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Abstract—Load imbalance among small and macro cells is a
major challenge that undermines the gains of emerging ultradense
heterogeneous networks (HetNets). Existing load balancing (LB)
schemes have one common caveat which is operating in reactive
modei.e., cell parameters are tweaked reactively in accordance with
the dynamics of cell loads. The inherent reactiveness of these LB
schemes hinder in achieving promising quality of experience (QoE)
gains from 5G and beyond. To cope with this issue, in this paper
we propose a novel proactive load balancing framework “OPERA”
empowered by mobility prediction paradigm for future ultra dense
networks (UDNs). The pro-activeness of OPERA stems from its
novel capability that instead of passively waiting for congestion
indicators to be observed and then reacting to them, OPERA
predicts future cell loads and then proactively optimizes key an-
tenna parameters and cell individual offsets (CIOs) to preempt
congestion before it happens. OPERA also incorporates capacity
and coverage constraints and load aware association strategy for
ensuring conflict free operation of LB and coverage and capacity
optimization (CCO) self-organizing network (SON) functions. Sim-
ulation results show that compared to real network deployments
settings and published state-of-the-art reactive schemes, OPERA
can yield significant gain in terms of fairness in load distribution
and percentage of satisfied users. Superior performance of OPERA
on several fronts compared to current schemes stems from its
following features: 1) It preempts congestion instead of reacting to
it; 2) it actuates more parameters than any current LB schemes
thereby increasing system level capacity instead of just shifting
it among cells; 3) while performing LB OPERA simultaneously
maximizes residual capacity while incorporating throughput and
coverage constraints; 4) it incorporates a load aware association
strategy for ensuring conflict free operation of LB and CCO SON
functions; 5) the ahead of time estimation of cell loads allows ample
time for heuristics search algorithms to find LB solutions with high
gain.

Index Terms—5G, load balancing, mobility prediction, proactive
SON, small cells, CIOs.

I. INTRODUCTION

HE race to 5G is on with massive impromptu densifi-
I cation by small cells, orchestrated by Self Organizing
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Networks (SON), being perceived as a cost-effective solution to
the impending mobile capacity crunch. Although poor indoor
coverage coupled with explosive cellular data growth—that
were expected to generate the momentous demand—are still
relevant, to date, hefty small cell deployments are not there as
expected. One of the key challenge therein is the load imbalance
issue that stems from low transmission power and height of
small cells and the conventional max—received signal strength
based user association [1]. Even with a targeted deployment
where the small cells are placed in high-traffic zones, most
users still end up receiving the strongest downlink signal from
the tower-mounted macrocell. As a result, macrocells remain
overloaded and small cells remain underloaded as they fail to
achieve user association proportional to available bandwidth.
This load imbalance also effects the user perceived rate which
is the product of instantaneous rate and the radio resources
assigned to users. In highly loaded macrocells, few resources are
assigned to users and hence user perceived Quality of Experience
(QoE) drastically degrades. Consequently, load imbalance has
been a time persistent challenge that has thwarted the wide scale
deployment and benefits of small cells.

A. Relevant Work

Load imbalance can be mitigated by shifting the traffic from
high loaded cells to less loaded neighbors as far as interference
and coverage situation allows. To exploit this approach, recently
load balancing (LB) has gained attention as a prominent SON
function by 3GPP [2] and has been focus of research for many
works like in [3]-[12]. However, the existing LB approaches
proposed in [3]-[12] have following four common limitations
that hinders them achieving 5G ambitious QoE requirements:

1) Reactive Design: The state-of-the-art LB SON algorithms
are designed to optimize the hard or soft network parameters
such as tilts (hard parameter), transmission powers (hard param-
eter), cell individual offsets (example of soft parameter) based
on current network conditions. Such solutions (e.g. [9]) offer
improvement over fixed parameters settings in real networks that
achieves LB at the cost of QoE. However, in the fast dynamical
cellular environment, where the scheduling is done in order of
milliseconds, by the time the realistic non-convex NP-hard LB
algorithms come up with optimum network configuration, the
scenario might have already changed, and optimized parameter
values become outdated thus undermining gain achieved from
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Fig. 1. Sobol method-based first-order sensitivity index values for tilts, CIOs,
macro BS transmission power, small BS transmission power, azimuth, horizontal
and vertical beam widths.

LB. This problem is bound to escalate further in 5G as delay
intrinsic to a reactive LB solution means the stringent latency
and QoE requirements cannot be met. Furthermore, in 5G and
beyond the support for new mobility centric services such as
intelligent transport systems and self-deriving cars, and smaller
cell sizes mean even faster dynamics.

2) Limited Set of Optimization Parameters: Existing LB so-
lutions use one or more of the only following three parameters
as actuators for achieving LB: antenna tilts [9], [12], downlink
transmission power [4], [12] and cell individual offsets (CIOs)
[31, [4], [6]-18], [12]. However with the evolution of smart
antennas technology, new set of optimization parameters have
emerged that are yet to be exploited. These includes beam widths
(radiation pattern) that can be adapted on the fly by optimizing
the phases of complex weight vectors—thanks to multi-array
antennas technology. Similarly azimuth orientation of the an-
tennas can be changed remotely and frequently to effectively
change cell footprint, in addition to or in conjunction with the
antenna tilts. In Fig. 1 we have quantified the ability of possible
parameters to affect network performance (QoE) using Sobol
based variance sensitivity analysis method [13]. It is observed
that the CIOs, horizontal beam width and azimuth have the
largest impact on the network performance. This observation
calls for a shift from the legacy paradigm of mostly optimizing
tilts and/or Tx power to maximize system performance and
keeping other control knobs untouched.

3) SON Conflict Prone Design: Another issue with current
LB SON solutions is the intrinsic conflicts or unexpected perfor-
mance that results from concurrent operation of multiple SON
use cases. Stand-alone LB solutions are bound to negatively
conflict with Coverage and Capacity Optimization (CCO) SON
function due to the overlap among their optimization parameters.
For example, when CCO may try to improve coverage of cell by
increasing its Tx power, this can force large number of users to
associate to that cell thereby conflicting with LB SON objective.
The interplay between CCO and LB becomes complicated con-
sidering that both CCO and LB resort to optimization of same
parameters i.e., tilts, Tx power and CIO. For detailed analysis of
this conflict, reader is referred to [ 14]. CIO, which unlike antenna
parameters and Tx power is a soft parameter, has been recently
introduced by 3GPP for LB and traffic steering in HetNets.
However, adjustment of CIO by the LB algorithm may also cause
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conflict with CCO objectives as a user offloaded due to increased
CIO may face higher interference (assuming intra-frequency
offloading), and lower received power from the destination cell,
compared to the origin cell. This may result into lower SINR and
ultimately lower throughputs thereby conflicting CCO objective.
Such conflict prone LB design can often end up increasing
the complexity of network operation for RAN engineers and
compromising the QoE instead of improving it [14].

