision floating-point calculation
and memory access. The challenges above lead to inefficient BNN
design and implementation on economy-of-scale general-purpose
accelerators, significantly reduces its adaptation for scenarios that
require high real-time and resource constraints. Meanwhile, the
majority of BNN algorithm research is conducted via full-precision
simulations in a high-level programming environment (e.g., Ten-
sorflow and PyTorch). While modern general-purpose many-core
accelerators such as CPUs and GPUs provide great computation
power, due to the poor hardware utilization and extreme real-time
latency constraints for inference, conventional wisdom suggests
that they are incapable of bringing significant speedups for BNN
designs to be applied in the real-world production scenarios.

In this paper, we aim to tackle the three challenges above by
proposing the Singular-Binarized-Neural-Network (SBNN) design.
To systemically build the bit-manipulation capability for modern
GPUs while keeping the hardware highly utilized in an efficient
manner, we adopt a software-hardware co-design approach: a vir-
tual bit-core named Binarized-Soft-Tensor-Core (BSTC) is con-
structed upon GPU’s Streaming Multiprocessors (SMs), leveraging
the native hardware instructions to obtain high efficiency while
offering desired bit-manipulation APIs to the application layer for
harvesting bit-level-parallelism (BLP) which have recently emerged

BSTC-32 BSTC-64

<«—Bits <«—Bits
B3l «++ B2B1 B0 & B63 --- B2Bl1 BO &
O[---[1[1[1]wo st {[0]---[1[1[1|0 S
1]---]/1]0]1|u 1]---[1]0]1|u
1]|- 001L2l 1 -OOlLZl
O]---111110]3 0]---]1]1[0f31
Warp :Warp

Figure 1: Binarized-Soft-Tensor-Core in 32 and 64 bits mode. Bits are indexed from right
to left since in an operand, MSB is usually on the left, while LSB on the right.

as the key optimization target in various domain applications [1, 6,
7,14, 15, 38, 40, 45]. To create a hardware-friendly and performance-
oriented design, we propose several BNN network adjustment mea-
sures. For instance, the intra- and inter-layer fusion techniques,
which can merge the entire BNN inference process into a single
GPU kernel, can help achieve up to 6115x latency reduction for
MLP on MNIST, and 1429x latency reduction for AlexNet on Im-
ageNet, when comparing with full-precision simulated BNN in a
high-level DNN environment (i.e., TensorFlow via cuDNN) running
on an NVIDIA Tesla-P100 GPU. In this design, there is no warp-
divergence, no shared memory bank conflicts, no non-coalesced
global memory accesses, and no additional workspace requirement,
which lead to excellent computation efficiency and system resource
utilization. Because of the whole-network fusion, all GPU kernel
invocation & release overheads from the conventional designs are
eliminated. SBNN can complete non-batched AlexNet inference
within 1ms. Finally, our proposed design is purely software-based
without any external library dependency. It can be directly deployed
on the existing HPC and embedded GPU platforms. There is no
need to adjust or reconfigure every time the network or input size
changes.

2 BINARIZED-SOFT-TENSOR-CORE

As shown in Figure 1, a binarized-soft-tensor-core (BSTC) is defined
as a 2D bit-tile with orthogonal dimensions corresponding to GPU
warp lanes and bitwidth per lane. A BSTC is executed purely via a
single warp, with each lane contributing 32 bits or 64 bits, forming a
32x32 or 32x64 matrix; and each matrix element represents a binary
state. For BSTC-32, the data type is unsigned int; for BSTC-64, it is
unsigned long long int. BSTCs stay entirely in the register file.

BSTC design follows the recently proposed warp-consolidation
programming model [29], which unifies a thread block and a warp:
each thread block contains only a single warp — a BSTC here. This
model shows six advantages over the traditional CUDA model: (i)
no thread block level synchronization; (ii) independent on-chip
resource allocation and release; (iii) simplified kernel configura-
tion and design space; (iv) register-shuffle-based fast inter-lane
communication; (v) flexible fine-grained thread cooperation, and
(vi) extended register space. Both BSTC and SBNN exploit these
features to boost performance.

2.1 BSTC Operations

BSTC relies on fine-grained, highly-efficient inter-lane and inter-bit
communication and cooperation mechanisms to design the required
functionalities and achieve high performance. Figure 2 illustrates
the general primitives to operate a BSTC:

(A): AND, OR and XOR are executed on each bit of the data along
the rows, so the communication pattern is intra-row. XOR is very
useful for +1 constructing bit-dot-product. OR and AND are used
for bit-max and bit-min operations.

(B): __popc() and __popcll(), also known as population-count, return
the number of bits whose binary value equals to 1 in a 32/64-bit data.
This primitive offers fast accumulation along the SBTC rows. They
are the key operations to map from BSTC’s binary space to normal
full-precision space. popc has widely adopted for aggregating bit-
dot-product results.

(C): __brev() and __brevll() reverse the bit sequence of a 32/64 bit
row. They offer the ability to fast rotating a bit-row for 180°. The
communication pattern is intra-row. They are often used together
with __ballot(), see (H).

(D): __any() and __all() are the warp voting operations. They are
executed along bit-columns — merging 32 bits of a bit-column into a
single bit, and broadcasting this bit to all the 32 thread lanes. __any()
returns 1 if any entry of the column is 1 while __all() returns 1 when
all of them are 1s.

(E): __shfl() is to exchange bit-rows in a BSTC. Shuffle has four
variants: __shfl() performs flexible general bit-row exchanging func-
tion. __shfl_up() and __shfl_down() are to rotate bit-rows up and
down by a certain interval. __shfl_xor() conducts butterfly bit-row
exchanging [36]. The shuffle operations are quite useful for bit-row
communication, sharing and achieving register-level data-reuse
[6, 29].

(F): Left and right shifting are logical operations. We separate them
out to highlight their communication patterns as inter-columns.
They are often adopted to extract, exchange and merge bit-columns.

(G): The most interesting operation here perhaps is __ballot(). It
returns a 32-bit integer with its Nth bit (from LSB to MSB) con-
tributed as a predicate (1bit) from the Nth lane of the warp. In other
words, it offers the ability to convert a bit-column into a bit-row.
Recall that in a BSTC, lanes are indexed from top to bottom, while
bits are indexed from right to left (Figure 1), __ballot() essentially
rotates a bit-column by 90° clockwise to a bit-row.

(H): This operation is the conjugate of (G). In order to rotate a bit-
column 90° anticlockwise to a bit-row, one has to combine __ballot()
and __brev(). Note that there is no direct operation for rotating from
bit-rows to bit-columns; one has to broadcast an entire row to all
the lanes via __shfl() and then extract the required bit-column(s),
which are quite expensive.

Having these BSTC operations, we can flexibly combine them to
design versatile bit-based functions and communication patterns,
accelerating various emerging bit-based algorithms [6, 7, 14, 15, 38,
40, 45] on GPUs.

3 BNN BIT FUNCTIONS

We discuss the bit functions in BNN algorithm, where BSTC op-
erations can be applied. Figure 3 shows the network structure for
BNN-based LeNet [28]. Note that only the inputs and weights for
convolution and fully-connected layers are binarized and their out-
puts are in full-precision. Other kernels still rely on full-precision
calculation and data access.

We first review the differences between BNNs and conventional
DNNs/CNNs. As shown in Figure 3, BNNs have a binarization func-
tion (i.e., Bin) and their own versions of convolution (i.e., BConv)
and fully-connected functions (i.e., BMM). Other functions (e.g.,
BN, Actv, Pool) are the same as in DNNs/CNNs. The binarization
function Bin in BNNss is:

xb :sign(_x‘):{ll le'ZO

otherwise

(1)

Intra-Row ; Intra-Row ; Intra-Row ; Intra-Col Inter-Row
tane0[0 1 1 1] itane0[0 T 1 T]itane0[0 1 1 1 ’~
H H ——
TN T [
0
(R)and,or, xor | (B)_popc() i (€)_brev() £(D) _any(), _all() (E) _shfl()
Figure 2: BSTC row-wise and column-wise operations and communication patterns.
Wb Wb wb Wb wb
Y1b b 41b 41b 41b
X3 BinF{BconvERActv Pool EXBNERIBinF{BConv PR ActvE3 Pool PXBNEX [BinF2BMMER ActvER BNEXBin} R BMMP Aty PR BNFX[BinF2BMMPRY
CONV-1 CONV-2 FC-1 FC-2 Fout

Figure 3: LeNet BNN network structure for inference. WP refers to binarized weights. “1b” refers to 1-bit, “32b” refers to 32-bit full precision. “X” is the input. “Y” is the output. “Bin” refers
to binarization. “BConv” refers to bit-convolution. “Actv” refers to activation, which is ReLU in this paper. “Pool” refers to pooling. “BN” refers to batch-normalization. “BMM” refers to

bit-matrix-multiplication or fully-connected layer. Only BMM and BConv are binarized.

