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FPDeep: Scalable Acceleration of CNN Training
on Deeply-Pipelined FPGA Clusters
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Abstract—Deep convolutional Neural Networks (CNNs) have revolutionized numerous applications, but the demand for ever more
performance remains unabated. Scaling CNN computations to larger clusters is generally done by distributing tasks in batch mode
using methods such as distributed synchronous SGD. Among the issues with this approach is that, to make the distributed cluster work
with high utilization, the workload distributed to each node must be large; this implies nontrivial growth in the SGD mini-batch size. In
this paper we propose a framework, called FPDeep, which uses a hybrid of model and layer parallelism to configure distributed
reconfigurable clusters to train CNNs. This approach has numerous benefits. First, the design does not suffer from performance loss
due to batch size growth. Second, work and storage are balanced among nodes through novel workload and weight partitioning
schemes. Part of the mechanism is the surprising finding that it is preferable to store excess weights in neighboring devices rather than
in local off-chip memory. Third, the entire system is a fine-grained pipeline. This leads to high parallelism and utilization and also
minimizes the time that features need to be cached while waiting for back-propagation. As a result, storage demand is reduced to the
point where only on-chip memory is used for the convolution layers. And fourth, we find that the simplest topology, a 1D array, is
preferred for interconnecting the FPGAs thus enabling widespread applicability. We evaluate FPDeep with the Alexnet, VGG-16, and
VGG-19 benchmarks. Results show that FPDeep has good scalability to a large number of FPGAs, with the limiting factor being the
FPGA-to-FPGA bandwidth. But with 250 Gb/s bidirectional bandwidth per FPGA, which is easily supported by current generation
FPGAs, FPDeep performance shows linearity up to 100 FPGAs. Energy efficiency is evaluated with respect to GOPs/J. FPDeep
provides, on average, 6.4× higher energy efficiency than comparable GPU servers.

Index Terms—Convolution Neural Network Training, Reconfigurable Computing, Parallel and Distributed Systems
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1 INTRODUCTION

D EEP convolutional neural networks (CNNs) have rev-
olutionized applications such as image classification

and object recognition [28], [38], [39], [44]. But as there
remains an open-ended demand for more complex networks
and larger datasets, new computing solutions are critical.
A challenging problem is that while large training sets
are necessary for good generalization, they are also more
computationally expensive. Therefore, nearly all of these
neural networks are powered by the stochastic gradient
descent algorithm (SGD).

Traditionally, distributed synchronous stochastic gradi-
ent descent (D-SGD) has enabled large-scale CNN training
by partitioning SGD mini-batches into smaller data batches
that can then be processed in parallel and so accelerate CNN
training [13]. A drawback of this method is scalability: to
enable continued high utilization as the number of nodes
increases, each node must be allocated an ever-larger work-
load, which means that the mini-batch size must increase.
Larger mini-batches, however, slow training convergence.
Thus, while larger clusters provide increased computation
capacity, the training time is not proportionally reduced [13],
[21]. In [21] the authors demonstrate that increasing batch
size increases improper convergence to sharp minimizers,
which, in turn, gives rise to poor generalization and thus
causes an increasing gap between test and training accu-
racy. Table 1 shows the performance of small-batch (SB)
and large-batch (LB) variants of ADAM on six networks.
Comparing LB and SB, we observe that LB does not de-
crease the accuracy derived from the training set, but does
substantially reduce the testing accuracy.

* marked authors have equal contribution and credit

Certain methods can somewhat reduce this loss of ac-
curacy – e.g., using dynamic batch sizes and fine-tuning
the learning rate – but they do not solve the problem [13].
SB limits the parallelism that can be exploited by high-
end computing clusters, especially when data parallelism
is used; SB is thus rarely used in large-scale training.

FPGA clusters are a competitive technology for CNN
inference [7], [9], [29], [34], [35], [42], [43]. For CNN train-
ing, however, their efficacy is still an open question; one
that is addressed in this work. Previous FPGA clusters for
CNN training have generally worked in batch mode (batch
in the computational sense), which uses the distributed
synchronous SGD algorithm just described [8], [14], [15],
[26], [31], [45]. In this approach, called Data Parallelism
[2], each FPGA executes all layers of the CNN. This is
done in sequential order, a layer at a time, with a new
layer starting only after the previous layer has completed.
Data Parallelism has three significant disadvantages. First,
optimal FPGA configurations for different CNN layers vary
greatly: either the FPGA is suboptimally configured, or
the FPGA needs to be reconfigured repeatedly at run-time.
Second, the storage required for weights and intermediate
features is generally large enough that off-chip memory
must be used. And third, this entire approach suffers from
the scalability problem of the distributed synchronous SGD
algorithm already described.

Another method, which we call Layer Parallelism, is to
daisy-chain multiple FPGAs and map the entire CNN onto
a single pipeline. Zhang, et al. [43] used Layer Parallelism
to accelerate CNNs using FPGA clusters, but only for in-
ference. Their approach, however, still leaves two problems.
First, the pipeline is not seamless; a particular layer might
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TABLE 1
Performance of small-batch(SB) and large-batch(LB). Note that LB does not decrease training accuracy, but reduces the test accuracy [21]

Training Accuracy Test Accuracy
Name Network Type Data Set SB LB SB LB
Fi FC MNIST 99.66% ± 0.05% 99.92% ± 0.01% 98.03% ± 0.07% 97.81% ± 0.07%
F2 FC TIMIT 99.99% ± 0.03% 98.35% ± 2.08% 64.02% ± 0.20% 59.45% ± 1.05%
C1 Shallow Conv CIFAR-10 99.89% ± 0.02% 99.66% ± 0.20% 80.04% ± 0.12% 77.26% ± 0.42%
C2 Deep Conv CIFAR-10 99.99% ± 0.04% 99.99% ± 0.01% 89.24% ± 0.12% 87.26% ± 0.07%
C3 Shallow Conv CIFAR-100 99.56% ± 0.44% 99.88% ± 0.30% 49.58% ± 0.39% 46.45% ± 0.43%
C4 Deep Conv CIFAR-100 99.10% ± 1.23% 99.57% ± 1.84% 63.03% ± 0.50% 57.81% ± 0.17%

stall until the previous layer finishes. All features must,
therefore, be cached until the last feature of a layer is
obtained. This requires large storage that necessitates the
use of off-chip memory. Second, the computational load
varies greatly among layers. A naive workload distribution
can result in a large number of idle cycles due to inter-
layer dependencies. These two problems are present in both
inference and training but have a greater impact on the
latter. In training, all features of the hidden layers must be
cached until their corresponding errors arrive through Back
Propagation (BP), thus requiring much larger memory. And
due to BP, the number of operations per layer triples.