4) Impractical Assumptions: There exist line of works such
as [10], [11] that are more theoretical in nature aimed for LB or
more precisely optimal cell association in HetNets while con-
sidering CCO in form of constraints and vice versa. While these
works provide valuable theoretical insights often into the asymp-
totic behavior of the system, for tractability the analytical models
used in these theoretical studies often build on overly-simplified
and unrealistic assumptions such as uniformly distributed user
equipments (UEs), spatially independent distribution of base
stations, omnidirectional single-antenna transmission and recep-
tion, fixed transmit powers, same CIO for all cells in one tier, full
load scenarios etc. These assumptions help to make the analysis
tractable and make optimization problem convex, but render the
end result less useful for practical implementation. Contrary to
dense HetNet as the main motivation for LB SON function, some
works on LB exist like [8], [9] wherein the solution is proposed
and simulated mainly for macrocell scenarios, i.e., large cell
individual offsets and Tx power disparities between small cells
and macro cells are not considered. These approaches may work
for current macro cell dominated network deployment but may
not be applicable to dense HetNet envisioned for 5G.

In light of the aforementioned limitations, we propose
OPERA framework (Fig. 2) that leverages a novel approach
of transforming user mobility from being challenge to an
advantage. OPERA exploits the knowledge gained from
mobility/hand-off patterns to proactively and preemptively pre-
vent load imbalance in emerging dense HetNets. It mines user
mobility behavior from easily available logs such as hand over
(HO) traces to anticipate future load conditions. This knowledge
is then leveraged by a novel LB optimization problem to prevent
load imbalance in a proactive way. The paper has following
contributions:

1) In the proposed novel OPERA framework, spatio-
temporal mobility prediction based on semi-Markov
model complemented with vector theory based geomarker
concept is leveraged to predict future loads of the cells.
Transparency of the mobility model to cell types is an
added advantage to make the model’s accuracy robust and
stable in presence of cell type diversity in HetNets.

2) Based on predicted utilization of cells, proactive optimiza-
tion is performed to maximize the logarithmic sum of
free resources in all the cells. The proposed proactive
LB scheme leverages a judicious combination of hard
parameters i.e., (tilts, azimuths, beam widths, Tx power)
and soft parameters i.e., CIOs as optimization variables.
Furthermore, a novel load aware association strategy for
balancing load among cells is also proposed and used. This
formulation is solved by the novel hybrid combination of
genetic algorithms and patterns search and the proactivity
of OPERA enables them to converge to high yielding LB
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Fig.2. OPERA framework.

solutions without affecting latency requirements in 5G and
beyond.

3) Rigorous simulations are performed to benchmark perfor-
mance of the proposed solution against several schemes
including a real LTE network deployment and a reactive
scheme from published study. OPERA significantly re-
duces number of un-satisfied users in the network and also
achieves maximum residual capacity. Residual capacity
i.e., resources available in cell to be allocated to a user, is
metric that can be used to quantify the ability of emerging
HetNets to cope with acute fluctuation in cell loads owing
to mobility and decreased cell size. Load-aware asso-
ciation strategy provides robustness to OPERA against
load estimation inaccuracies that is further verified by
comparing it to near-optimal performance bound when
future cell loads prediction accuracy is 100%.

II. OPERA FRAMEWORK

This section describes the mobility prediction model consid-
ered and the load minimization optimization problem leveraged
by the OPERA framework to minimize all network cells loads.

Network Assumptions: In this work, we only focus on the
downlink of cellular systems. Macro cells are assumed to be
equipped with smart directional antennas while UEs and small
cells have omnidirectional antennas. Same spectrum is shared
between the macro and small cells (co-channel interference).
Each UE is assumed to be active all the time running a con-
stant bit rate (CBR) service. OPERA builds on a centralized
SON (C-SON) architecture to perform network wide optimiza-
tion. The C-SON style implementation has access to all user
reported measurements like time stamped HO reports, mini-
mization of drive tests (MDT) measurments, call data records
(CDRs) etc.

A. Cell-Level Prediction

Some phenomenal large scale studies like [15] have proven
as high as 93% average predictability embedded in regular daily

Proactive Load
Minimization

Semi-Markov based
Mobility Prediction

Next Cell HO
Time of HO

Network Model
Implemented in Simulator

Future Location
Estimation

routines of humans. This in turn, provides a rational for predict-
ing a person’s movement given past trajectories. Backed by this
fact, the basic building block of OPERA framework is a mobility
prediction model that when given person’s mobility history in
terms of tuple of locations (cells) visited with corresponding
pause times (cell sojourn times), it predict this person’s next
location, as well as his/her sojourn time. The mobility prediction
model should meet two criteria: 1) It can be obtained with
low complexity low latency online practically implementable
algorithms; 2) It can predict future cell as well as HO time. In this
paper, we leverage semi-Markov stochastic process for modeling
and predicting human mobility because of 1) proven potential
and suitability of Markov theory to model similar prediction
problems [16]-[18], 2) their ability of modeling any arbitrary
distributed sojourn time instead of being locked to impractical
assumption of memroy-less exponentially distributed mobility
that has been shown to be not true in general [19]. Some
works do exist that have quantified the prediction accuracy of
semi-Markov based predictor for mobility prediction [20]-[22].
However, like majority of recent studies on mobility prediction
in cellular networks [23]-[27], the aim of studies in [20]-[22]
is also limited to investigating the prediction accuracy of the
leveraged mobility prediction scheme only. None of these stud-
ies further refine and exploit this information for optimization
of the cellular network such as load balancing, as proposed in
this paper.