Note that the “sign()” function in some high-level languages such as
Python results not in binarization but in trinarization, as it returns
0 when x is 0. This is not an issue when simulating BNNs through a
full-precision implementation (as “x + 0 = x” while “x X 0 = 0”), but
becomes a big problem with padding in low-level implementation.
Therefore, using Eq (1) in Python for BNN training may lead to
inconsistent results. We solve this issue by adding a small € to
x before applying Eq (1) for binarization in Python-based BNN
training (e.g, TensorFlow and PyTorch).
For BConv and BMM, the basic operation is bit dot-product:

v=a-b=popc(a&b)
where @ and b are bit-vectors, “&” refers to logical-and, and popc
refers to population count. However, this is for a conventional

0/1 dot-product; bit-0 in BNNs is not 0 but -1. Consequently, the
dot-product for -1/+1 becomes:
v=¢7-l§=n—2><popc(?i€9E)zZXpopc(?i@l;)—n (2)

where n is the length of @ and l;; “@” refers to exclusive-or or XOR,
and “®” refers to exclusive-nor or XNOR. As the XNOR gate is
widely utilized in digital fabrication, most existing BNN algorithmic
studies (e.g., [12, 39]) and FPGA/ASIC based implementations (e.g.,
[35, 43]) apply XNOR-based design (i.e., 2 X popc(d & I;) —n). But
since XNOR is not directly supported on GPUs, we choose to apply
XOR approach instead (i.e., n — 2 X popc(d @ l;)) Note that finding
the right n is the key for excluding padding bits to ensure the
correctness. We will discuss this in detail later.

Overall, the functional differences between BNNs and DNNs fall
into four functionalities regarding to bit operations:

Bit-Packing: This corresponds to Bin in Figure 3. Following Eq (1),
if one lane of a warp reads a datum into its register R0, we then
use R0>=0 to generate a bit-column (1 bit per lane), and rely on
BSTC op-(H) to rotate the bit-column anticlockwise to a bit-row
and distributed it to all 32 lanes of the warp. Here we use op-(H)
rather than op-(G) because the result of __ballot() is little-endian,
i.e., the first lane corresponds to the LSB of the result. Therefore,
we need an additional __brev() to reverse the bit-sequence so that
the first lane corresponds to MSB of the 32-bit result. For 64-bit
binarization by a warp, __ballot() is repeated twice. After that, the
two output unsigned ints are concatenated into a 64-bit unsigned
long long int via the following embedded PTX:

1asm volatile("mov.b64 %0, {%1,%2};":"=1"(10): "r"(r0), "r"(r1)); //low,high

and then reverse as a whole using __brevlI(l0).

Bit-Computation: This includes bit-dot-product and other bit op-
erations. Bit-dot-product is used extensively in BMM and BConv.
We rely on BSTC op-(A) and (B) to realize bit-dot-product. OR and

BMM-32 Column-major BMM-32 Row-major BMM-64 Column-major BMM-64 Row-major
32 32 32 32 64 64 11111 1 e

111111 e
1[‘Do [p128[[[[[[[[[p384 Selz[alnle]n].. .[5] DO D128
1 p1 [Dp129| D257 [D385| “|8|Q|8|Q|8 |8 "™ IH| [p1 0129 | lolnln|mlsln]. [R
i[b2 [p130[p258[p38e| (2 &[R[7[&[R]...[=] oz [a|a a
1 D3 [p131[D259 [D387| “|a|a|a|a|a|a| |8] 1 b3 D131
1| D4 |D132|D260 D388 Hr|lelaolo(~ o1 D4 D132
B=EEIE
1| D5 [p133|D261 D389 | = &| &5 |3 (S| "|2| [D5 b33 | I FIEIEIES
13 15 13 [1] [Fersseeg : ; 3 SR
’ 2|R| R R|RR[D]|B T
1[p127] D255 [D383 | D511 al3[3|8(8(8 2l bp127 D255

Figure 4: Row-major and Column-major Bit-Packing Format for BMM

AND in op-(A) can be quite useful when dealing with bit-based
max- and min-pooling.

Bit-Communication: BSTC op-(E), (F) and (G) are particularly
important for this purpose. We will discuss them in detail in Sec-
tion 4.

Bit-Unpacking: Although this function is not used in BNN infer-
ence, it is very useful for debugging as it provides a way to obtain
a human-readable result to compare against the correct outputs
of a particular layer. Bit-unpacking is the reverse of bit-packing.
Op-(F) is adopted here: each lane (corresponding to a bit-row) shifts
and extracts a bit, and converts it to full-precision. For the 64-bit
version, we can repeat the following routine while altering 31 to 63
for the second pass.

1C = 2«(int)((R0>>(31—laneid)&0x1)—1;

4 SBNN SINGLE LAYER DESIGN

We discuss how to efficiently implement BMM and BConv based
on BSTCs.

4.1 Bit Matrix Multiplication (BMM)

Matrix-multiplication comprises both vertical and horizontal data
access. To gain performance we propose two bit-packing formats:
row-major and column-major. Figure 4 shows how a 128x128 data
block is packed into the two data formats:

e Column-major: Each of 32 consecutive raw data from a row of
the original data matrix are binarized into 32 0/1 bits via Eq 1
and packed as an unsigned int (e.g., DO in Figure 4), forming a
BSTC per warp. These unsigned ints are then organized in a
column-major order.

e Row-major: Each of 32 consecutive raw data from a column of
the original data matrix are binarized and packed as an unsigned
int, forming a BSTC per warp. These unsigned ints are then
organized in a row-major order.

Listing 1 and 2 show the code for binarization into column-major
and row-major 32-bit data formats, respectively. Line 11 in Listing 1
binarizes by a warp: 32 lanes cooperatively generate a complete
32-bit binarized result as a bit-row via op-(H) per each iteration,
and save the bit-row to corresponding lane in Line 12, building a
complete BSTC-32. Line 13 in Listing 2 shows another approach.

1 template <typename T> 1 template <typename T>

2 __global__ void PackTo32Col(const T+ A, 2 __global__ void PackToC32Row(const T+ A,

3 unsigned- B, int A_height, int A_width){ 3 unsigned- B, int A_height, int A_width){

4 unsigned Bval, laneid;//fetch lane—id 4 unsigned laneid;/fetch lane—id in a warp

5 asm('mov.u32 %0, %%laneid;":'=r"(laneid)); 5 asm("mov.u32 %0, %% r"(laneid));

6 #pragma unroll 6 unsigned Bval = 0;

7 for (int i=0; i<WARP_SIZE; i++){ 7 #pragma unroll

8 T f0 = A[(blockldx.x*WARP_SIZE+i):A_width 8 //process 1 bit per iteration

9 +blockldx.yWARP_SIZE+laneid]; 9 for (int i=0; i<WARP_SIZE; i++){

10 /lrotate anticlockwise 10 T 0 = A[(blockldx.x<WARP_SIZE+i):A_width

11 unsigned r0=__brev(__ballot(f0>=0)); 11 +blockldx.y*WARP_SIZE +laneid];

12 if (laneid == i) Bval = r0; 12 // concatenate a bit on the right

13} 13 Bval = (Bval<<1) | (f0>=0);

14 B[blockldx.y-A_height+blockldx.x*-WARP_SIZE 14 }

15 +laneid] = Bval; 15 B[bx+A_width+by~WARP_SIZE+laneid]-Bval;
16 } 16 }

Listing 1: Binarize into col-major format Listing 2: Binarize into row-major format

1__global__ void BMM32_Arow_Brow(...{ 1__global__ void BMM32_Arow_Bcol(...}{
28 2 .

3 register unsigned Cm[32] = {0};
4for (int i = 0; i < A_width; i++){ 4for (int i = 0; i < A_width; i++){

5 unsigned r0 = Asub[iA_height+laneid]); 5 unsigned r0 = Asub[i~A_height+laneid]);
6 unsigned r1 = Bsub[i-WARP_SIZE+laneid]; 6 unsigned r1 = Bsub[i-B_width-+laneid];
7 #pragma unroll 7 #pragma unroll

8 for (int j=0; j<WARP_SIZE; j++){ 8 for (int j=0; j<WARP_SIZE; j++){

3 register unsigned Cm([32] = {0}

9 //crop a bit—column of B 9 //broadcast a bit—row of B from lane—j

10 unsigned r2=__brev(__ballot((r1>>j)&0x1)); 10 unsigned r2 = __shfl(r1, j);

11 //each lane dot—product with the column of B 11 // each lane dot—product with the row of B
12 Cm[j] += __popc(r0 * r2); 12 Cm[j] += __popc(r0 * r2);

1BY . 1BY .

Listing 4: BMM by multiplying each A
row with each B row

Listing 3: BMM by multiplying each A
row with each B column

Each lane concatenates a single bit per iteration to its own bit-row
and the whole BSTC-32 is constructed after 32 iterations. Note that
Listing 1 stores data into B by column-major order while Listing 2
stores data into B by row-major order. The two bit conversion
methods have similar delay. The 64-bit versions are analogous.

Having binarized the matrices, we are ready to perform BMM. To
simplify the discussion, we first make three assumptions: (a) A and
B are bit matrices stored in row-major data format. (b) A and B are
not transposed, and (c) the sizes of A and B are divisible by 32. With
these assumptions, we first partition A and B into 32x32 bit-blocks,
corresponding to two BSTCs in two registers. Then, the block-wise
BMM can be achieved by fetching a bit-column of BSTC in register
B, rotating anticlockwise by 90° via op-(H), then dot-producting
with a bit-row of BSTC in register A via op-(A)/(B), and storing the
result to C as a full-precision element (Figure 3). Listing 3 shows the
major part of the code. Line 10 shows how to crop a bit-column from
Bsub (B is row-major). Each lane contributes one bit per iteration,
which is then dot-producted with bit-rows from Asub held by RO
of each lane.