We propose FPDeep, a novel FPGA-cluster-based train-
ing framework for CNNs that solves the problems just
described. FPDeep does this by using a hybrid of layer
and model parallelism together with a number of new
workload/weight balancing strategies. No reconfiguration
is needed: each device computes only certain layers or a part
of a single layer; each device is optimized independently
with respect to its own computation. The cluster is now
a single fine-grained pipeline so the batch size can be
arbitrarily small. The amount of data that must be saved
is drastically reduced eliminating most off-chip memory
accesses. Internode communication is simple and pipeline
utilization very high. To the best of our knowledge, our
work is the first on CNN training with FPGA-based clusters
using this method of parallelism and also the first with fine-
grained workload/weight balancing.

The underlying theme of this work is to convert batch
parallelism to pipeline parallelism, which has obvious ben-
efits. Parallelism is equal to the depth of the pipeline, in this
case, many thousands of stages across the cluster. Commu-
nication paths can be short so cycle times are as small as the
designer can make them. Communication among devices is
direct and contention-free with any latency having no effect
on throughput. There is also the aforementioned benefit of
having all of the latency reduction applied to individual
problem instances and so obviating the algorithmic chal-
lenges that come with larger batches.

We find this approach to be effective with performance
similar to that of GPU clusters of similar size and technol-
ogy, but with far better power efficiency. The limiting factor
is inter-FPGA bandwidth. But, somewhat surprisingly, we
find that a 1D topology suffices and that, even using only
six transceivers per FPGA (Stratix-V era), FPDeep achieves
linear speed-up to 83 FPGAs. Overall, with 250 Gb/s bidi-
rectional bandwidth per FPGA, easily supported by current
generation FPGAs, FPDeep’s performance shows linearity
up to 100 FPGAs. The main contributions are as follows:

1) The possibility of breaking down the well-known
scalability wall of CNN training and demonstrating FPGA

clusters to be a competitive technology for CNN training;
2) A novel framework for mapping CNN training logic

to distributed FPGA clusters that achieves both high ef-
ficiency and scalability; that does not suffer from issues
related to mini-batch size; and that needs only a simple
interconnection network as is available in any multi-FPGA
system with efficient inter-FPGA communication and rea-
sonable bandwidth;

3) A fine-grained pipeline design that minimizes the
time that features need to remain available while waiting
for back-propagation, thus reducing the storage demand to
the point where only on-chip memory is required for the
convolution layers;

4) Fine-grained partitioning and mapping methodolo-
gies, which provide almost perfect workload and weight
balancing among FPGAs; this is done by increasing the
flexibility of workload and weight allocation, thus leading
to improved utilization: multiple FPGAs can cooperatively
compute the same layer, while multiple layers can also be
mapped to the same device;

5) An RTL code generator that automatically creates RTL
implementations based on the mapping scheme generated
by FPDeep.

The organization of this paper is as follows. In Section
2, related work is discussed. In Section 3, the methodology
of FPDeep is presented and the workload/parameter par-
tition methods are defined. In Section 4, the overall system
architecture is given. In Section 5, the implementation of
each FPGA node’s accelerator is introduced. In Section 6, the
experimental results are presented. Discussion and further
work are in Section 7.

2 BACKGROUND AND RELATED WORK

In this article we use VGG-16, a widely used neural net-
work in image classification, as an example to demonstrate
various FPDeep features.

2.1 Background
The computations for CNN training are shown in Fig.
1(A). The red datapath shows Forward-Propagation (FP).
It calculates the errors of output features in the final layer.
Starting with an input image (Cat), neurons in each layer
are evaluated with parameters Pai. Errors are calculated
by comparing inference results to the label in the training
dataset. BP has two sub-steps: Error Back-propagation (EB-
green) and Parameter Gradient (PG-orange). In EB, errors
are back-propagated through the network. In PG errors of
each layer are used to calculate gradients of the weights
(∂Err
∂Pai

). The convolution kernels are called parameters, the
temporal convolution results are called activations. The
notation is shown in Table 2.
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TABLE 2
Definitions of symbols used in the equations.

Notation Description
A[b][l][c] Activation[batch-id][layer-id][channel-id]

Pa[b][l][o][i] Parameter[batch-id][layer-id][output-channel-
id][input-channel-id]

dP[b][l][o][i] Differential of the parameter[batch-id][layer-
id][output-channel-id][input-channel-id]

E[b][l][c] Error of the
layer[batch-id][layer-id][channel-id]

W Size of the activation
K Size of the convolution kernel
IC Number of the input channels
OC Number of the output channels

Fig. 1. (A) Illustration of computations involved in CNN training includ-
ing datapaths for forward propagation and backward propagation and
parameter gradient update. (B) An operator graph is used to represent
DNN training. Nodes are operators and edges are tensors.

Fig. 2 zooms-in on the FP, EB, and PG operations of two
layers. As shown in Tab. 2, we use A, Pa, dP , and E to
represent Activations, Parameters, Differentials of the Pa-
rameters, and errors, respectively. The relationship among
of these in CNN training is shown in Eqns. 1, 2, 3 and 4.

1. For FP the activation of layer l’s channel c is generated
by summing all related convolution results of layer l − 1’s
activations and layer l’s parameters (Eqn. 1).

2. For EB the error of layer l’s channel c is generated
by summing all related convolution results of layer l + 1’s
errors and layer l’s parameters (Eqn. 2).

3. For PG the differentials of layer l’s parameters are the
convolution results of this layer’s error and the previous
layer’s activation (Eqn. 3). The differentials of the parame-
ters are then used (Pa[b]+dP [b]) as the next batch’s weights
(Pa[b+ 1], Eqn. 4).