We model user mobility as a semi-Markov renewal process
{(Cn, J») : n > 0} where C,, is the state (cell) at nth transition,
J, 1s the time of nth transition and a total of z cells with discrete
state space C = {Cell;, Celly, Cells .. ., Cell, }. Each state in the
semi-Markov process represents a cell, wherein HO from a cell
to another is modelled as a state transition. Random variable
J represent time instant of the transition ™ to C,(;fgl while

random variable J,(;jr)l — J describes the cell sojourn time, or
state holding time. The distribution of these random variables
is not restricted to memoryless exponential distributions. It is
assumed that the transition probabilities do not change when the
model is being built. The associated time-homogeneous semi-

Markov kernel for user w that is probability of u for transiting to
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jth cell after staying in ¢th cell for no more than ¢ time is defined
as:

QW (1) = Pr(0l, = 4.1, — 1 <)
C(SU)7~-~>C¢(;M)?J(§U) '7J'r(1u)) )

- Pr (ijfl = 5,0, = <tjct = z) 2)

Assuming that the cell sojourn time random variables are inde-
pendent from the embedded state transition process (C; ;), we
get

Q151 = Pr(ci) =jlct =)

Pr(g8 = g <ol =50 =) 3
_ p(w) ()
= h; ) F; (1) 4)
where
(w) _ q: (u)
h; ;= tlggloQi,j (t) @)
= Pr(c) = jlce =) (6)
and

F(1) = Pr(J — M <t = j, o —i) 7)

Here h( W e HW is the probability of HO of user u from cell i to
7 while H(“) is the probability transition matrix of the embedded
discrete time Markov chain of user . FZ(?) (t) is the sojourn time
distribution of user u that is the probability that » will move
from cell ¢ to cell j at, or before time . The probability of user
u staying in cell 7 for no more than ¢ time can be expressed as:

=S QM ©)
j=1

This also indicates the distribution of the sojourn time in cell
i for user u, regardless of the next cell. Let C'(*) = (Ct(u), t €
Ry) be another time-homogeneous semi-Markov process that
describes the cell occupied by user w at time ¢. The transition
probabilities for this process can be written as:
@) = Pr(ct = jlci =) (10)
It gives the probability that a user w is in the cell j after the time
instant ¢ from the moment a transition to cell ¢ has just been
made. First for a special case that the user stays in cell ¢ until
the end of the period ¢ is:
(C’(“) |C(u)

i,J1 >t) an

- Pr(Jl — Jo > t|olY = z) —1-4Y01) (12)
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For all other cases in which user u goes from from cell i to j
through some intermediate cell r # i is given as:

Pr (C’t(") = j|Cy =i and at least one transition ) (13)
s [0 14
_Z OTXm(t—T)T (14)

r=1

This is the Volterra equation of second kind and the integral is
the convolution of qur)() and X(u)( ) ie., Q(“) * XT”) Here

ngi) (7) represents the probability of the user of staying in cell
1 for 7 length of time and then transiting to cell r. Invoking
the argument for the renewal of process here, expected behavior
of user from here on is same irrespective of HO time to cell r.
Therefore, X( )(t — 7) gives the probability of user being in cell
jattimet glven that user is in cell  at 7. Integration over 7 takes
care of all possible transition times [28]. Therefore,

qu() ( A(“) 5”_'_2/ er
(15)

where d;_; is the Kronecker function that is only equal to 1 when
1 = j. We can solve equation (15) with approach given in [29].
To this end, the discrete-time version of evolution equation in
(15) becomes:

(u)
X (t —7)dr

D" (s

)+ Z Z o; “) Xgu]) -7)

r=171=1

X9 (s) = (16)

() (r
where D{"(s) = (1 A{”(£))8;,; and o{%)(s) = “Liz S
which is the probability to have a HO from cell i to r in the

time s can be approximated as follows assuming unit time step:

#0(s) = @ (1
@,r ( ) {Q(u)(s)

Due to H(™ being a right stochastic matrix, Q(*)(s)
and x((s) will also be right stochastic matrices; i.e.,
S Q) = i X (s) = LVijeC. The x{(s)
gives the probability that a user u is in the cell j in the time
slot s counted from the moment a HO to cell 7 has just been
made. In order to predict the location of a user in every s’ time
(u)( _ P(C(u) —

o+s' T
Jj |C’(§u) = i,ts0; = 0) i.c., probability that a user is in cell j after
s’ time slot given that the current cell is 7 and user has stayed in

s=1

1
Q(")(s—l) s>1 17

slots, we need to find the probability ./ (s, 0)

cell 7 for sojourn time ¢,; = o. XET;)(S 0) becomes [20]:

_ POy = ditaoy = 0.C" = i) (18)
- (C’(u =i teo; = 0)
) P(CY, = jiteos —OIC(") i) PGy =) (19)

o=

50] = O)
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O T CAED N
P(teo; = olC§" =) P(C§" = 1)

(O = g ol =)
= ? 21
P(tsoj = O|CO = Z)
D(u) o+s' (u) r_
_ (0+S)+Z'P IZT o+1 )Xr,] (O+S T)
1- AE“’(o)
(22)

Note that just after HO i.e., 0 = 0, )ZZ(I;) (s, 0) = XE ])( ). By
mining the HO logs that contain information of the past handover
information of user u, probability transition matrix H(*) and so-
journ time distribution matrix F () are initialized as done in [22)].
After each HO from cell i to 7, h(u) and F(u) (s) are updated and

Q(“)( ) is computed. Finally XE“)( ) and X(u) (s,' 0) are solved.
In scope of this work, we choose future cell that has highest

probability i.e.,max;cp;, X( )(s’, o) where N; is set of all cells
whose coverage footprints overlap with cell 4.

B. Coordinates-Level Location Estimation

Let l(u) = (2! (u) (u))
nates in time slot s and {Cy (u)

be the UE’s current location coordi-
(u)} be the next cell HO tuple
information for each UE wherem cl N ) is next probable cell of

user u at time Tjsuo). Leveraging future location estimation algo-
rithm proposed by us in [30], future geographical coordinates at
time step s + s’ are estimated as:

2 2
G T
l(u L= l(u) + Cn Cn

x5 * U
5+s (u)
Tio
(23)
where 27, and y”,, are the coordinates of most probable
Cy Cy

geomarker for UE u in next cell C%L) (we utilize past mobility
logs of UEs to estimate most probable geomarkers visited by
each UE in each cell) and @ is a unit vector pointing towards

g g
(xcﬁ\}” ) ycxo ).