Relaxing Assumption-(a): Consider that if B is stored in column-
major data-format, we can avoid the bit-column cropping operation
by broadcasting a bit-row of Bsub via __shfl() of op-(E). Listing 4
shows the code: if B is column-major, then rather than cropping
a bit-column, we now only need to broadcast a bit-row of B per
iteration. It is interesting to see that the format transition from row-
major to column-major for B is equivalent to each 32x32 bit-tile
in B undertaking a tile-wise transpose. Similarly, if A is stored in
column-major, B in row-major, or if both A and B are stored in
column-major, there are two more compositions. To summarize,
there are four alternative approaches (one per combination of data
formats):

o A— A B — Bb

col-major’ col-major’

b b
* A Acolfmajor’ B— Brow—major’ BMMYOW-by-row -C
e A— Al B— B?

row-major’ row-major’ BMMCOZ’by’VOW -C

¢« A— Al B— BY BMMcol—by—col -C

row-major’ col-major’

BMMruw-by-cul -C

where AP refers to the binarization of A. We have evaluated all these
four combinations and found that the second choice (Listing 4)

1 register unsigned Cm[64] = {0};
2for (int i=0; i<A_width; i++){

3 unsigned long long a0 = Asub[i-A_height+laneid]); //1st half of A

4 unsigned long long a1 = Asub[i-A_height+WARP_SIZE+laneid]);//2nd half of A
5 unsigned long long b0 = Bsub([i+B_width+laneid]);//1st half of B

6 unsigned long long b0 = Bsub[i-B_width+WARP_SIZE+laneid]);//2nd half of B
7 #pragma unroll

8 for (int j=0; j<WARP_SIZE; j++){

9 unsigned long long [0 = _shfl(bo, j); //broadcast 64 bits

10 unsigned long long 11 = _shfl(b1, j); //broadcast 64 bits

11 Cm[j] += (_popcll(20*10)<<16) | __popcli(a1*10);//dot—product and register packing
12 Cm[j+*WARP_SIZE] = (__popcll(a0*11)<<16) | __popcli(al*11); }}

Listing 5: 64-bits Bit-Matrix-Multiplication Kernel (BMM-64)

shows the best performance (on a Tesla-P100, the delays are 28K,
20K, 28K, 56K cycles, respectively). An explanation is that, compared
with __ballot(), communicating through __shfl() appears to be more
efficient. Among the four options, only the second does not use
__ballot().

Relaxing Assumption-(b): We find that transposition (A, B,
or both) can be realized through a different composition of the
data format (i.e., row-major, col-major) and BMM approaches (i.e.,
row-by-row, row-by-col, col-by-row, col-by-col). For example, if
A is to be transposed before BMM, it is equivalent to binarizing A
and B into row-major and performing row-by-row BMM. For each
scenario of transposition (i.e., A X B, A X BT AT x B, AT x BT),
we measured all 16 combinations of data-formats and BMM ap-
proaches and found that row-by-row based tiled-BMM (in Listing 4)
always outperforms the other three. Therefore, the optimal design
summarizes as:

e AxB:Ab

BY
col-major’ “row-major’

BMMrow-by-row - C
T . Ab
e A" XB: Arowfmajor’ Browfmajor’ BMMrow-by-row -C
e AxBT: Al BMM,ory-by-row — C

col-major’ Bcolfmajor’

o AT x BT Afow—major’ Bcul—major’ BMM”’W'by'”’W -C
Relaxing Assumption-(c): In the case where matrix size is not a
factor of 32 (e.g., in the output layer), padding is necessary. For full-
precision GEMM, padding with zeros does not affect the correctness.
However, for BMM, padding with zeros is equivalent to padding
with -1s, so we need an approach to eliminate the effect of padding.

Two important observations have been made: (1) Eq 2 essentially

has a nice feature: if @ and b are both padded with t bits and all
the 2 X t bits remain the same (either 0 or 1), it does not impact
pope(d & l;) So as long as n is the actual length before padding (i.e.,
n rather than n + t), the padded bits will not affect the correctness
of the result. (2) When writing to C, we must avoid writing outside
the output matrix boundary.

BMM-64: The major differences between BMM-32 and BMM-64
include: (a) Although in BMM-64 the bitwidth becomes 64-bits, a
warp still only has 32 lanes. Therefore, to process a 64x64 bit-block
(corresponding to two BSTC-64), a warp has to process it twice: one
round for each half of the bit-block (i.e., a BSTC-64). Segmentation
and concatenation from/to one 64-bit datum to/from two 32-bit
data are required. (b) In Line 3 of Listing 3 and 4, we use per-lane
registers to temporarily buffer C’s partial accumulation result Cm,
with a demand of 1024 registers per warp. However, such a strategy
cannot be applied to BMM-64 as it requires too many registers.
To address this, we propose register packing: 16 bits is already
sufficient to hold C’s partial results, as shown in Listing 5.

Extracting Fine-Grained Parallelism: In the current design,
each warp processes a 32 X 32 or 64 X 64 subblock. However, the
latest GPUs contain dozens of streaming multiprocessors (SMs). For
example, in order for V100 GPUs to be fully-loaded, with the current
occupancy (i.e., 0.5 due to register constraints), it requires the matrix

size to be at least 1620x1620 (32bits X 4/80SMs X 32warps = 1620)

for BMM-32 and 3240x3240 for BMM-64. This is too much for
small BNN fully-connected layers and can easily lead to workload
imbalance, especially when the batch size is small. Therefore, we
propose a lightweight batched version of BMM-32 and BMM-64,
which spreads out the loop in Line 7-8 of Listing 4 and Listing 5 to
different warps. This may sacrifice some register-level data reuse,
but can effectively extract more fine-grained parallelism to feed all
GPU SMs and alleviate potential workload imbalance. Such a more
fine-grained design can bring significant speedups for small input
matrices.

4.2 Bit Convolution (BConv)

For convolution, the basic operation is still bit dot-product. Again,
we need to compact the data first. To be general, we adopt the
following API as the interface of BConv, which is similar to Tensor-
flow’s conv2d() APL

1Bconv2d(x, W, stride_h, stride_w, padding, use64bit)

where x is the input image, which is a 4D tensor in shape [batch,
in_height, in_width, in_channels] (i.e., “NHWC”); W is the filter, a 4D

tensor in shape [filter_height, filter_width, in_channels, out_channels];

stride_w and stride_h are the strides along height and width dimen-
sions; padding option can be “SAME” or “VALID”. The task of BConv
is to binarize x and W into x? and W? with Eq 1, and convolve xb
with W? to a generate full-precision 4D output image tensor in the
same format as input [batch, out height out_width, out_channels]:

I

m=—00 n=—00
For a high-performance implementation, identifying the optimal
mapping from algorithm parallelism to hardware parallelism is
essential, i.e., with the most data reuse. Regarding BConv, since the
only connection between x and W is “in_channels”, to gain the max-
imum spatial benefit, we binarize along “in_channels” (except for
the input layer). Binarization is similar to BMM following Eq 1. In bit
convolution, to gain the most fine-grained parallelism we use each
warp to process one element of the output. Therefore, for an image
of size 224x224 (batch=1) from ImageNet, we spawn 224X 224X 1 =
50176 warps, which is sufficient to feed all SMs. Since every out-
put image element is produced by dot-producting in size of [fil-
ter_height, filter_width, in_channels, out_channels], the hardware
parallelism, which is warp_size X 32/64 bit = 1024/2048, needs to

xb[s,t]*Wb[s,t] Wb[s—m t—nj

spread along filter_heightxfilter_widthxin_channelsxout_channels.

For filter_height and filter_width, the difficulty is the need to handle
padding at the boundary; these two dimensions are thus processed
sequentially. The remaining issue then becomes how to spread
1024/2048 along in_channelsxout_channels more efficiently.
First, let’s suppose in_channel is a factor of 32 or 64, Listing 6
shows the BConv code. The design is a direct convolution: it does
not follow the implementations of cuDNN [10] or Caffe [22], which
flatten the input image first and then go through GEMM ([8]. There-
fore, we do not require dozens of different strategies to efficiently
handle different scenarios as done by cuDNN [10]. In addition, we
do not require extra GPU memory as specialized workspace to
buffer the flattened matrix, which can be huge in size. As shown in
Listing 6, out_height is mapped to block-grid Y-dimension (Line 9);
out_width is mapped to block-grid X-dimension (Line 8); batch is
mapped to block-grid Z-dimension (Line 10), which is 1 (or very
small) for inference. filter_height and filter_width are mapped to
loop r and s, respectively, for sequential execution. For a single

1 template <typename T>
2__global__ void Conv2d_32bit(const T« __restrict__ input, const unsigned« __restrict__ bitfilter ,
3 T+ output, const int in_channels, const int out_channels, const int in_width,
4 const int in_height, const int filter_width, const int filter_height,
5 const int batch, const int stride_vertical , const int stride_horizontal,
6 const int out_width, const int out_height, const int pad_h, const int pad_w) {
unsigned laneid; asm("mov.u32 %0, %%laneid;":"=r"(laneid));//fetch lane—id in a warp
8 const int bx = blockldx.x; //over out_width
9 const int by = blockldx.y; //over out_height
10 const int bz = blockldx.z; //over batch
11 const int ins = (in_channels >> 5);//number of steps in in_channels
12 extern _shared__unsigned Csubl[];
13 const int ax0 = bxsstride_horizontal—pad_w;//from output image idx to input image index
14 const int ay0 = bysstride_vertical—pad_h;
15 int exclude = 0; //track the number of filter entries that are masked off
16 for (int i=laneid; i<out_channels; i+=WARP_SIZE) Csubl[i] = 0;
17 for (int r=0; r<filter_height; r++) { //load a window of data from Input