A[b][l][c] =
∑
p

A[b][l − 1][p] ∗ Pa[b][l][c][p] (1)

E[b][l][c] =
∑
p

E[b][l + 1][p] ∗ Pa[b][l][p][c] (2)

dP [b][l][p][q] = A[b][l − 1][q] ∗ E[b][l][p] (3)

Pa[b+ 1][l][p][q] = dP [b][l][p][q] + Pa[b][l][p][q] (4)

2.2 Related Work
Much work has addressed the mapping of infer-
ence/training of CNNs to clusters with programmable ac-

FP Engine

EB Engine

PG Engine

Pa

FP Engine

EB Engine

PG Engine

FP Engine

EB Engine

PG Engine

A[l-1] A[l]

E[l+1]E[l]

dP

Layer lLayer l-1 Layer l+1
Update

Fig. 2. Execution details of forward and backward propagation with
zoom-in on adjacent CONV layers, operations and data dependencies.

celerators, including [3], [39]. Also, many frameworks and
libraries have been deployed, e.g., MXNet [6], Caffe [19],
and Tensorflow [1]. These systems hide the complexity of
workload decomposition and provide friendly programmer
interfaces, including Python, R, and Scala. In [30], Google
proposed a method that uses reinforcement learning to op-
timize device placement for the Tensorflow computational
graph. [16] introduced GPipe to solve the problem that
the DNN model capacity increases to the point that the
model is too big to fit in the memory of a single accel-
erator. GPipe uses a batch-splitting pipelining algorithm
to map AmoebaNet onto eight GPUs. Microsoft proposed
PipeDream [16], which exploits intra-batch parallelism to
train CNNs with GPU clusters. PipeDream uses dynamic
programming to find the optimal workload partition. A
detailed comparison is given in Sections 3.2 and 4.4.

For FPGA-based clouds, the prior work is more limited.
Microsoft’s Catapult project [4], [33] includes a parame-
terized CNN accelerator cluster that can deliver over 1
TFLOPs with very high energy efficiency. Zhang’s CDSC
FPGA-Enabled Cluster accelerates CNNs on top of Spark
and Hadoop [8], [43]. In [43], researchers build a deeply
pipelined FPGA cluster with 6 Xilinx VC709 boards to
accelerate CNNs. In [45], an FPGA-based framework of
CNN training is proposed but focuses mainly on single-
FPGA designs.

Most distributed CNN systems, including TensorFlow
and CNTK, are based on the distributed synchronous SGD
algorithm (Centralized Parallel SGD algorithm - C-PSGD).
The Parameter Server Topology [25] uses a central parame-
ter node connected with multiple worker nodes. There are
multiple bottlenecks including communication load on the
central node [27] and idle time while waiting for straggling
worker nodes [5]. Also, for large-scale clusters, the growth
in the SGD mini-batch size limits scalability. Lian, et al. use
a decentralized parallel SGD algorithm (D-PSGD) to build
a large-scale cluster [27]. Each node must maintain its own
local copy of the model and data duplication is inevitable.

Fig. 4 shows the design space for mapping CNNs onto
distributed nodes. We use the terminology introduced by
[2]. Data parallelism (Fig.4(A)) is the most popular approach
in CPU and GPU clouds [1], [6]. It is also widely used
in existing FPGA clouds, such as Catapult and CDSC [8].
This method has drawbacks as mentioned in Section I. In
CNNs, the configurations of each layer, such as kernel size,
pooling size, and stride size, vary greatly, requiring different
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TABLE 3
Hardware Constraint Parameters

Notation Description
Device Num Number of FPGA devices in the cluster
LUTmax Number of Look-up table per FPGA device
FFmax Number of Flip-flop per FPGA device

BRAMmax Number of Block-RAM per FPGA device
DSPmax Number of DSP-slice per FPGA device
Transmax Number of available transceiver per FPGA device

hardware designs to obtain optimal performance. Thus,
FPGAs need to be reconfigured between layers, leading to
significant overhead. Also, as each FPGA executes all layers
in sequential order, each layer starts only after the previous
layer has completed. Thus, for all intermediate features,
weights need to be stored to, and loaded from, the host upon
completion of a layer, leading to heavy off-chip memory
traffic.

Layer Parallelism (Fig. 4(B)) maps layers of the CNN
onto individual nodes and pipelines the computation. It has
been employed by both GPU [17], [18], [20], [41] and FPGA
frameworks [43]. In [41], each LSTM layer is assigned to a
different GPU. Since each layer is mapped to a certain GPU,
workloads are not balanced among devices. For multi-FPGA
systems, Zhang, et al. [43] only addresses inference; also, the
parallelism is coarse-grained, the workload is unbalanced,
and there is heavy off-chip memory communication. So
while Layer Parallelism mitigates some of the problems with
batch size and frequent reconfiguration, it suffers from other
problems: load balancing and stalls as some nodes wait for
others to finish.

In Model Parallelism (Fig. 4(C)), weights for each layer
are distributed across nodes. Therefore, all intermediate
results from all devices must be added up and then broad-
cast to every device leading to heavy communication. This
method has been used for AlexNet [22].

3 FPDEEP FRAMEWORK

3.1 Overview
An operator graph G (Fig. 1(B)) is used to describe the
operations in DNN training. Each node oi ∈ G is an
operator (e.g., matrix multiplication or active function), and
each edge (oi, oj) ∈ G is a tensor (an n-dimensional array)
that is an output of oi and an input of oj . Each node om has
a weight Op(om). Hardware constraint parameters (Tab. 3)
are used to describe all available hardware devices.

FPDeep thus has two sets of input parameters, from
the Operator Graph and the Hardware Constraint Param-
eters. The whole framework contains two parts: mapping
and implementation (Fig.3(A)). The Mapping Framework
partitions the operator graph into several fine-grained seg-
ments and maps them onto FPGA clusters so that every
FPGA gets a balanced workload and parameters. In the
Implementation Framework, the RTL generator creates RTL
implementations for each FPGA based on the parameterized
mapping, and a cycle-accurate simulator gives measures of
throughput, bandwidth demand, and percent idle stages.