C. Proactive Load Minimization Optimization

Leveraging predicted information ({CI(\T,L T (")} l Si)s,) for all
users, we formulate a load optimization problem for next time
slot s + s’ in such a way that network load is minimized while
meeting operator desired coverage ratio, QoE requirement of
each UE and cell loads for next time window. The added advan-
tage of targeting load minimization is that many QoS-related
KPIs are monotonic functions of the average cell loads e.g.,
average throughput, latency and number of successful sessions
etc. Due to monotonicity, minimizing cell loads improves net-
work wide user throughputs and similar measures, and thus,
LB minimization focused objective function can capture the
goals of CCO objective too. Moreover, load minimization or

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 3, MARCH 2020

load balancing increases the probability of the availability of free
resources in all the cells that becomes advantageous for HetNets.
To explain this point, consider a two cell scenario, for instance,
wherein Cell X is bearing aload of 50% while cell Y is already at
maximum load of 90%. If a mobile user enters Cell Y coverage
area and requests service, the user will be denied and will have
to be handed over to the cell X as the cell Y is already close to
its maximum load utilization. This will result in lower QoE for
the user compared to scenario where cell Y would have the free
resources (residual capacity) to serve the oncoming user. A load
minimization approach with minimum throughput guaranteed,
solves this problem as it tries to minimize the load of the two
cells in the first place without compromising QoE of existing
users. Now as result of load balancing, if load utilization of both
cells is at 70% and a new user enters any of the two cells, the cell
will be able to accommodate this new user without additional
delay.

The cell load 7. of a cell ¢ can be defined based on the
utilization of Physical Resource Blocks (PRBs) in the cell.
The number of available PRBs at each base station (BS) is
proportional to the available bandwidth and scheduling interval
at that BS. The total load of cell c is the fraction of the total
resources (PRBs) in the cell needed to provide required rate for
all users of a cell and can be given as:

nc:%Z i

5 2= onf () e
where U, is the number of users with active sessions connected
to a cell ¢, 7, is the required/desired rate for user u € U, wp is
bandwidth of a PRB, ~ is the achievable SINR by the user u
when conencted to cell ¢ and IV is the total number of PRBs in a
cell. The function f(~<) maps SINR to spectral efficiency of the
user link and can be defined as f(75) = Alog,(1 + B(75)).
Here A and B constants can reflect post processing diversity
gains through e.g., by MIMO and/or losses incurred in system.
For sake of simplicity, without any loss in generality, we assume
A and B as 1 in our simulations. The load in (24) by virtue of
its definition is a virtual load since it can exceed one and thus
can quantify how overloaded a cell is.

The SINR ~¢, of user link to its cell c at its estimated location
lilfr)s, in time slot s + s’ is defined as (25) shown at the bottom of
the next page, where Pf is cell’s transmission power; G,, is the
gain of UE; 1, is the weight assigned to the vertical beam pattern
of the transmitter antenna; ¢, is the vertical angle of the user w in
cell ¢ with respect to horizon; 6§, is the tilt angle of the serving
cell’s antenna (at 65, = 0°, BS antenna faces the horizon); ,, is
the vertical beam width of the transmitter antenna of cell ¢; Aj,
is the weighting factor for the horizontal beam pattern; ¢¢ is the
horizontal angle of user u in cell ¢ with respect to absolute north;
¢¢ is the azimuth of the antenna of cell ¢ (¢$ = 0° corresponds
to the absolute north); ¢y, is the horizontal beam width of the
transmitter antenna of cell ¢; 0, denotes the shadowing observed
at the location of user u from cell ¢; « is the path loss constant;
ds represents the distance of the estimated user location of u

i.e., l(

sts from cell ¢; 3 is the path loss exponent; and « is the

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on March 19,2020 at 23:46:06 UTC from IEEE Xplore. Restrictions apply.



FAROOQ et al.: MOBILITY PREDICTION BASED PROACTIVE DYNAMIC NETWORK ORCHESTRATION

Macro Cell RSRP

Small Cell RSRP

Fig. 3. CIO bias.

noise variable. The time subscript on the right hand side of (25)
denotes that all terms enclosed within square brackets [.]s ¢
are considered for the next time slot s + s. In current work, we
assume that C-SON server running in the core network is able
to estimate shadowing at all locations with normally distributed
error by leveraging channel maps. These maps are built based
on MDT reports, a 3GPP standardized feature, wherein all UEs
report their geo-tagged time stamped channel measurements
back to the network. In (25), the cell load utilization 7); in the
denominator can be thought of as probability of transmission
of BS ¢ while the sum reflects the average interference power.
In contrast to an exact time dependent SINR formulation that
results into range of SINR values that vary depending upon the
scheduling instants and load of other cells, with this approach
of mean interference, we can easily evaluate SINR with low
complexity and tractability. On average, more interference will
come from cells that are more loaded. The UEs in idle or con-
nected mode will be associated with the cell that ranks highest
according to following user association criterion:

Uj = {Vu eU|j = argmax(Pr, p,, + P&ow)} (26)

where Pr, . is the actual reference signal receivee power in
dBm that user u is getting from cell ¢ and Ffg,p is the small
cell attraction bias parameter (CIO). The term CIO accounts
for various biases used in idle and active mode procedures [9].
The CIO is attraction factor that is broadcasted by small cells to
bias their ranking and attract users to camp on them. This way
power disparity in macro and small cell transmissions powers
is avoided and more load can be transferred to them (Fig. 3).
CIO, as a stand-alone solution, addresses the selection between
different network layers in HetNets; however, it has catastrophic
affect on user SINR since through artificial biasing, UE is no
longer connected the strongest cell. As a consequence, SINR
deteriorates with higher values of CIO as illustrated in Fig. 4.
Nevertheless, CIO is still relevant network parameter for load
balancing albeit at cost of CCO if used in legacy way for LB [3],
[4], [6]-[8]. The negative influence of degraded SINR on user
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throughput can be partially offset if small cell can allocate
enough surplus PRBs compared to macro cell and thus satisty
required QoE. Hence CIO is a vital control parameter to balance
the tradeoff between LB and CCO. Moreover, we also leverage
user association criterion proposed by us in [12] that also takes
the cell load into consideration defined as:

1 a
Uj = {Vu eUlj= argmax ((77 >

(P"fudBm + PéIOdB)(la)) }

where 7). is the cell load and a € [0,1] is the weighting factor in
order to associate a level of priority to load and RSRP metrics.
Large value of a forces users to avoid highly loaded BSs even
if they provide good RSRP. Note that setting a = 0 will make it
equivalent to (26). With cell association method defined by (27),
user is associated with such a cell with whom the product of the
received power (P<, .+ Pg&;p,,.) and reciprocal of cell load
is maximum. Note for cell association criterion, 7). cannot be 0
therefore for unloaded cells, 7). can be set as a very small number
e — 0.