18 for (int s=0; s<filter_width; s++){

19 const int ay = ay0 + r; //y—coord in Input

20 const int ax = ax0 + s; //x—coord in Input

21 if ((ay>=0) && (ay<in_height) && (ax>=0) && (ax<in_width)) {//within Input frame
22 for (int c=0; c<ins; c++) {//per 32—bit in in_channels

23 //Input[batch, in_height, in_width, in_channels]

24 T f0 = input[bz+in_width+in helght in_channels

25 +(ay+in_width+ax)sin_ch 32+laneid];

26 unsigned r0 = __brev(__ballot(f0>=0));// binarize

27 for (int i=laneid; i<out_channels; i+=WARP_SIZE) {

28 unsigned r1 = bitfilter [(r+filter_width+s)«ins+out_channels+c+out_channels+i];
29 Csubl[i] += __popc(r0 * r1);}

30 }} else { //notin frame, so track

31 exclude++; }}} //accumulate

32 for (int i=laneid; i<out_channels; i+=32)

33 output[(bz+out_heigh _width-out_ch Is) //batch

34 + (by+out_width+out_channels)//out_height

35 + (bxout_channels) + i] //out_width

36 = in_channels-filter_width-filter_height //flatten matrix size

37 — exclude+in_channels //eliminate padding distoration

38 — (2-Csubl[i]); } //n—2popc(a’b) for 0/1 to simulate sum(a+b) for +1/—1

Listing 6: 32-bits Bit Convolution Kernel (BConv-32)

warp or thread block (following the warp-consolidation model), we
map in_channels to the bit-width (32 or 64), and out_channels to
warp-lanes (32). In Line 24-26, each warp fetches 32 coalesced full-
precision data from the input image, binarizes them as an unsigned
int (i.e., R0) and broadcasts RO to all 32 lanes through __ballot().
Then in Line 28, each lane fetches 32bits (i.e., R1) with different
out_channel ids from the binarized filter. After that, RO and R1 are
dot-producted in Line 29. If in_channel is larger than 32/64, we
iterate along in_channel (loop c in Line 22) as a step of 32/64. If
out_channel is larger than warp_size, we iterate along out_channel
(loop iin Line 27) at a step of warp_size. Note that writes to Csub
in shared memory does not incur bank conflicts. Finally, at Line 33,
we traverse out_channels by the whole warp to perform efficient
coalesced writing.

Padding: The more interesting part of BConv lies in padding.
When the padding option is “VALID”, no padding is needed; but
when it is “SAME”, padding is required. As mentioned in Section 4.2,
simply padding 0 is not feasible as 0 is already encoded for -1. For
BMM, a unified boundary condition to exclude the padding ele-
ments solves the problem, but for BConv, it is more difficult: the
input image and filter are not necessarily aligned. This is espe-
cially the case for the corner elements and when the stride is not 1.
Divergent from existing CPU-based BConv implementations [19],
which require pre-processing and/or post-processing, we handle
the padding issue on the fly with no extra memory cost. As shown
in Line 31, we declare an exclude variable to track when the convolv-
ing element falls out of the input image frame (Line 21), calculate
the actual vector length (the padded bits should not be counted as
effective bits, recall Eq 2 and Section 4.2), and make corresponding
amendments (i.e.,—excludexin_channels) when saving the results in
Line 36-38. Note that this simple strategy is only feasible for direct
convolution rather than the widely-used flatten&GEMM approach
[8, 10, 19, 22]. This is because we need to convey the padding infor-
mation of each element from the flatten kernel to the BMM kernel in
order to distinguish a padding 0 from a normal 0. As a consequence,
extra space cost and/or pre-/post-processing are inevitable.

w
........ dib.... FClayerFusion . Qb FClayer Fusion

b b

BinfEBMMP AV BN Binf 2 BMMER AP BN]

FC-1 FC-2|

Figure 5: New Layer Partition for BNN LetNet Network.

BConv-64 BConv-64 is similar as BConv-32 except that each
lane of a warp processes a 64-bit in_channel per iteration of c. In
addition, we need two op-(G) for binarization and 64-bit op-(B) for
bit accumulation.

5 SBNN INFERENCE IN A KERNEL

In this section, we present how to fuse the whole SBNN network
model into a single GPU kernel. First, we discuss why it is possible
for conducting all-layer fusion in our SBNN design. Then, we focus
on presenting the intra-layer fusion strategy. Finally, we show how
to fuse across layers.

5.1 Design Prerequisite

In this section, we propose the novel idea of fusing all DNN layers
into a single GPU kernel. First, we will discuss some prerequisites
for a successful all-layer fusion:

(1) Hardware support for GPU global synchronization. Prior
to the Pascal architecture and CUDA Runtime-9.0, global synchro-
nization among thread blocks is not feasible. Recently, with the
introduction of cooperative-groups, programmers can declare the
grid-group through grid_group grid=this_grid() and use grid.sync()
to synchronize across the kernel grid. To enable this functionality,
a kernel has to be launched by cudaLaunchCooperativeKernel()
and compiled with -rdc=true option [36]. Global synchronization is
necessary for ensuring data consistency in our SBNN cross-layer
fusion.

(2) Novel layer partition design for minimal cross-layer data
movement. Figure 5 shows our proposed new layer partition
method for SBNN, in comparison to the original design in Fig-
ure 3. The dotted-red-boxes mark the new LeNet layer boundaries,
where we move binarization (i.e., Bin) of the next layer into the
previous layer. In this way, we partition the SBNN network into
two major types of layers: FC layers and Conv layers. This new
partition approach brings the following benefits. First, only the
data movement between Bin and BConv/BMM are binarized; oth-
ers are full-precision types. Thus, the data write and read between
layers can be minimized according to this layer partition. Second,
although Actv, Pool, BN, Bin are all element-wise functions, BConv
and BMM are not. As workload per Conv/FC layer can be signifi-
cantly different, to achieve high occupancy for a small batch, we
have to re-balance workload as evenly as possible among SMs per
layer. As there is no inter-SM communication network, the image
data forwarded across layers have to be stored and re-fetched per
layer. To avoid potential memory dependency violations, a global
synchronization is often required for SMs to stay synchronized.

(3) Unified GPU Kkernel configuration across fused layers. To
fuse two GPU Kkernels, a basic requirement is that they share the
same kernel configuration, i.e., gridDim and blockDim. "gridDim"
is often related to input data (e.g, the volume of tasks), and "block-
Dim" is strongly correlated to programming models and occupancy,
which may greatly impact performance. Traditional CUDA based
designs assign each layer function (e.g., conv2d, gemm, pool, batch-
normalization, etc) its individual ideal blockDim and gridDim for
archiving the best performance for the targeted workload, resulting

Figure 6: SBNN FC Layer Fusion

in multiple kernels. On the contrary, since our BSTC-based SBNN
kernel design (e.g., BMM, BConv) follows the warp-consolidation
model [29], blockDim is always 1D with 1 warp (or 32 threads). Re-
garding to gridDim, we adopt elastic kernel [37] or warp-delegation
[30] to unify this value across layers. In this way, a unified GPU
kernel can be formed across all the fused layers, avoiding multi-
kernel launching and release. Specifically, we allocate the maxi-
mum number of warps (or thread blocks) the GPU resources can
sustain simultaneously as elastic agents, which iteratively fetches
the thread block jobs from a task list. A runtime throttling scheme
on thread blocks is also provided to control concurrency for best
performance.

5.2 Intra-Layer Fusion

We show how to fuse the functions inside the red-dotted-boxes in
Figure 5 into a single GPU kernel.

(a) FC Intra-Layer Fusion. Here, we adopt a backward fusing
strategy, as shown in Figure 6. First, we fuse binarization (Bin) with
batch-normalization (BN). BN has already been discussed in Eq (1).
BN [21] is shown below:

Xi,j —]E[x*,j]
Yij =\ Tmemmm——

Var[x. ;] + e) R ®

where E is the mean value across the batch. Var is the variance. € is
a small scalar to avoid zero division. y and f are the learned scaling
factor and bias. i iterates over the batch, j iterates over each output
data element (i.e., output_channelsxoutput_heightXoutput_width).
Combining Eq (3) and Eq (1), and given the fact that y is a scaling
factor being positive !, we have

Bi-Var|x. jl+e

1 ifxjj > Esj— T (4)

Yi,j =

—1 otherwise
where y; j is the output of Bin which is in binary while x; ; is the
input of BN which is in full-precision. Then, we integrate Actv. For
DNN or BNN, Actv is often ReLU, or y = max(x, 0). Therefore, the

combination becomes
Bi-NVar|x. jl+e

-1 if max(xl-,j, 0) < E. ;- T)

Yi,j =

1 otherwise
where y; ; is the output of Bin which is in binary. x; j is the output
of BMM. FC intra-layer fusion is essentially to apply Eq 5 on each
output of BMM before storing into binarized output matrix. The

threshold E, j — @

J
since max(x; j,0) in BNN is an integer, this offers opportunities to
round up the threshold to an integer. Thus, all parameters in our

is a floating-point number. But

IThis is true for Tensorflow but not necessarily for PyTorch. In that case, we can
inverse the corresponding channels of the weight to ensure y converts to positive
since bias=0 for BConv and BMM. Or, we can constraint y to be always positive during
training.