3.2 Operator Graph Partitioning Methodology
As mentioned in Section 2, DNN training includes FP, EB,
and PG phases. The inter-phase data dependencies lead to

Fig. 3. (A) Overview of the FPDeep Framework. The operator graph and
hardware constraints are input parameters. (B) FPDeep contains two
phase: mapping and implementation. (C) The proposed DNN operation
graph partition methodology with ResNets and Inception.

a complex operator graph G. General graph partitioning
methods, such as Google’s Reinforcement Learning (RL)
method [30], are useful approaches in the partitioning tasks
of DNN training, but not efficient enough. Finding the
global optimal solution of graph partitioning is NP-hard,
making the time to find the best partition comparable to the
DNN training time [32]. FPDeep takes advantage of the fact
that DNN training logic can be modeled as a computational
pipeline consisting of groups of consecutive layers; this sig-
nificantly simplifies the optimization algorithm and makes
it possible to return the exact solution in polynomial time.

As shown in Fig. 3(B), FPDeep graph partitioning works
in two phases: 1) Coarse-grained and 2) Fine-grained.

1. Coarse-grained phase: The whole graph G is ab-
stracted and simplified as a one-way graph G. Each node
in G presents the workload of forward and backward
propagation of a certain layer. The coarse-grained graph
G is partitioned into multiple (number of FPGAs) sub-
graphs with similar sizes of workloads. This simplifies the
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TABLE 4
Operator Partition Choice. Different operator graph partition design

choices make possible different parallelizability methods.

Parallelizability Method
Sample Layer Model

Data Parallelism (DP) Y N N
Layer Parallelism (LP) N Y N
Model Parallelism (MP) N N Y
Hybrid Parallelism (HP) N Y Y

partitioning process of G, but results in a coarse-grained
partitioning solution with high variance in the workload
size distribution of the sub-graphs.

2. Fine-grained phase: Each sub-graph Gi of G is re-
placed with the details of forward and backward propaga-
tion. As shown in Fig. 3, Gi is presented with a finer tiling
unit with nodes representing convolution operations at dif-
ferent channels. In this phase, FPDeep performs reallocation
of FPGA resources in a finer-grained manner to reduce the
variance of workload distribution in phase 1. In Section 6,
we showcase the proposed graph partitioning method with
practical DNNs e.g. AlexNet, VGG-16/19.

The proposed CNN training graph partitioning method
is useful not only for Feed-Forward DNNs (FFDNNs), but
also DNNs with more complex topologies, e.g. Residual
Neural Networks, Inception, as they can also be modeled as
pipelined groups of consecutive layers with some extra ab-
stractions (Fig. 3(C)). For example, the parallel convolution
and pooling kernels in Inception can be treated as additional
output channels of a CONV layer in FFDNNs followed by
distributed and pipelined concatenation kernels for data
reduction. For Residual Neural Networks, a shortcut can be
treated as extra channels of the convolution kernels being
bypassed by the shortcut. Support for DNNs with more
general topologies will be included in the next-generation
FPDeep.

3.3 Design Choices in Operator Graph Partitioning
As shown in Fig. 4, we can use a cube to represent a node
in the operator graph. For each operator, there are three
parallelizable dimensions: Sample, Model, and Layer. All
available partition choices are shown in Fig. 4 and Tab. 4.
Four metrics are used to compare the partitioning methods:

1. FLOP Utilization. Maximum FLOPs can be achieved
when every DSP slice processes a valid operation every
clock cycle. Real performance is less than ideal because
of workload imbalance or synchronization overhead. FLOP
Utilization (RealF lops/MaxF lops) captures this behavior.

2. Storage Requirement. During DNN training, model
parameters and temporal activations must be stored. The
total Storage Requirement determines whether all necessary
data can be stored in on-chip memory.

3. Communication Footprint. FPGAs need to synchro-
nize data among co-workers. The Communication Footprint
specifies the entire communication data throughput of one
mini-batch SGD iteration.

4. Communication Bandwidth is the communication
footprint divided by the time of one mini-batch SGD iter-
ation. This metric is used to characterize burstiness.

Fig. 5 shows results for these four metrics for different
parallelization methods and scales of FPGA clusters. For
VGG-16, we set the batch size to 128 so that the DP method

Fig. 4. Illustration of operator graph partition design choices: (A) Data
parallelism, (B) Layer parallelism, (C) Model parallelism, and (D) Hybrid
parallelism(Layer + Model)

works for clusters with fewer than 128 devices. There are 16
layers (13 convolution and 3 fully connection); thus the LP
method only works for a cluster with less than 16 devices.
Also, the minimum channel count is 64 (Layer CONV-1,2) so
the MP method works for clusters with less than 64 devices.

A. Analysis of Flop Utilization. LP is the best choice
because all devices work in a pipeline manner. However,
because of variations in the DNN layer’s operation count,
LP still suffers from workload imbalance. DP is the sec-
ond choice. In each mini-batch SGD iteration, DP must
synchronize the DNN model globally, which causes serious
communication overhead for large scale FPGA clusters. MP
is the worst choice since it needs an additional layer for
synchronization among different channels.

B. Analysis of Storage Requirement. LP is the best
choice because of pipelining, which means the cluster does
not need to store temporal activations off chip and the
DNN model’s parameters are distributed. Clearly, when the
cluster is small, storing all necessary data in the FPGAs’
on-chip memory is a challenge. But when the cluster is
large enough, the size of on-chip memory is not a bottleneck.
For DP and MP, each FPGA must keep its own copy of
the DNN model’s parameters. Also, all temporal activations
must be maintained in local memory.

C. Analysis for Communication Footprint. DP is the
best choice because all temporal activations are stored lo-
cally and only DNN model parameters need device-to-
device communication. LP is the second choice because
devices work in a pipeline manner and each device needs to
synchronize activations with adjacent devices. MP is worse
because it needs to both synchronize parameters globally
and synchronize activations among channels.