Note that in our case where all UEs are assumed to be active
demanding constant bit rate service, user satisfaction ratio is
more relevant performance metric then conventional throughput.
The reason being that for load optimization with guaranteed
QoS requirements, UEs either get exactly the desired constant
bit rate or remain unsatisfied. The number of unsatisfied users
(dropped/blocked) "N, is given as [31]:

Nus(s+ ') [Zmax(OZﬂ <1)>L+S,

The 7. in (28) by definition from (24) has range 7. € [0, c0)
to quantify overloading in a cell. When cell is fully loaded i.e.,
Ne = 1, the inner sum in (28) will be zero which means all users
in cell ¢ are satisfied. If cell load exceeds 1 e.g., . = 2, inner

27)

(28)

2505\ feg)?
PtCGumm(xU( — 1) +)uh(¢ wf) ) )6ca( Z)—ﬂ

Tuls +5) =

K+ Zwec/c mPtiGulol'z(A” (%) +n <#¢Z)

(25)

d
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sum will evaluate to half of the number of users of cell c. This
means the cell in reality is fully loaded. Half of the users are
satisfied while other half of oncoming users will be blocked.

Based on the works of [32], we use optimization objective
function that is parameterized function of the BS loads. The
objective function considered is:

(1-m;)'¢
o) = {Zz‘ec 1 for £ # 1

2
Y ice —log(1 —n;), for & =1 29

where £ > 0 is a parameter that induces the desired degree
of load balancing. For £ = 0, (29) reduces to maximizing the
arithmetic mean of the BS’ free resources. When & = 1, (29) is
equivalent to maximizing the geometric mean of the resources
available in the network. When & = 2, the harmonic mean of
the BSs’ free resources is maximized. Increasing £ further to co
minimizes the maximum utilization, i.e., min-max utilization
which yields solutions with balanced loads. The value of £ in
general depends on network operators’ preferences and policies.
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It should be noted that load balancing does not necessarily aim
at equalizing the loads of all BSs since different values of £ have
different implications. In this work, we chose £ = 1 since it
prevents overload situation (logarithmic term tend to infinity for
overloaded scenarios) and minimizes the total system load with
notion of fairness rather than distributing load equally among
cells.

The load minimization optimization problem formulated for
next time slot s + s’ as (30)—(33) shown at the bottom of this
page.

Since 7. denotes the resource utilization of cell ¢, term
(1 —n.), hence forth noted as residual capacity, is fraction of
resources in cell ¢ ready to be allocated to users. The objective
is to optimize the parameters Py, 05, %, 05, ., P&o such that
logarithmic sum of idle resources in all cells is maximized while
ensuring coverage reliability and QoE requirements. The log
utility function leads to a kind of proportional fair treatment of
the individual cells while minimizing cell loads or maximizing
residual capacity. The first six constraints (33a)—(33f) define

min
PgL0G, 86,905,958 Féo

min
Pg0G,85 9595 Péo

Z[_ IOg(l - nC(Ptcv Hglt’ ¢fw (pfﬂ 9027 Pélo))]s+s’

(30)

x 3" —log 1_];52

I+

2
0c—60¢ \~ > 2
Ue —1.2 (M (%) +}\h(¢i¥’h¢2) )
PEG,10 5¢a(de)™?

(€29

wp log,

where

. 1\* -
Uj = {Vu eU|j= arg max (() * (P yopm T PgIOdB)( a))}
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Pt,min S Ptc é Pt,maXVc S C

Omin < 05y < OmaxVe e C
Gmin < OF < PmaxVc € C
Pv,min < @5 < PymaxVe €C
©hmin < @5 < @hmaxVe € C

PCIO,min S P(?]O S PCIO,maxvc S C
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(32)

(33a)
(33b)
(33¢)
(33d)
(33¢)
(33f)

(33g)

(33h)
(33i1)
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Fig. 5. Non-convexity behavior of the objective function.

the limits for the variation in the Tx power, tilts, azimuths,
beam widths (vertical, horizontal) and CIOs respectively. These
constraints determine the size of solution search space. The sev-
enth constraint (33g) ensures that with new parameters settings,
network meets at least minimum network coverage threshold i,
a QoS KPI set by the operator. Py, is the minimum acceptable
threshold level for received power for user below which no
session can successfully be established. The eighth constraint
(33h) ensures each covered user is satisfied meaning it receives
minimum guaranteed throughput that is required depending
upon the subscription level or session types. This constraint is
needed because for achieving LB objective, if CIO is leveraged
to tune actual RSRP based cell association for the user, the
received power Pr, for offloaded user may become worse, and
consequently the SINR and throughput for that user will be
impacted. The loss in SINR can be neutralized by allocating
surplus resources given that the CIO biased user received power
is above a certain threshold. Consequently, minimum throughput
is assured for the users in network by this constraint (implicit
CCO objective). This is possible only when cell has sufficient
resources to meet total capacity requested, therefore, constraint
in (33i) is needed to ensures that load for every cell has to be
less then 1 1. < 1.

The objective function, optimization variables and constraints
indicate it is a large-scale non-convex NP-hard problem due to
the inherent coupling of optimization parameters and the cell
loads. Non convexity stems mainly from the fact that we are
dealing with not one or two but five parameters per macrocelli.e.,
cell transmit power, antenna tilt, azimuth, horizontal beamwidth
and vertical beamwidth and two independent paramters per
small celli.e., transmit power and CIO with inter-coupled effects
on the objective function. In total, the solution space for the
network system will have 147 = 21 x 5 + 21 x 2 distinct and
independent optimization parameters. This means that even if
each parameter can take only 2 values, we will end up with
247 distinct combinations in the solution space that becomes
computationally prohibitive. The plot of the objective function
for a sample topology of 42 cells is shown in Fig. 5 wherein tilt
and horizontal beam width of a base station are varied while rest
of all variables are kept constant. It can be observed that solution
space is combination of multiple hills and valleys (non-convex).
As the number of possible combinations for the optimization
parameters considered increases exponentially with network
density, a brute-force style strategy for search of the optimal
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parameters to achieve the load minimization may become im-
practical for large size network. In a practical network of 100
cells with only 10 tilt values per cell available as optimization
variables, number of combinations 10'%° become greater than
total number of atoms in universe. Clearly this search space size
is unfathomable, mostly filled with suboptimal points and is too
large to be traversed by brute force algorithm in as short time as
LTE’s transmission time interval (TTI).