1 unsigned c=0; /amendment to BMM—32
2 if (bx-32+laneid<A_input){ //after padding, if height is in boundary
3 for(int i=0; i<32; i++){//concatenate bits
4 c <<=T//left shift to leave space for the next bit
5 if (by-32+i<B_width){/after padding, if width is in boundary
6 int t = max(A_width — 2 Cm[i], 0); //ReLU
¢ |= (t < threshold[by32+i]); }}} //Batch—normalization and Binarization
8 Csub[laneid] = ¢; // coalesced writing

Listing 7: FC Layer Fusion Amendment to BMM-32

Figure 7: SBNN Conv Layer Fusion

1__device____inline__void ConvPool32Layer(Conv32LayerParam= p){
2 extern __shared__int Cs[];
3 volatile int+ Csub = (int<)&Cs;
4 for (int bid = blockldx.x; bid < (p—>output_height)+(p—>output_width)«(p—>batch);
bid += gridDim.x) {
id / ((p—>output_width)«(p—>output_height));
id % ((p—>output_width)«(p—>output_height)) / (p—>output_width);
int bx = bid % ((p—>output_width)«(p—>output_height)) % (p—>output_width);
.. // Original BConv—32 Kernel Call

S oo uw

Listing 8: Warp-Delegation for SBNN Inter-Layer Fusion

implementation are integers, except the final output layer, where
no further binarization can be fused. Listing 7 shows the necessary
amendments to the original BMM-32 in Listing 4 when integrating
Actv, BN and Bin. Also, the output is binarized data, reducing data
writes by 32x.

(b) Conv Intra-Layer Fusion. Convolution intra-layer fusion is
similar to FC, except that we have to integrate the pooling function
Pool, as shown in Figure 7. Pooling function is typically to pick
the maximum or minimum value among a m X m tile, where m is
generally 2. If we move the Pool function after Bin, their combina-
tion essentially offers a new opportunity for branch-pruning: for
max-pooling, if one of the 2 X 2 elements is shown to be 1 after
going through BN and Bin, the computation of the remaining 3
elements in the pooling window can be pruned since Bin already
has its maximum possible value of 1. Similar condition applies to
min-pooling with value 0.

Since Pool is not strictly element-wise function, one approach is
to perform a 2 X 2 thread coarsening. In other words, each warp
handles 4 output elements sequentially. Thus, max-pooling can be
achieved by

1 output[((bz+output_height+(by/2))<output_width +(bx/2))+(output_channel/32)+k] |= C;

Alternatively, to extract the most fine-grained parallelism, we
still spread out a warp for each output image before pooling. To
process pooling, we use bitwise OR and AND for max/min pooling
when writing binarized results to the pooled output image. However,
as the 2 X 2 data elements are processed by 4 independent warps, a
race condition may occur. We apply atomicOr() and atomicAnd()
before writing to output image (the latter option is often much
faster than the former), e.g.,

1 atomicOr(output[((bz+output_height+(by/2))<output_width
2 +(bx /2))*(output_channel/32)+k], C);

5.3 Inter-Layer Fusion

Now we are ready to fuse all the layers into a single kernel. Since
BMM and BConv functions have been designed based on the warp-
consolidation model, blockDim for all the layers are already unified
to 32. Here we show how to unify gridDim across layers via elastic
kernel [37] and warp-delegation [30]. Listing 8 shows an example
on BConv-32 with pooling. We have developed a corresponding

1#include <cooperative_groups.h>
2/ Inference Network
__global__ void LeNet(InConv32LayerParam+ bconv1,Conv32LayerParam+ bconv2,Fc32LayerParams bfcl,
Out64LayerParam+ bout){
grid_group grid = this_grid ();
InConvPool32Layer(bconv1); //1st Convolution Layer with Pooling
ConvPool32Layer(bconv2); //2nd Convolution Layer with Pooling
Fc32Layer(bfc1); //1st Fully—Connnect Layer
9 Out32Layer(bout);} /2nd Fully—Connnect Layer
10//
11 int numBlockPerSm; //maximum number of thread—blocks per SM under current occupancy
12 int numThreads = 32; //warp size following warp—consolidation model
13 cudaDeviceProp deviceProp;
14 cudaGetDeviceProperties(&deviceProp, GPU_dev); //GPU_dev is GPU device id
15 cudaOccupancyMaxActiveBlock processor lockPerSm, LeNet,
16 numThreads, shared_memory);
17 void+ args[] = {&bconv1, &bconv2, &bfcl, &bout};//set kernel Funcnon parameters
18 cudaLaunchCooperativeKernel((void+)LeNet, BlockPer eProp.multiProcessorCount,
19 numThreads, args, shared_memory);//kernel invokation

® GG w

Listing 9: SBNN Singular Kernel for LeNet Network

parameter object Conv32LayerParam to pack all the required pa-
rameters of that particular layer. In Line 4-5, we use all the allocated
thread blocks to traverse the original gridDim space and calibrate
the thread block id to its dedicated task in the original space (Line 6-
8). After that, we invoke the original BConv-32 kernel for process-
ing. In this way, all the layer kernels can have the identical gridDim,
getting ready for fusion.

We then fuse all the layers into a single kernel, as shown in
Listing 9. This kernel is to be written by the users to describe the
network structure, with one parameter object per layer. “grid.sync()”
is inserted at the end of each layer function as a global barrier. As
can be seen, the fused kernel is very easy to write from users’
perspective: an appropriate parameter object for each layer can be
simply declared, followed by constructing the __global__() function
as Listing 9. To increase hardware occupancy, by default we allocate
the maximum number of thread blocks allowed under the present
resources consumption in Line 15. However, users can tune this
value as needed. The kernel function parameters are configured in
Line 17 and the fused-kernel is invoked in Line 18-19.

There are four design considerations in our fused approach. (1)
After our new layer partition approach is applied (Section 5.1), the
image data to be written by the former layer and immediately read
by the following layer are condensed bit-data, which is possible to
fit into on-chip memory, e.g., registers and shared memory (e.g., in
Line 2-3 of Listing 8, Cs is shared by all the layers). Ideally, there is
no global memory image data read and write in each layer. However,
one complexity is that BMM and BConv may have data dependency
across SMs (one SM may need data from another SM). Unless data
are written into the global memory, SMs cannot share on-chip data
— there is no inter-SM network for current GPUs. Thus, some global
write and read as well as synchronization are necessary. Neverthe-
less, the overhead should be relatively small. This is because the
volume of data has already been reduced by 32x; and since read is
often immediately followed by write (of the same image-data), L2
cache rather than off-chip global memory is leveraged for buffering.
So the data is essentially still kept on-chip. In fact, we observe very
high L2 cache hit rate for the fused approach. (2) The first layer is
the input layer, in which the input image is in full-precision and
in_channel is generally small (e.g. 1 for gray image and 3 for RGB).
In addition, for a large network, the input image is not binarized
in the first layer to avoid significant information lost. In our fused
design, we have developed special parameter objects and layer im-
plementation for the input and output layers (i.e., the input layer
is typically convolution while the output layer is generally fully-
connected). (3) For the fully-connected layers, the input image is
binarized in column-major (weight in row-major) while for convolu-
tion layer, the input image is binarized along in_channel. Therefore,
to connect the last convolution layer with the first fully-connected

Training { sbnn_model.ckpt:

FP Weights Configure i
_sbnn training.py _sbnn_mference.py
—' BN Parameters
Python/TensorFlow
Inference --{

—-=-=TensorFlow Op:
:L Validation CUDA

BMM/BConv2d.s0

Bin Weights

Configure : Call
——|sbnn mference.cul—>| shnn.h/sbnn.so
Thresholds = / |

st model o

Figure 8: Framework for SBNN training and inference.

layer, the bit image data has to be transposed. We set a configurable
option for the convolution layer to correctly write to the output
image (i.e., transpose during writing) so that such transposition will
not lead to additional overhead. (4) For newer network structures
such as ResNet [18], we need to save the full-precision convolution
result before binarization for subsequent merging. We are currently
looking at how to fuse the entire basic block or bottleneck block
into a single function so the residual saving, fetching and processing
can be quite efficient.

5.4 SBNN Inference Framework

For validation and wide adaption, we have developed a frame-
work to train an SBNN and configure its weights & thresholds
for inference. As shown in Figure 8, we train SBNN in TensorFlow
[17]. We have encapsulate BMM-32/64 (Listing 4) and BConv-32/64
(Listing 6) as a dynamic library that can be called as TensorFlow
operations [17] during training. The intention is to ensure that the
behavior of training forward-pass is exactly the same as our SBNN
inference. After an SBNN network is trained, a script dump.py is
employed to extract the weights and batch-normalization param-
eters (i.e.,Var,E, f, y) from the TensorFlow dumped checkpoints
(e.g., sbnn_model.ckpt), calculate the thresholds, and save weights
& thresholds information into an SBNN configuration file (e.g.,
sbnn_model.config). The configuration file is then parsed by SBNN
inference program during initialization. We have assigned a certain
format for the configuration file and provided APIs to parse such a
file in C/CUDA. For validation and debugging purposes, we also
develop a TensorFlow inference script in addition to the training
Python script (Figure 8).