D. Analysis for Communication Average Bandwidth.
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TABLE 5
Qualitative comparison, from 1 (worst) to 4 (best), of different partition

methods with respect to various parameters

Design /
Metrics

Parallel
Opt

Flop
Util

Storage
Req

Comm
Foot-
print

Comm
Band-
width

Data
Parallel 2 2 2 4 4

Layer
Parallel 1 3 3 2 2

Model
Parallel 3 1 1 1 1

FPDeep 4 4 4 3 3

DP’s bandwidth is the lowest due to the centralized burst
communication pattern. It only synchronizes the model’s
parameters after all workers finished their jobs. When the
workers are busy, the device-to-device links are idle. In
LP, due to all devices working in a pipeline manner, they
need to synchronize activations with the adjacent nodes.
The communication is stable and the bandwidth of LP is
larger than for DP.

FPDeep Summary: Rather than DP, LP, or MP, FPDeep
uses a hybrid parallel method (Fig. 4). It works in a deeply
pipelined manner with workload balanced among devices;
this improves FLOP Utilization. The balanced allocation
policy also reduces the Storage Requirement of the device-
to-device activation buffer. As there is no “free lunch,” all
temporal activations must be transferred among devices.
Thus the communication bandwidth is the system’s bottle-
neck for large scale clusters. Tab. 5 compares the different
partition methods. Performance details are presented in
Section 6.

3.4 Mathematical Model of FPDeep

As shown in Fig. 3, the mapping phase of FPDeep has two
parts: operator graph partitioning and FPGA resource allo-
cation. We present a mathematical model for this process.
We assume N FPGAs and an operator graph G.

3.4.1 Operator graph partitioning

In this step, the operator graph G is partitioned into a set of
sub-graphs G = {G1, G2 · · ·GN}. Function Op returns the
operation count of a sub-graph. For example, Op(Gi) is the
operation count of operator graph Gi and Opmin(G) is the
minimum operation count of the sub-graph set G. Because
the FPGA cluster is pipelined, the variance of the sub-graph
operation count V should be minimized:

V =
∑
i

Op(Gi)−Opmin(G)
Opmin(G)

(5)

3.4.2 FPGA resource allocation

In this step, the FPGAs’ hardware resources are allocated
according to the sub-graph set G. The resource allocation
step is an optimization problem. The pipeline is constructed
from Convolution Engines (CEs), which are used to han-
dle compute-intensive convolution operations, and buffers
(Buf), which are used to store CNN model parameters
and temporal activations. Convolution engines are com-
posed of 2-D systolic arrays that consume input features
from shift-registers. Their design is similar to those in [40],

[45]. The FPGAs’ resources can be expressed as a tuple:
(LUT, FF,BRAM,DSP ).

As mentioned above, for large FPGA clusters, the
goal is to maximize the cluster’s throughput (T), while
for small FPGA clusters, the goal is to minimize the
storage requirement. In this context, size is relative and
it depends on the ratio of the size of the neural net-
work to the FPGA resources. The constraints lie in the
hardware resources at each device and are denoted as
(LUTmax, FFmax, BRAMmax, DSPmax).

For large clusters the number of CEs in device i is
denoted as CEi. The theoretical maximum performance of
these CEs is Perf(CEi). These convolution engines need
buffers Buf i, which is the function of CEi (Eq. 6). The
overall throughput of the cluster is T and depends on the
node with the lowest performance (Eq. 7).

Buf i = f1(CE
i) (6)

In FPGAs these Convolution Engines or Buffers can
be built with hard DSP-slices/Block-RAMs or distributed
Lookup-Tables/Flip-Flops. We build some CEs (αCEi) with
hard DSP slices and other CEs ((1−α)CEi) with LUTs/FFs.
Similarly, some buffers (βBuf i) are built with hard BRAMs
and others ((1 − β)Buf i) with LUTs/FFs. Equations 8,
9, 10, and 11 define the hardware resource constraints.
Functions f2, f3, f4, f5, f6, f7 return the consumption of the
corresponding hardware resource. The target function for a
large cluster is the maximum throughput T :

T = min(
Op(Gi)

Perf(CEi)
) (7)

subject to:

LUT i = f2(αCE
i, βBuf i, (1−α)CEi, (1−β)Buf i) ≤ LUTmax, (8)

FF i = f3(αCE
i, βBuf i, (1− α)CEi, (1− β)Buf i) ≤ FFmax (9)

BRAM i = f4(βBuf
i) ≤ BRAMmax (10)

DSP i = f5(αCE
i) ≤ DSPmax (11)

For small clusters the target function minimizes the
storage requirement S; the constraints are the same as the
large cluster case. To fit all DNN training logic into a small
cluster, we propose a method called parameter balancing.

S = max(f6(βBuf
i) + f7(βBuf

i, (1− β)Buf i)) (12)

Fig. 6(A) shows the number of model parameters and
activations in VGG-16. Observe that from the first to the last
layer the number of activations is decreasing while the num-
ber of parameters is increasing. The decrease in activations
is because the dimensions of the feature maps are reduced
by the pooling layers. The increase in the parameters is
because the number of input and output channels increases
in the later layers. In clusters with small numbers of FPGAs
(to accelerate VGG-16) the memory demand of parameters
for the later layers increases to the point where the on-chip
memories in each FPGA are not big enough to cache the
allocated parameters.

To make enable the mapping of big networks to small
clusters of FPGAs, parameter balancing can be used. Figs.
6(B-D) show the method. Simply, parameters from the later
layers are stored in FPGAs where there is room, even if those
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Fig. 5. Comparison of different operator graph partition methods accounting for four different metrics: flop utilization, storage requirement,
communication footprint, and average communication bandwidth)
FPGAs are some distance away from where those parame-
ters will eventually be used. For example, the parameters
of layer 8 are stored in FPGAs 3 and 1. During computa-
tion, the parameters stored in FPGA 1 are transferred to
FPGA 3 through the communication network together with
activations. Note that the transport of parameters does not
tighten the constraint on inter-FPGA communication. This
is because the smaller number of activations in the later
layers cancels out the added traffic for the parameters. Our
experiments demonstrate the benefit of this approach: only
on-chip memory is needed for the CONV layers.