For solving the formulated proactive LB problem for next time
slot s + &' in real time, we experimented with several heuristics
and found hybrid combination of Genetic Algorithm (GA) and
Pattern Search (PS) to perform the best. Genetic Algorithms
are class of artificial intelligence algorithms based on Darwin’s
“survival of the fittest, natural selection” theory of evolution.
GA is population based search algorithm that uses randomized
operators mimicking natural selection processes like crossover
and mutation operating over a population of candidate solutions
to generate new points in the search space. GA are theoretically
and empirically proven to provide robust, efficient and effec-
tive search capabilities in complex multivariable combinatorial
search spaces. The inherent randomness significantly increase
the probability of jumping out local search space to achieve
optimal solutions in global space. GA are known to find feasible
regions relatively quickly but convergence time to find optimal
point is usually very large. Therefore to overcome this issue, we
used hybrid augmentation scheme wherein GA is first unleashed
on unfathomable search space peculiar to cellular networks to
find feasible region. Once there, the optimization search process
is handed over to Pattern Search algorithm that are efficient for
local search. Therefore based on estimated future network state
(i.e. cell loads) in time slot s + s’, OPERA framework optimizes
network parameters to their optimal values ahead of time such
that load balancing is achieved. Note that for stability issues,
optimization parameter values remain fixed from time slot s to
s'. The optimization algorithms need some time to converge.
However, thanks to proactiveness powered by load prediction
instead of observation as is the case with most existing LB
solutions [3]-[12], the proposed strategy gives considerable time
s’ to find feasible solution.

III. PERFORMANCE EVALUATION

In this section, we present the results for our proposed
OPERA framework. We have gauged its performance against
three benchmark schemes. (i) The first scheme comprises real
mobile network deployment settings—RDS-A, RDS-B, and
RDS-C that are the three most common configurations adapted
from real network LTE deployment settings for one of USA’s
national mobile operator in city of Tulsa with RDS-A (Tilt: 3%)
and RDS-B (Tilt: 5°) both using antenna [33] and RDS-C (Tilt:
4%) using antenna [34]. (i) The second scheme (a phenomenal
work) is a Joint algorithm (referred to as Jointl in [9]) that
is quite relevant and has inspired the proposed work wherein
LB is achieved via tilts with coverage constraints. It is used
as a representative of state-of-art reactive schemes simulated
by inducing artificial delay in getting user location information;
i.e., the scheme is implemented for location information from the
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Fig. 6. Network topology with black dots indicating UEs and SCs are illus-
trated by red circles.

previous 1 minute. The reactive style optimization is also done on
a per minute basis just as for OPERA i.e., it is done every minute
for the whole 7th day (a total of 60 x 24 = 1440 evaluation
points). One thing to clarify here is that for fair comparison, we
implemented the algorithm in [9] using load-aware user associ-
ation (27). (iii) The third scheme is near-optimal performance
bound (NARN) that is OPERA with 100% prediction accuracy.
NARN (OPERA) leverage a conventional association strategy
(a =0) in (27) while NARN*(OPERA*) uses a load-aware
scheme with a = 0.5 in (27).

A. Simulation Settings

We generated typical macro and small cell based network
topologies and UE distributions in matlab following 3GPP spec-
ifications that are widely used in industrial simulations found
in [35] and [36]. The path loss and shadow fading vary with
carrier frequency whether the UE link is LOS or NLOS. The
detailed expressions for pathloss model used are given in table
A1-2 of [36]. The typical flow of simulation is as follows: At
each time slot, for a given network parameters configuration
(that is set by the optimization algorithm) and UE position set
by the mobility traces, (i) a large scale channel is generated
between UEs and base stations (ii) the path loss, shadow fading,
sectorized antenna gains and other miscellaneous losses are
generated (iii) the combined gains of the horizontal (azimuth)
sectorized and the vertical (elevation) antennas for a given UE
to all base cells/sectors is generated (iv) Each UE is associated
to one macro cell or small cell based on the association criterion
used satisfying the handover margin and SINR is calculated (v)
PRBs are assigned to UEs based on their required throughputs
and achievable SINRs (vi) cell loads and KPIs of interest are
calculated.

The multi-tier HetNet deployment simulated consists of a
primary tier represented by macrocells, and secondary tier com-
prising of small cells that share the same spectrum with the
primary tier. Snapshot of the network topology at of one of
the instants is shown in Fig. 6, and the simulation parameter
details are given in Table I. To eliminate any artifacts due to
boundary effects limitations, a wrap around model is used to
simulate an infinitely large network without requiring large
number of cells. For realistic evaluations, clustered based UE
depolyment is considered wherein some of the UEs are dis-
tributed non-uniformly by clustering them around a random
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TABLE I
NETWORK SIMULATION PARAMETERS

Values
Hexagonal - 7 Macro Cells with 3 Sectors per Base Station
1 per Sector
84 Mobile, 336 Stationary
Frequency = 2 GHz, Bandwidth = 10 MHz, ISD: 500m
Tx Power: 40 to 46 dBm, Til: 900 to 1200
Azimuth: —450 t0 450
Horizontal Beamwidth: 450 to 1200
Vertical Beamwidth: 5% to 15
Tx Power = 27 - 30 dBm, CIO = 0 - 10 dB
Macro Cell = 25 m, Small Cell = 10 m, UE = 1.5 m
Macro Cell = 17 dBi, Small Cell =5 dBi
Side lobe level suppression of combined antenna = 25 dB
Side lobe level suppression of azimuth antenna = 25 dB
Side lobe level suppression of elevation antenna = 20 dB
UE Noise figure 7 dB
Coverage Ratio 100%
Simulation Time 1 hour

System Parameters
Topology
Number of Small Cells
Number of UEs
LTE System Parameters