6 EVALUATION

We evaluate our design of BMM, BConv, and SBNN on four state-
of-the-art GPU platforms: an HPC-oriented NVIDIA Tesla-P100,
V100, and edge-oriented Jetson-TX1 and TX2, as listed in Table 1. It
is expected that the Tesla platforms will be used for cloud or HPC
inference while the Jetson platforms will be used for edge inference
in an embedded environment.

6.1 Bit-Matrix-Multiplication

First, we measure the latency of BMM with matrix size scaling from
64x64 to 32768x32768. We compare our design against cuBLAS
(i.e., simulating +1/-1 BMM through full-precision SGEMM) and
bnn-baseline (i.e., the BMM design from the original BNN work
[12]). Note that the cuBLAS scheme does not include binarization.
Besides, bnn-baseline implementation can only run correctly when
the matrix size is a factor of 512 and it does not support transposi-
tion. There are 8 different schemes to be evaluated from this study,
described in Table 2: BMM-32 (the 32bit BMM in Listing 4), BMM-64
(the 64bit BMM in Listing 5), BMMS-32 (the variant of BMM-32
by extracting fine-grained parallelism, as discussed in Section 4.1),

BMMS-64 (the variant of BMM-64 by extracting fine-grained par-
allelism), BMM-32B (BMM-32 with its two input matrices already
binarized before processing and its output matrix binarized before
return; i.e., both inputs and output matrices are bit matrices, which
is the condition of SBNN inference. Similarly, BMM-64B, BMMS-32B,
and BMMS-64B are described in Table 2. We validate the correctness
of results by comparing against cuBLAS. The reported figures are
the average of multiple runs.

Figure 9, 10, 11 and 12 illustrate the measured latencies of BMM
with increased matrix size on the four platforms in Table 1. In order
to fit the curves into a single figure, we normalized the latency with
respect to cuBLAS. On the Maxwell-based Jetson-TX1, BMMS-64 and
BMMS-64B are failed to run due to insufficient hardware resources.
Overall, BMM-32B on the P100 GPU shows the best performance,
delivering ~ 10X speedup over cuBLAS simulated BMM, with 1K
matrix size. In general, the 32-bit BMM schemes show better perfor-
mance than their 64-bits counterparts. This is mainly the result of
trading-off between workload balancing and register data reuse. The
64-bits BMM achieve better data reuse than the 32-bits BMM, but
when the matrix size is small, it suffers from insufficient workload
for all SMs. The fine-grained versions, although do not show an
obvious advantage over the coarse-grained version here, appears
to give a significantly better performance in SBNN inference, espe-
cially for the 64bit versions (as will be seen in Section 6.3). We have
also evaluated BMM with transposition. The results show that the
transposition overhead is negligible since it is just an alternative
selection of data format (see Section-3). If the matrix size S is not
a factor of 32 for 32-bit BMM, or 64 for 64-bits BMM, padding is
required and some computation will be wasted; the performance is
the same as when matrix size is [S/32] X 32 or [S/64] X 64.

6.2 Bit Convolution

We then measure the performance of BConv. In contrast with
matrix-multiplication, convolution needs many more parameters:
input_size, filter_size, input_channel, output_channel, batch, stride
and possibly pooling. Due to page limitation, we only show the
curves with respect to input_channel and output_channel - these
are frequently varied with layers of the same network. We set input
size=64 (medium image size), filter size=3 (most frequently used),
stride=1 (most frequently used), and batch=1 (for inference). Eval-
uation with respect to other parameters (e.g., batch, input_size,
filter_size) are provided in the supplementary file. Since there is
no existing BConv design for GPUs, we compare our approaches
against FP-32 cuDNN simulated BConv.

There are two major implementations for convolution in cuDNN:
the basic one without any workspace utilization (i.e., CUDNN_CON-
VOLUTION_FWD_NO_WORKSPACE, marked as cuDNN-base) and
a fast one demanding large workspace (i.e., CUDNN_CONVOLUTI-
ON_FWD_PREFER_FASTEST, marked as cuDNN-fast). Our imple-
mentation includes four versions: BConv-32 and BConv-64 are 32-
bit and 64-bit BConv with input, filter and output in 32-bit full-
precision. BConv-32B and BConv-64B are 32-bit and 64-bit BConv
with input, filter and output in bits (so, we avoid the binarization
of input and filter, but add the binarization of output).

The results are normalized to cuDNN-base, shown in Figure 13, 14,
15 and 16 for input-channels (output_channel=64), and in Figure 17,
18, 19 and 20 for output_channels (input_channel=64) on the four
platforms (Table 1), respectively. As with BMM, the 64-bit version
cannot run properly on the Maxwell-based Jetson-TX1 platform
due to resource limitation. From these figures, we can observe that

Table 1: GPU SM resource configuration. “Reg” refers to the number of 4B register entries.

GPU Arch CC Freq. Rtm. | SMs | CTAs/SM | Warps/SM | Warps/CTA | Reg/SM | Reg/CTA | Reg/Thd | Shared/SM | Shared/CTA
Tesla-P100 Pascal 6.0 1481 MHz 9.1 56 32 64 32 64K 64K 255 64KB 48KB
Tesla-V100 | Volta 7.0 1530 MHz 9.0 80 32 64 32 64K 64K 255 96KB 96KB
Jetson-TX1 | Maxwell 53 998MHz 9.0 2 32 64 32 64K 32K 255 64KB 48KB
Jetson-TX2 | Pascal 6.2 1301MHz 8.0 2 32 64 32 64K 32K 255 64KB 48KB
14[[x % brnbaseine < swMeas | 14[[% % bonbaseine < BvMeas | 14> % bnbaseline E-E BMM 328 T 14> % bnbaseline 44 BMM 648 T
@-® BMM-32 Q¢ BMMS-32B @-® BMM-32 { BMMS-32B 0 @@ BMM-32 <4< BMM-64B 0 @@ BMM-32 9 BMMS-328B|
2 A BMM-64 © O BMMS-648 2 BMM-64 © O BMMS-64B 2 AA BMM-64 0 BMMS-32B 2 A—A BMM-64 ©-0 BMMS-64B|
< 12fHe-e BuMs32 ¥V BMMS-64 B < 12He-e BMMs-32 ¥ BMMS. B S5 12{{e-e BMMS-32 R S 12{e-e BMMS-32 ¥V BMMS-64 R
o -3 BMM-328 o BM| o o B3 BMM-328
3 10 3 10 1 3 10f 4 3 10f E
g 5 g s g s R
° ° ° °
2 g° 59 12
e af 9 4 ¢ 4] 9
& 2 a2 & 2 1 &
b i = —e— — § —=% -
S . . 0 Y h . . rd * ¥ . . & * n . .
064 128 256 512 1K 2K 4K 8K 16K 64 128 256 512 1K 2K 4K 8K 16K %4 128 256 512 1K 2K 4K 8K %4 128 256 512 1K 2K 4K 8K

Matrix size (A[x,x]*B[x,x])
Figure 9: BMM speedups for Tesla-P100.

Matrix size (A[x,x]*B[x,x])

Matrix size (A[x,x]*B[x,x])
Figure 10: BMM speedups for Tesla-V100.

Figure 11: BMM speedups for Jetson-TX1.

Matrix size (A[x,x]*B[x,x])
Figure 12: BMM speedups for Jetson-TX2.

[} X 1 o X 1 o X 1 o X |
B 1463 g B 14163 g B 14163 g B 14fe3 g

8 A BConv-64 8 A BConv-64 8 A4 BConv-64 38 A—A BConv-64

T 12[{e-@ BConv-328, 1 = 12fe-e BConv-328 1 = 12He-e BConv-328 1 = 12He-e BConv-32B 1
z ¥V _BConv-648 z ¥V _BConv-648 z z ¥V _BConv-648

g 10 1 & 10 _-x { & 10} 1 & 10t y—— v]
S > y---7" > > _--

o osf 12 8f v--" 172 8f 12 8f P 1
9] o - o o -7

3 6 _y 13 6fv A= 138 6f 13 6 _.v =A%
g = === S W I e S S 4Ly

2 A== 1 3 4fe———®—9——e | 2 4f ——= | 3 4r]_— 1
R Gk i i g g g

A4 g ——. A s R 1 8 2f 1 8 2f E
0 0 L L L L L 0 0 L L L L L 0 0 L L L L L n O L L L L L

64 128 192 256 320 64 128 192 256 320 64 128 192 256 320 64 128 192 256 320
Input channel Input channel Input channel Input channel

Figure 13: BConv speedups on Tesla-P100. Figure 14: BConv speedups on Tesla-V100. Figure 15: BConv speedups on Jetson-TX1. Figure 16: BConv speedups on Jetson-TX2.