Fig. 6. Parameters and activations for VGG-16

4 SYSTEM DESIGN

4.1 Input/output channel partition implementation
FPDeep uses hybrid parallelism to partition the operator
graph. We begin by noting that partitioning in the layer
dimension is straightforward (Fig. 4(D)). The model dimen-
sion is more involved and is done via input/output channel
partitioning. As shown in Fig. 7, each device executes the
operations of a fraction of the input/output channels. Input
feature maps, along with model parameters, are partitioned
in the ic/oc dimension and allocated among FPGA devices.
Each device generates the partial results and their sum is
the final output activation.

There are two ways to partition the graph, by input (ICP)
or by output (OCP) channels. These methods are shown in
Figs. 7(A) and (B), respectively.

1) ICP: Layer 1 is partitioned and mapped to 4 devices.
IC input activation channels and corresponding weights are
partitioned into 4 segments each containing IC/4 channels.
Each FPGA receives one of the 4 segments and calculates
partial results of activations for all output channels. Each

Fig. 7. Partitioning image input/output channels ic/oc

complete output activation is calculated by summing up the
related partial results from the 4 FPGAs.

2) OCP: OC output activation channels are partitioned
into 4 segments each containingOC/4 channels. Each FPGA
is responsible for calculating a certain segment of output
activations. The 4 segments’ results are then gathered. In
CNN training, all activations need to remain available while
waiting for back-propagation. Therefore, all IC input fea-
ture maps are cached in every FPGA. This duplication leads
to additional on-chip memory overhead. This defect of OCP
does not exist in ICP, so FPDeep prefers to use ICP: OCP
is only used when the number of the input channel is too
small to provide sufficient parallelism. For example, the first
layer of AlexNet only has 3 channels of input features but
96 channels of output features so OCP is used.

4.2 Dataflow Analysis and Interconnection Topology
Fig. 8(A) shows an N layer CNN mapped to an FPGA clus-
ter with M devices. Each CNN layer contains Oi operations
(i ∈ [1, N ]). The computation capacity of each device is
C operation per second. To balance compute workloads
among devices, the workloads are mapped to FPGAs in
proportion to the device’s compute capacity. Each device
needs to execute W =

∑
Ci

M operations.
Fig. 8(B) zooms in on the CNN training procedure that

turns the dataflow into an operator graph as the summation
of all activation channels are cut into several pieces. Each
piece only needs to add the local convolution result Ri to
the previous node’s intermediate result Ri−1. The work-
loads, i.e., the arithmetic operations, of a whole network are
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Fig. 8. Data flow analysis of CNN training. FPDeep pipelines the reduc-
tion operations and maps them to multiple FPGAs.

partitioned and mapped onto M FPGA nodes in proportion
to their computation capacities. Fig. 8(C) shows the data
streams in the FPGA cluster. Note that a 1-D interconnect
topology is sufficient.

Fig. 9 illustrates the topology design choice by map-
ping VGG-16’s CONV-3 - CONV-5 layers onto a cluster
with eight VC709 FPGA boards (see Section 6) according
to FPDeep’s operator graph partition method and FPGA
resource allocation policy. The red dotted box marks the
communication bottleneck. Let us assume 10 board-to-board
interconnections ports. First assume a 2D topology. We see
that Dev-1 is the bottleneck: because the degree of Dev-1 is 5,
each communication link of Dev-1 only has two ports. With
a 1D topology, however, Dev-4 is the bottleneck. Some of
the partial output activations need to be duplicated (dotted
arrows in and out of Dev-4). But the degree of Dev-4 is
only 2 while each communication link has 5 interconnection
ports, making the communication more efficient.

Fig. 10 shows quantitatively how the choice of topology
affects performance. For clusters larger than 5 nodes, the 1D
topology is better. As the number of nodes increases, this
advantage becomes even more apparent. For clusters with 4
nodes, the 2D topology is better because the degree of the
bottleneck device is only 2.

A further advantage of 1D topology versus 2D is its
simplicity. With only single links, different dataflow types
are multiplexed and easily scheduled. Also, for 2D the
reduction operation of each DNN layer is centralized, which
incurs significant synchronization overhead and requires
more data movement.

Another consideration is that, practically, FPGA acceler-
ator boards almost always have less communication capa-
bility than the FPGAs themselves, both in BW and number
of ports. This makes the choice of 1D even more crucial. An
interesting exception is for accelerator boards with multiple
tightly coupled FPGAs. For single boards with, say, four
FPGAs, we have already noted that 2D is preferred. For clus-
ters with multiple multi-FPGA boards, because internode
connectivity is more limited than intranode, the preferred
inter-node topology is again 1D. Within the node, however,
the additional in situ connections remain useful leading to a
hierarchical topology.

4.3 Deep Fine-Grained Pipeline

To illustrate data dependencies during training we use as
an example of two CONV layers with 3× 3 kernel size. The

Fig. 9. 1D-2D topology design choice: while 2D seems the obvious
choice clearly 1D has better performance

Fig. 10. 1D-2D topology performance comparison

operations of these two layers’ forward/backward propaga-
tion are shown in Fig.11(A). In forward propagation, a 7× 7
feature map is fed into Layer 1 and a 5 × 5 feature map is
generated. At layer 2 the 5 × 5 feature map is convolved
with the parameters and inferred to a 3× 3 feature map. In
the backward propagation, the 3 × 3 error map is padded
to 7 × 7 before it is fed to Layer 2. Next, the error map
and corresponding parameters are convolved and another
(5 × 5) error map is produced; this is used for Layer 2’s
weight/bias gradient calculation. At Layer 1, the 5× 5 error
map is padded to 9× 9 and then convolved to 7× 7.

The Fig.11(A) depicts the data dependency of forward-
ing and backward propagations during CNN training.
For the forward propagation phase, the image is inferred
through all layers. To determine the data dependency, we
start from the four activations at the output feature map
at the last layer, which are marked as black, red, blue, and
yellow, respectively, and trace backward to find the region
of the input feature maps on which each depends. For the
backward propagation phase, errors calculated are propa-
gated backward through the network. To calculate gradients
at a particular layer, errors which are backward propagated
from the next layer and activations of its feature maps are
necessary. Hence, the feature maps, which are generated in
the forward propagation phase, need to remain available
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Fig. 11. FPDeep’s deep fine-grained pipeline design. (A) shows the data
dependency of CNN training; (B) shows traditional data parallelism’s
coarse-grained pipeline; (C) shows FPDeep’s fine-grained pipeline.

awaiting backward propagation. As shown in Fig.11, acti-
vations, and errors among CONV layers show only fine-
grained dependencies. That is, to begin computing the value
of a pixel in a layer, only a fraction of the pixels from the
previous layer are needed. Therefore the computation of
a layer can start much earlier before the previous layer is
completely done. This provides the opportunity to process
all CONV layers in parallel in a fine-grained pipeline.