Macro Cell Tx Parameters

Small Cell Tx Parameters
Node Heights
Antenna Gains
Macro Cell Antenna Side Lob level Suppression

hotspot in each sector. We capture the variation of the network
conditions through Monte Carlo style simulations. The perfor-
mance of OPERA highly depends on the movement patterns
of simulated UEs. Majority of relevant works leverage ran-
dom waypoint mobility model wherein trajectory is completely
random and unrealistic. Naturally this kind of model is not
suitable especially when objective is to assess performance of
mobility prediction schemes. Therefore, for accurately gauging
performance of the proposed work, selection of appropriate
mobility model was key step since the performance analysis
of OPERA done using realistic mobility traces is going to be
plausible representative of its actual performance in the real envi-
ronment. Recently some realistic mobility models have come to
limelight such as SLAW, SMOOTH etc [37]. Among them, only
SLAW-model-generated mobility traces [38] have been shown
to capture all the statistical characteristics of mobility patterns
in cellular networks like (i) truncated power-law distributed
length of human flights, pause times and inter-contact times;
(ii) each person having his/her own confined mobility region;
(iii) attraction of people to famous landmarks. Therefore for
realistic performance evaluation of our framework, we selected
SLAW for our simulations. SLAW model based one week HO
traces were generated for 84 mobile users. Six days data was
used for building semi-Markov model. Since in real networks,
80% of traffic is generated indoor [39] therefore additional 336
stationary UEs are deployed to increase loading on the network.
We consider uniformly distributed five different UE traffic re-
quirement profiles corresponding to 24 kbps, 56 kbps, 128 kbps,
1024 kbps and 2048 kbps desired throughputs. Considering
typical time period after which updating the parameter may
be practical, we use 1 minute value for the prediction interval
s’ in our simulation study. Therefore, every minute, OPERA
predicts future location of users for next time slot and perform
optimization and this continues for whole day (a total of 1440
evaluation points).

B. Results and Discussion

We first evaluate prediction performance of the mobility
predictor i.e., semi-Markov model trained on six days mobility
patterns and tested on seventh day’s dataset. The input training
data for the semi-Markov predictor is time-stamped cell associa-
tion record for all UEs containing two fields (Time and Serving
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Fig. 7. Next Cell Mobility Prediction Accuracy for various {Prediction Inter-
val, n-Cell Prediction} combinations.

Cell) i.e., at time t;, U E; is associated with cell z. The time
granularity chosen was 1 minute interval. In real networks, this
record can be extracted from CDRs or handover reports. In each
time slot s, next cell is predicted for next time slot s + s’ using
(16) and (22) and prediction accuracy is computed which is
measured as percentage of correct predictions of the next cell
to visit in next time slot s + s’. Fig. 7 plots prediction accuracy
for various combinations of prediction interval and number of
most probable cells. Comparing 1-Cell prediction with 2-Cell
prediction, we observe that prediction accuracy improves when
for next time slot, we have more than one potential future
location. The average value reach upto 84.39%. This is expected
because spatial resolution has decreased (coarse prediction). On
the other hand, given 1-cell prediction only, prediction accuracy
improves (81.46% average prediction accuracy) with decrease in
prediction interval length for s’ = 1 min. With smaller prediction
window size, UE is less probable to move to large distances
and hence accuracy improves. These high accuracies observed
with semi-Markov model trained/tested on SLAW generated
traces are in line with other studies that are based on real HO
traces collected from live cellular networks [22]. The prediction
interval window size is constrained by the convergence time
of Genetic Algorithm and Pattern Search heuristics algorithms.
With the available resources for this study, minimum amount of
1 minute was required to find feasible solutions therefore we set
s’ = 1 minute in our simulations.

Next we compared the actual and predicted number of UEs
per cell. Let |U4;(¢ + 1)| be the number of users predicted to be
in cell j at time ¢ + 1. This consists of users who (i) just entered
into cell ¢ at time ¢ and will be in cell j at time ¢ + 1 given by
the following equation:

Ui(t+1) := {Vu ceU|j= argnrlggc(x(u)(s = 1))} 34)

i,T

and (ii) users who are in cell ¢ and have stayed in cell 7 for
sojourn time t,,; = o and will be in cell j at time ¢ + 1 given
by the following equation:

Ut +1) = {vu € U|j = argmax(3(s' = 1, o))} (35)
reC

7,7

3379

Actual and Predicted Number of UEs

® Actual ® Predicted

Number of UEs per Cell

10 11 12 13 14 15 16
Cell IDs

17 18 19 20 21

Actual and Predicted Number of UEs per cell.

Normal Probability Plot
0.99 - .
0.98 -

0.90 -

0.75

0.25

Probability

0.10

0.02-
0.01 ¢

22 24 26 28 30 32
Average Location Estimation Error

Fig. 9. Normal Probability Plot for Average Location Estimation Error.

Therefore, the total number of UEs predicted to be in cell j at
time ¢ + 1 will be as follows:

U (t+1)| = Uy (t + )| + Ut + 1)

As evident in the Fig. 8, the mobility prediction model is able
to predict the number of UEs in most of the cells at the next
time interval with high accuracy. Algorithm 1 proposed by
us in [30] was used to estimate the location of UEs for one
hour simulation duration after every s’ time slots. On average,
location estimation algorithm exhibited distance error (distance
between estimated and actual coordinates) of 27.5 meters with
maximum value of around 33 meters. The normal probability
plot for average location estimation error is shown in Fig. 9 that
is a graphical technique to identify normality in observations.
Samples from normal distribution follow straight line. As per
the figure, error in location estimation can be approximated by
normal distribution. Fig. 10 plots the histogram of difference
(error) between predicted and actual load values with OPERA
that leverage semi-Markov based future location algorithm [30].
It is observed that most of the error falls into 0.05 bin with root
mean square error (RMSE) of 0.2711.

Next, the offered cell load CDFs for all the cells with Real
Deployment Settings, Joint, and proposed schemes is shown in
Fig. 11. It is evident from the plot that with Joint, majority of
the cells remain overloaded. The reason can be attributed to
(i) reactive approach and (ii) usage of only tilt as optimization
parameter. This increases the overloading or the percentage of

(36)
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Fig. 12.  Box plot of percentage of free resources in the cells.

unsatisfied users (as shown in Fig. 13). Same trend is observed
for the Real Deployment Settings wherein cells remain over-
loaded with overloaded cells maximum in RDS-A (around 26%),
followed by RDS-C (around 23%) and RDS-B (around 21%)
respectively. Compared to these fixed configurations settings and
Reactive schemes, the proposed solution OPERA and OPERA*
achieve load reduction purely by increasing resource efficiency
through dexterous optimization of antenna parameters (trans-
mission power, tilts, azimuths, beam widths) and CIOs such
that the cell loads are substantially reduced. Although slight
overloading is observed with OPERA (OPERA¥*) of around 4%
(2%) that is due to the prediction inaccuracies. This overloading
is mitigated when prediction accuracy reaches 100% which is
shown by NARN and NARN* wherein maximum cell loads are
66% and 54% respectively. It is observed that inclusion of load
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Fig. 13.  Percentage of Un-Satisfied users.

metric in association criterion i.e., making the cell association
scheme load aware as proposed in (27) [12] improves the residual
capacity fairness in all cells. As a result of this even in presence
of prediction inaccuracies, cells have more free capacity to
accommodate actual extra load as compared to a less predicted
load.