@ 14 cudnn-fast ‘ ‘ "] o 14[= ot ‘ ‘ "] o 14 et ‘ ‘ "] o 14[= ot ‘ ‘ "]
5 |22 s e g e g |l e

€ 12He# BConv-328 4 € 12He@ sconv-328 {1 € 12He® Bconv-328 4 € 12He@ Bconv-328 R
= ¥V _BConv-64B| = ¥V _BConv-64B| = = ¥V _BConv-64B|

g 10} {13 1 & 10} { & 10} 1
3 3 3 3

C o8 1o 8 10 8t 1508 1
o o 9 - 9

3 6 13 6 {1 3 6} A\ 132 6 J
a a a a

3 4 132 4 132 4 N 2 4 E
® ® 0 o

g 2 18 2 18 2r 18 2)
0 0 L L L L L 0 0 L L L L L 0 0 L L L L L n 0 L L L L L

64 128 192 256 320 64 128 192 256 320 64 128 192 256 320 64 128 192 256 320

Output channel
Figure 17: BConv speedups on Tesla-P100.

Output channel
Figure 18: BConv speedups on Tesla-V100.

Output channel
Figure 19: BConv speedups on Jetson-TX1.

Output channel
Figure 20: BConv speedups on Jetson-TX2.
Table 2: Performance Comparison. Input and Output refer to bit-width per data element

for input data and output data. binarized in both training and inference. This explains the slight ac-

Schemes Description Algorithm | Input | Output
cuBLAS Simulating BMM via SGEMM SGEMM 32bit 32bit
bnn-baseline | BMM from the BNN paper [12] BMM 32bit 32bit
BMM-32 The 32bit BMM design BMM 32bit 32bit
BMM-64 The 64bit BMM design BMM 32bit 32bit
BMMS-32 Fine-grained parallelism BMM-32 BMM 32bit 32bit
BMMS-64 Fine-grained parallelism BMM-64 BMM 32bit 32bit
BMM-32B Bit input/output BMM-32 BMM 1bit 1bit
BMM-64B Bit input/output BMM-64 BMM 1bit 1bit
BMMS-32B | Fine-grained parallelism BMM-32B BMM 1bit 1bit
BMMS-64B | Fine-grained parallelism BMM-64B BMM 1bit 1bit

unlike those in BMM, the 64-bits BConv versions outperform the
32-bits versions. In particular, our BConv-64B achieves 10X speedup
over the cuDNN implementation on the latest Volta GPU when
input/output_channel = 320. In case the input or output_channel is
not a factor of 32/64, padding is required when performing the bina-
rization. This may sacrifice some performance, especially when the
image_size and/or filter_size is large. However, most of the modern
DNN input/outpu_channels are factors of 32/64 (e.g., AlexNet, VGG,
ResNet, etc).

6.3 SBNN Inference

We evaluate our SBNN inference framework on three different
datasets using three different network structures, as listed in Ta-
ble 3. For MLP on MNIST, the input image for the first layer is also

curacy degradation on our BNN training accuracy (98.6% to 97.4%).
For VGG on Cifar10 and AlexNet on ImageNet, the input image
of the first layer is in full-precision, but the weight is binarized,
similar to BWN. This is due to accuracy consideration. Since there
are only 3 input channels, the overhead of the first layer adopting
full-precision input is not very high. Divergent from the original
BNN design, the final output layer in our implementation is also
binarized for both input and weight, followed by a batch normaliza-
tion. We find the BN here, also cannot be aggregated as a threshold
comparison as before (there is no further binarization), is vital to
the high training accuracy for large dataset. Overall, after a training
period of 2000, 2500 and 500 epochs for MLP, VGG and AlexNet,
we achieve comparable or even superior BNN training accuracy
with state-of-the-art BNN and full-precision DNN training accuracy.
This demonstrates that our intra- and inter-layer fusion techniques
will not affect the accuracy of the training process.

Table 4 and 5 show the inference performance results on Tesla-
P100 and V100. SBNN-32/64 refer to the 32/64-bit single-kernel
SBNN inference. SBNN-32/64-Fine refers to the implementation
that the FC layers are using fine-grained 32-bit BMM (i.e., BMMS-
32B). The TensorFlow results which simulate BNN in 32-bit single-
precision floating-point (FP32) via cuBLAS and cuDNN on the same
GPUs are used as reference (which is also the general scenario

Table 3: SBNN Inference Evaluation. “1024FC” refers to a fully-connected layer with 1024 neutrons. “2x128C3” refers to 2 convolution layer with 128 output channels and 3x3 filter.
“MP2” refers to a 2x2 pooling layer with stride=2. “128C11/4” refers to a convolution layer with 128 output channels, 11x11 filter size and stride=4. "Input size" is in the format of in-
put_heightxinput_widthXinput_channels. "Output" is the number of categories for the classification. “Ref” is short for references. "BNN" is the reference BNN training accuracy. "Our BNN"
is the SBNN training accuracy we obtained. "Full-Precision” is the reference FP32 training accuracy.

Dataset | Ref | Network | Ref | Network Structure Input Size | Output BNN Our BNN | Full-Precision
MNIST | [27 MLP 12] | 1024FC-1024FC-1024FC-1024FC 28x28x1 10 98.6% [12] 97.4% 99.1% [12]
Cifar-10 | [23 VGG 11] | (2x128C3)-MP2-(2x256C3)-MP2-(2x512C3)-MP2-(3x 1024FC) 32x32x3 10 89.9% [12] 90.2% 90.9% [2]
TmageNet | [13] | AlexNet | [24] | (128C11/4)-MP2-(256C5)-MP2-(2x384C3)-(256C3)-MP2-(3x4096FC) | 224x224x3 | 1000 | 75.7/46.1% (2] | 71.2/44.7% | 80.2/56.6% [2]
Table 4: SBNN Inference Performance on NVIDIA Pascal-based P100 GPU
MNIST-MLP Cifar10-VGG ImageNet-AlexNet

Schemes Raw Latency | Speedup | Throughput | Speedup | Raw Latency | Speedup | Throughput | Speedup | Raw Latency | Speedup | Throughput | Speedup

SBNN-32 0.277ms 1678x | 3.16x 10° 1090 1.502ms 76.3% 2.53%10% 34.5x 3.238ms 674 1615.3 6.6X
SBNN-32-Fine 0.084ms 5533% 1.20 x 10° 416X 1.298ms 88.3X 2.47x10% 41.5X 2.778ms 786X 1530.8 6.2X

SBNN-64 1.007ms 462X 1.19x 105 41.2X 1.556ms 73.7X 2.81><104 38.4X 13.985ms 156X 1449.2 5.9%
SBNN-64-Fine 0.076ms 6115X 4.06 x 105 1410 0.611ms 188X 3.73%10% 50.8X 1.528ms 1429X 1910.3 7.8X

TensorFlow 464.74ms 1.0X 2.89 X 10° 1x 114.65ms 1X 733.13 1X 2183.62ms 1X 245.83 1X
Table 5: SBNN Inference Performance on NVIDIA Volta-based V100 GPU
MNIST-MLP Cifar10-VGG ImageNet-AlexNet

Schemes Raw Latency | Speedup | Throughput | Speedup | Raw Latency | Speedup | Throughput | Speedup | Raw Latency | Speedup | Throughput | Speedup

SBNN-32 0.183ms 1266X 4.39 x 10° 1010 0.994ms 132X 5.15x107 60.4X 2.226ms 523X 4.19 x 10 14X
SBNN-32-Fine 0.04ms 5790x | 3.32x 10° 762 0.833ms 157 5.10x10% 59.8% 1.576ms 739x 3.95 x 103 13.2x

SBNN-64 0.896ms 259X 1.88 X 10° 43x 1.395ms 94X 4.22x10% 49.5X 9.134ms 128X 2.87 x 10° 9.6X
SBNN-64-Fine 0.04ms 5790% 8.98 x 10° 2060 0.466ms 281X 5.78x107 67.9% 0.979 1190 4.40 X 10° 14.7%

TensorFlow 231.6ms 1X 4.36 X 10° 1x 131.09ms 1X 851.49 1X 1164.95ms 1X 298.44 1X

for BNN algorithm design and validation), since to the best of our
knowledge, there is no mature GPU-based BNN implementation.
As can be seen in Table 4 and 5, our single-kernel SBNN inference
achieves up to 6115X speedup over the TensorFlow baseline on
P100 with a small dataset (i.e., MNIST) and 1429% speedup with
a large dataset (i.e., ImageNet) for a single image BNN inference.
An inference delay of 40us for a small network and less than 1ms
for a large network are sufficient to satisfy the timing constraints
for most latency-critical DNN applications in the real world. We
can also observe that the throughput (i.e., images per second) im-
provement does not match the significant raw latency reduction.
In fact, for AlexNet on ImageNet, the throughput improvement is
only about an order, implying that GPU is extremely underutilized
with non-batched inference in current TensorFlow. Our design dra-
matically enhances GPU utilization (but not in a traditional way
as no floating-point computation is involved). Comparing among
various implementations, SBNN-64-Fine outperforms the others,
demonstrating the optimal performance among all conditions. This
is mainly because: (1) SBNN-64 has a better register data reuse
thus a higher computation-to-memory ratio than SBNN-32; (2) For
small-batched inference, extracting more fine-grained parallelism
from the GPU kernel to feed all GPU SMs is clearly more crucial
than better data reuse or cache efficiency.