The Fig.11(B) shows the traditional method of acceler-
ating CNN training. First, the N channels of the feature
maps are fed into the convolution layer L1. Next, results
from all M channels begin to be processed while the con-
volution kernel slides across the N -channel feature maps.
Much storage capacity is needed to maintain all temporal
feature maps. Clearly, this method is not efficient. The fine-
grained alternative is shown in Fig.11(C): the calculation of
an activation/error starts as soon as its dependent activa-
tions/errors are propagated from the previous/next layer.
The basic process unit of FPDeep is an activation/error of
a feature/error map; this is in contrast to the traditional
method’s basic unit of the entire feature/error map. The
result is both a large increase in parallelism through the
added pipeline stages and a reduction in storage so that
only on-chip memory is needed.

4.4 Parameter Alignment

In contrast to traditional DP, where centralized gradient
aggregation and weight update need to be performed se-
quentially, FPDeep conducts all of these processes in par-
allel.In order to achieve full hardware efficiency, we use a
distributed and slightly-unaligned weight update scheme:
gradient calculation, aggregation, and weight update are
always performed locally.With respect to the parameter
alignment, after the last training sample in a certain mini-
batch (round M ) is forward propagated through the clus-
ter, its backward propagation follows immediately. At the
same time, the forward propagation of training samples
in the next mini-batch (round M + 1) follows using the
old parameters of round M until the last training sample
(from round M ) is backward propagated. The deep fine-
grained pipeline used in FPDeep guarantees fast feature and
error propagation and reduces the time that old parameters
need wait for the weight update, i.e. it eases the parameter
alignment issue. Based on our experiments, with the mini-
batch size as 1K and a cluster with 100 FPGAs, only the first
5 training samples of each epoch suffer from the resulting
slight non-alignment. Moreover, this slight parameter non-
alignment does not affect the convergence rate (as discussed
in Section 6.4 and shown in Fig.16(B)(D)(F)).

Existing work considers parameter alignment and high
throughput to require a trade-off. Google’s GPipe [16] and
Microsoft’s PipeDream [32] use a similar pipeline scheme
to build a distributed DNN training system but use dif-
ferent alignment methods. GPipe divides the input mini-
batch into several smaller micro-batches, enabling different
GPUs/TPUs to work on different micro-batches simultane-
ously. GPipe needs to flush the pipeline and synchronize the
gradients among all accelerators after the computation of
the whole mini-batch finishes. GPipe’s solution introduces
many bubbles in the pipeline. Moreover, GPipe focuses
on fitting oversized DNN onto multiple accelerators, not
solving the large-batch training problem. To the best of
our knowledge, the approach used in GPipe makes the
large-batch problem even more severe: more accelerators
require more micro-batches and, in order to fill up each
device, the size of micro-batches must be relatively large.
As with GPipe, Microsofts’s PipeDream also uses coarse-
grained workload partitioning and pipelining. However, in
contrast to GPipe, PipeDream suffers from the parameter
alignment issue. The authors propose a technique called
weight stashing to save multiple versions of the parameters
and so align parameters on a slightly longer time scale.

The optimization target of this paper is throughput,
i.e. epoch/h. Note that in FPDeep, higher throughput is
equivalent to reduced training execution time as FPDeep,
because of the small mini-batch size, does not require more
epochs to converge.

5 HARDWARE ACCELERATOR ARCHITECTURE

5.1 Overall Architecture

The overall architecture of the multi-FPGA accelerator
and the detailed architecture of each FPGA are shown in
Fig. 12(B). For an l-layer CNN, FPDeep maps convolution
layers t ∼ l to p FPGAs. All p FPGAs are connected in a
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Fig. 12. Overall architecture of FPDeep accelerator and block design of
each FPGA. (A) illustrates the overall architecture of FPDeep; FPGAs
can cooperatively work on the same layer and multiple layers can be
mapped on the same FPGA. (B) illustrates the architecture of FPGA
m+1 which is fully allocated to layer t. (C) illustrates the architecture of
FPGA m which is allocated to both layert and layer t+ 1.

1-D topology. In Fig. 12, At denotes the output activation of
layer t and Et the errors backward propagated from layer
t. There are six key data-paths. Steps 1, 2 and 5 are for FP,
while 3, 4 and 6 are for BP.
1. Output activations from layer (t − 1) are allocated to
FPGAs of layer t according to the ICP results. Each FPGA
caches a segment of the features allocated to it and propa-
gates the rest to the next node.
2. Using the segment of features cached at Datapath 1,
each FPGA calculates partial results of all output features
at layer t. The partial features produced from FPGA m are
propagated to node m+1 through Datapath 2. After adding
up partial features produced by nodes m and m + 1, the
updated partial features are propagated to the next node.
3. In each cycle, errors from layer (t+1) are back-propagated
to the FPGAs of layer t through Datapath 3.
4. Using errors from Datapath 3, each FPGA calculates the
errors of the features allocated to it at Datapath 1 and
propagates them to the preceding node. Node m propagates
the errors calculated by itself first and then the errors
transferred from node m+ 1.
5. Parameters are transferred from the node where they are

cached for parameter load balancing to the node where they
are used to compute the output features.
6. The gradients of parameters are transferred from the node
where they are produced to the node where they are cached
for parameter load balancing.

The proposed architecture is generally useful for SGD-
based training of any feed-forward CNNs and can be ex-
tended to support other CNNs with more complex topolo-
gies such as ResNet and Inception. As described in Section
3.2, as long as a DNN can be described as a one-way graph
with nodes representing pipelined groups of consecutive
layers, FPDeep can efficiently partition and map its training
logic to an FPGA cluster. New modules are needed as
follows: aggregation to the filter concatenation in Inception;
duplication of FP, PG, and EB for the parallel CONV and
Pooling kernels in Inception; and gather and bypass for the
various types of shortcuts of ResNet. Integrating these into
FPDeep is straightforward and will be part of the next-
generation system.