Fig. 12 shows the box plot of percentage of free resources
among all the cells achievable with the RDS, Reactive and
proposed schemes. The inclusion of load metric in user asso-
ciation criterion as defined by (27) in OPERA* and NARN*
results in less variance in residual capacity as compared to
rest of the schemes. Note that the OPERA and OPERA* re-
sult in some cells with no free resources. This is due to the
prediction inaccuracies. This zero residual capacity scenario
is avoided with NARN and NARN*. The variance in cell
loads is further analyzed using Jains Fairness index calcu-
lated through (37) and plotted in Fig. 13 wherein the average
percentage of un-satisfied users is visualized on left y-axis
while Jains Fairness index for residual capacity is plotted on
right y-axis achievable with the RDS, Reactive and proposed
schemes.

(el —ne))?
(10 x 22e(X = ne)?)

The result computed from (37) ranges from (1/|C|) (worst case)
to 1 (best case), and it is maximum when all the cells have
the same amount of free residual capacity. Due to maximum
overloading experienced with conventional RDS and Reac-
tive schemes, considerable number of users face blocking and
become unsatisfied. Load aware association based proposed
schemes OPERA* (NARN¥*) achieve maximum fairness of
0.967 (0.992) as compared to their contemporaries OPERA
(NARN) with fairness of 0.965 (0.989). This fairness helps
to reduce the percentage of unsatisfied users from 0.98% in
OPERA to 0.35% in OPERA¥*. It is interesting to observe
that even in presence of prediction inaccuracy, percentage of
satisfied users is above 99% with OPERA. Fig. 14 plots the
CDFs for the achievable UE SINRs with the RDS, reactive,
and proposed schemes. For reactive and RDS schemes, SINR
drops as compared to other schemes. The reason is that maxi-
mum loaded macro cells cause more network-wide interference,

JFI(1 —n.) = (37)
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which reduces the achievable SINR of the UEs. This interfer-
ence footprint of macro cells becomes highly contained with
the proposed schemes (OPERA and OPERA*) by optimizing
the values of antenna parameters and CIOs such that SINR is
enhanced and cell loads are minimized. Moreover, the inclusion
of the load metric in the association scheme (OPERA* and
NARN#*) reduces the achievable SINR of the UEs, as the UEs are
not connected to the strongest possible cell. Despite decreasing
SINR for NARN*, as compared to NARN, the solution manages
to deliver the gains observed in Fig. 13, mainly because of load
fairness by optimizing the horizontal and vertical beam widths,
tilts, azimuths, Tx power, and CIOs. Actually with CIO in use,
SINR is bound to deteriorate; however, this can be taken care
of if sufficient PRBs are available to offset the loss caused by
the lower SINR. This compensating act is why OPERA* and
NARN#* outperform, hence the gain in resource utilization is
observed.

C. Complexity Analysis

The complexity of OPERA framework depends upon time
complexity of (i) semi-Markov based mobility prediction model,
(ii) future location estimation algorithm, and (iii) the heuristic
algorithm to solve optimization problem. As per [20], time
complexity in computing (22) for all users in the network in each
time slot of duration s’ is O(s'|I||C|?) once all required param-
eters have been evaluated which is not a significant overhead.
Time complexity of location estimation algorithm increases
linearly with number of geo-markers |L| in each cell. For the
heuristic algorithm, considering GA alone with G as maximum
number of iterations (generations) and P as the number of
solution space samples per iteration, execution time complexity
is O(GP) [40]. Hence total runtime of OPERA framework
can be generalized as O(GP|L|s'|U||C|?). The proactiveness of
OPERA minimizes impact of this execution time on subscriber
QoE. If 7, is the time needed to detect overloading in the
network, 7., the time needed to solve NP-hard non-convex load
balancing problem and 7, as time needed to change network
parameters to new settings then total degradation time in the
network is sum of 7,4, 7, and 7,,. With proactive optimization
strategy of OPERA, this degradation time become zero if sum
of 7., and Ty, is less than or equal to prediction window size
s'. Moreover load-aware-user association and hybrid heuristic
combination technique further reduces 7, by some factor e i.e.,
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Fig. 15. Time line diagram for Proactive and Reactive LB SON functions.

Top

which lessens strain on selection of prediction window size
(see Fig. 15).

IV. CONCLUSION & FUTURE WORKS

In this paper we have proposed a novel spatiotemporal mo-
bility prediction based proactive load balancing optimization
framework for HetNets by jointly optimizing Tx power, tilts,
azimuths, beam widths and CIOs. The proposed OPERA frame-
work employs innovative concept of estimating future user
locations and leverages that to estimate future cell loads. We
then formulate a system level fairnesss aware load optimization
problem for the estimated future cell specific loads. The majority
of the current load balancing solutions are reactive and are
designed to perform LB dynamically in real-time after observing
the congestion. With reactive approach it is close to impossible
to meet SG ambitious QoS requirements even when substantial
computing resources are available. Keeping this in view, the
proposed approach makes it possible to solve LB optimization
problem in real time without jeopardizing the QoE. Moreover,
OPERA framework accounts for the interplay between two inter-
twined SON functions (LB and CCO) and thus ensures conflict
free operation. A load aware association strategy that underpins
OPERA further bolsters the framework against location estima-
tion accuracies and maximizes system level capacity and QoE
in addition to balancing load. Extensive simulations leveraging
realistic mobility patterns indicate that, in best case, OPERA
can reduce percentage of unsatisfied users to 0.35% despite of
acute mobility and heterogeneity of cell sizes. The presented
results highlight the value of prediction (AI) based proactive
optimization.

For future work, vehicular mobility traces will be used since
in case of vehicles, the trajectory direction of mobility traces
will be more deterministic and regular as vehicles can only
follow the road topology as compared to pedestrians who can
go through any direction. On top of that, the knowledge of
street/road layout and the navigation App data e.g., google
maps navigation that determines the trajectory can be exploited
to maintain accuracy. Thus intuitively, it is expected that by
focusing on vehicular mobility the performance of proposed
solution is likely to improve. However, superposing the road
maps and speed data to achieve higher accuracy is a separate
research study that is beyond scope of this paper and will be
subject of future study. Moreover, machine learning predictors
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like deep neural networks and gradient boosting trees will be
employed in place of semi-Markov in OPERA framework that
are recently being investigated heavily for cellular networks
optimization like in [41], [42] and end-to-end gains will be
evaluated.
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