7 RELATED WORK

The emergence of deep neural networks has brought significant
challenges and opportunities for application-specific system and
architecture design [5, 41]. Since BNNs were first proposed in 2016
[12, 39], the subsequent research around BNNs can be classified
into two major categories: algorithms and implementations.
Algorithms. The main objective is to improve BNN training
accuracy [12, 32, 33, 39, 42, 47], especially for large datasets. XNOR-
Net [39] applied BNNs on ImageNet, reporting top-1 accuracies of
up to 51.2% for full binarization and 65.5% for partial binarization.
DoReFa-Net [47] reported best-case ImageNet top-1 accuracies of
43% for full and 53% for partial binarization. Another work [42]
reported 46.6%/71.1% top-1/5 accuracy for AlexNet on ImageNet
by taking advantage of their new observation on learning-rate,

activation function, and regularizer. Recent works such as ABC-Net
[32], Self-Binarizing [3] and BNN+[2] reported even better BNN
training accuracy.

Implementation. The goal is to build high-performance BNNs
to satisfy the stringent real-time inference constraints of the delay-
critical applications in cloud and edge domains, and with as lit-
tle area and energy cost as possible [19, 31, 33, 35, 43, 46]. The
majority of these studies are FPGA-based [31, 35, 43, 46] due to
FPGA’s flexible and powerful bit-manipulation capability. Recently,
a CPU-based BNN implementation was proposed [19]. This work
relies on bit-packing and AVX/SSE vector instructions to derive
good bit computation performance. However, their implementation
mainly focuses on BMM; BConv is converted to BMM through the
conventional flatten or unfold approach with expensive pre/post-
processing for padding. They do not discuss intra- and inter-layer
fusion for whole network optimization. Although recent works
have mainly focused on optimizing individual layers, we believe
that inter-layer and whole-network optimization are becoming
more essential. For example, the TensorFlow XLA [26] and Tensor
Comprehensions [44] recently compiled the entire neural network
graphs at once, performing various transformations and achieving
4x speedup over manually tuned individual layers. Our design fol-
lows this emerging research trend by merging all the layers into a
single GPU kernel, achieving significant inference speedups.

8 CONCLUSION

In this paper, we propose binarized-soft-tensor-core to build strong
bit-manipulation capability for modern economy-of-scale general-
purpose GPU architectures. We use BSTC to accelerate the bit
functions such as bit-packing, bit-matrix-multiplication and bit-
convolution of binarized-neural-networks. To further accelerate
BNN inference performance, we propose intra- and inter-layer
fusion techniques that can merge the whole BNN inference process
as a single GPU kernel. For non-batched BNN inference tasks, our
design demonstrates more than three orders of magnitude latency
reduction compared to the state-of-the-art full-precision simulated
BNN inference on GPUs.

REFERENCES

(1]

[10

(1]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Saman Ashkiani, Martin Farach-Colton, and John D Owens. 2018. A dynamic hash
table for the GPU. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 419-429.

Anonymous authors. 2019. BNN+: Improved Binary Network Training. Under
reivew for ICLR-19 (2019).

Anonymous authors. 2019. Self-Binarizing Networks. Under reivew for ICLR-19
(2019).

Carlo Baldassi and Riccardo Zecchina. 2018. Efficiency of quantum vs. classical
annealing in nonconvex learning problems. Proceedings of the National Academy
of Sciences (2018), 201711456.

Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Dis-
tributed Deep Learning: An In-Depth Concurrency Analysis. arXiv preprint
arXiv:1802.09941 (2018).

Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. 2016. Fast
multiplication in binary fields on GPUS via register cache. In Proceedings of the
2016 International Conference on Supercomputing. ACM, 35.

Benjamin Block, Peter Virnau, and Tobias Preis. 2010. Multi-GPU accelerated
multi-spin Monte Carlo simulations of the 2D Ising model. Computer Physics
Communications 181, 9 (2010), 1549-1556.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High performance convo-
lutional neural networks for document processing. In Tenth International Work-
shop on Frontiers in Handwriting Recognition. Suvisoft.

Chih-Hong Cheng, Georg Nithrenberg, Chung-Hao Huang, and Harald Ruess.
2018. Verification of Binarized Neural Networks via Inter-neuron Factoring.
In Working Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 279-290.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in Neural Information Processing Systems. 3123-3131.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. leee, 248-255.

Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, and Qiong Luo. 2009.
Frequent itemset mining on graphics processors. In Proceedings of the fifth inter-
national workshop on data management on new hardware. ACM, 34-42.
Francesco Fusco, Michail Vlachos, Xenofontas Dimitropoulos, and Luca Deri.
2013. Indexing million of packets per second using GPUs. In Proceedings of the
2013 conference on Internet measurement conference. ACM, 327-332.

Angus Galloway, Graham W Taylor, and Medhat Moussa. 2017. Attacking Bina-
rized Neural Networks. arXiv preprint arXiv:1711.00449 (2017).

Google. 2018. TensorFlow: Adding a New Op. http://www.tensorflow.org/
extend/adding_an_op

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yuwei Hu, Jidong Zhai, Dinghua Li, Yifan Gong, Yuhao Zhu, Wei Liu, Lei Su, and
Jiangming Jin. [n. d.]. BitFlow: Exploiting Vector Parallelism for Binary Neural
Networks on CPU. ([n. d.]).

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Advances in Neural Information
Processing Systems. 4107-4115.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675-678.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html (2014).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Jaeha Kung, David Zhang, Gooitzen van der Wal, Sek Chai, and Saibal Mukhopad-
hyay. 2018. Efficient object detection using embedded binarized neural networks.
Journal of Signal Processing Systems 90, 6 (2018), 877-890.

Chris Leary and Todd Wang. 2017. XLA: TensorFlow, compiled. TensorFlow Dev
Summit (2017).

Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2
(2010).

Yann LeCun, LD Jackel, Leon Bottou, A Brunot, Corinna Cortes, JS Denker, Harris
Drucker, I Guyon, UA Muller, Eduard Sackinger, et al. 1995. Comparison of

[29]

[30

[31

(32

[33

(34]

(35]

(36]

@
=)

[38

(39]

[40

[41

[42

[43]

(44

[45

[46

[47

learning algorithms for handwritten digit recognition. In International conference
on artificial neural networks, Vol. 60. Perth, Australia, 53-60.

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Song. 2018.
Warp-Consolidation: A Novel Execution Model for GPUs. In Proceedings of the
2018 International Conference on Supercomputing (ICS).

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk
Corporaal. 2017. Locality-aware cta clustering for modern gpus. ACM SIGOPS
Operating Systems Review 51, 2 (2017), 297-311.

Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-BNN:
Binarized neural network on FPGA. Neurocomputing 275 (2018), 1072-1086.
Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convo-
lutional neural network. In Advances in Neural Information Processing Systems.
345-353.

Bradley McDanel, Surat Teerapittayanon, and HT Kung. 2017. Embedded bina-
rized neural networks. arXiv preprint arXiv:1709.02260 (2017).

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv,
and Toby Walsh. 2017. Verifying properties of binarized deep neural networks.
arXiv preprint arXiv:1709.06662 (2017).

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh,
and Debbie Marr. 2016. Accelerating binarized neural networks: comparison
of FPGA, CPU, GPU, and ASIC. In Field-Programmable Technology (FPT), 2016
International Conference on. IEEE, 77-84.
NVIDIA. 2018. CUDA Programming Guide.
cuda-c-programming-guide

Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. 2013.
Improving GPGPU concurrency with elastic kernels. In ACM SIGPLAN Notices,
Vol. 48. ACM, 407-418.

Martin Pedemonte, Enrique Alba, and Francisco Luna. 2011. Bitwise operations
for GPU implementation of genetic algorithms. In Proceedings of the 13th annual
conference companion on Genetic and evolutionary computation. ACM, 439-446.
Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525-542.

Jingkuan Song. 2017. Binary generative adversarial networks for image retrieval.
arXiv preprint arXiv:1708.04150 (2017).

Ton Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael W Mahoney,
Randy Katz, Anthony D Joseph, Michael Jordan, Joseph M Hellerstein, Joseph E
Gonzalez, et al. 2017. A berkeley view of systems challenges for ai. arXiv preprint
arXiv:1712.05855 (2017).

Wei Tang, Gang Hua, and Liang Wang. 2017. How to train a compact binary
neural network with high accuracy?. In AAAL 2625-2631.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 65-74.
Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions. arXiv preprint arXiv:1802.04730 (2018).

Kefu Xu, Wenke Cui, Yue Hu, and Li Guo. 2013. Bit-parallel multiple approximate
string matching based on GPU. Procedia Computer Science 17 (2013), 523-529.
Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. 2017. Accelerating binarized con-
volutional neural networks with software-programmable fpgas. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 15-24.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. DoReFa-Net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

http://docs.nvidia.com/cuda/

http://www.tensorflow.org/extend/adding_an_op
http://www.tensorflow.org/extend/adding_an_op
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

	Abstract
	1 Introduction
	2 Binarized-Soft-Tensor-Core
	2.1 BSTC Operations

	3 BNN Bit Functions
	4 SBNN Single Layer Design
	4.1 Bit Matrix Multiplication (BMM)
	4.2 Bit Convolution (BConv)

	5 SBNN Inference in a Kernel
	5.1 Design Prerequisite
	5.2 Intra-Layer Fusion
	5.3 Inter-Layer Fusion
	5.4 SBNN Inference Framework

	6 Evaluation
	6.1 Bit-Matrix-Multiplication
	6.2 Bit Convolution
	6.3 SBNN Inference

	7 Related Work
	8 Conclusion
	References