5.2 Single-FPGA Architecture
As shown in Fig.12, each FPGA includes FP, PG, and EB
modules, as well as a memory subsystem to cache pa-
rameters, gradients, and activations. Each accelerator has 6
interconnection modules to communicate with its neighbors
(this number is selected because it is available on many
boards used for FPGA clusters and is sufficient for good
scaling). An FPGA can be allocated to multiple layers.
Implementations with FPGAs working for single layer and
for multiple layers are illustrated in Fig.12(B) and (C).

5.2.1 Interconnection
There are two pairs of interconnection modules. a) The
upper pair, used by Forward datapaths 1, 2 and 5, 1)
receives input features and partial features propagated by
the preceding node; 2) bypasses the input features which
are not mapped to it to the succeeding node; 3) adds partial
results produced by FP to the received partial features and
propagates updated partial features to the succeeding node;
4) forwards the parameters and gradients from the node
which caches them to the node which produces them. b) The
bottom pair, used by backward datapaths 3, 4 and 6, 1) re-
ceives errors from the next layer bypassed by the succeeding
node and passes them on to the preceding node; 2) receives
errors of this layer calculated by the the succeeding node;
3) after errors are calculated by the EB module, propagates
them to preceding node; 4) forwards the parameters and
gradients from the node which calculates them to the node
which caches them.

5.2.2 Memory Subsystem
The memory subsystem includes BRAM-based modules and
stores activations, parameters, and gradients.
1. Activation RAM (Act-RAM) caches input activations
mapped to the target FPGA until they are consumed in back-
propagation and provides input activations as operators to
FP and PG modules for output activation and parameter
gradient calculation. After input activations are consumed
in FP, they are kept in Act-RAM and wait to be reused
during BP to calculate parameter gradients. Act-RAM is
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implemented as a FIFO-based memory. In BP, when errors
are calculated and propagated backward from the adjacent
FPGAs to a certain device, the features stored earlier in Act-
RAM are first consumed by the PG module for parameter
gradient calculations.
2. Local Parameter RAM (LPRAM) caches parameters used
as operators to produce the output activation at the local
FPGA. For each FPGA, there are SF × K × K × OC
parameters stored in LPRAM, where SF is the number of ac-
tivations in the activation segment allocated to an FPGA. To
provide enough concurrency of parameter access, LPRAM
is designed as a SF × K × K-bank line buffer. Each bank
caches OC parameters.
3. Balanced Parameter RAM (BPRAM) caches the param-
eters mapped to the local device for parameter load bal-
ancing. These parameters are used as operators in other
FPGA devices where on-chip memory is insufficient to cache
all the required parameters. Both LPRAM and BPRAM are
updated by PG. Similar to LPRAM, BPRAM is implemented
as multi-bank line buffer. The number of banks and their
depths are decided by the parameter balancing scheme.
4. Local Gradient Buffer (LGB) caches the gradients of the
parameters stored in LPRAM. The gradients are cached and
averaged at each iteration. At the point that a mini-batch
size number of input figures are completely trained, the
averaged gradients are forwarded to LPRAM and update
the parameters stored in LPRAM.
5. Balanced Gradient Buffer (BGB) caches the gradients
of the parameters stored in BPRAM. These gradients are
generated by and transferred from the device where the
corresponding parameters are consumed.

5.3 Forward Propagation (FP)
The Line Buffer (LB) reads input features from the Act-RAM
and feeds them to the Convolution Engines (CEs). The CEs
perform convolutions with parameters from the LPRAM
and input activation from the LB. In the Special Function
Unit (SFU), the output features are activated, normalized,
and sampled based on network specifications. Afterwards,
features are transferred to the Partial Activation Buffer
(PAB) and added to the partial features produced by and
propagated by the preceding node. Finally, the updated
partial activations are propagated to the next device through
the interconnection module.

We use ICP as an example to show how the FP mod-
ule calculates partial activation results. Assuming a certain
FPGA node has been allocated with S IC channels, at
each cycle, K × K × S IC activation are accessed from
line buffers and broadcast to the CEs. Each CE consists of
S IC convolution tiles. Each convolution tile has K × K
multiply-accumulate units and executes a K ×K convolu-
tion operation per cycle. With all convolution tiles working
on different input channels, at each cycle, each CE can
finish calculating the partial results of one output channel.
In the FP module, there are multiple CEs calculating the
activations of different channels in parallel. The number of
CEs, P , is determined by the number of DSPs allocated to
FP operations during the offline ICP mapping. When partial
activations are calculated, they are forwarded to partial
activation buffers where they are used to update the partial
results produced from the previous nodes.

5.4 Error Back-Propagation (EB)
The EB module consumes errors from the next layer and
produces errors for the target layer.

It takes two steps to calculate the error of each input
activation: (1) errors of all output feature maps are con-
volved, respectively, with their parameter filters and (2)
their convolution outputs are summed. In FPDeep, for an
FPGA allocated with S IC input channels, the EB module
calculates S IC errors in parallel. In EB, CEs are used to
perform the convolutions of errors of output channels and
their parameters. This is different from the FP module where
the number of convolution tiles in each CE is S IC , rather,
each EB module has S IC CEs. Each CE has P tiles and
each tile can perform a K ×K convolution operation. The
number of convolution tiles in each PE is pre-determined
during ICP mapping. Taking P as the number of CEs, at
each cycle, the errors from P from OC output channels are
broadcast to, and consumed by, S IC CEs. The outputs are
partial results of errors at S IC input channels. AfterOC/P
cycles, all output channels are evaluated and the complete
results of errors are forwarded to the Error Buffer.

5.5 Parameter Gradient Calculation (PG)
PG consumes errors of the next layer propagated from the
succeeding neighbor and calculates gradients of the param-
eters. Errors of output activations are used as convolution
filters on the input activations which are cached in the Act-
RAM during forward propagation. Gradients are cached
in the Gradient Buffer and used to update parameters in
LPRAM when a mini batch of samples is trained.

In contrast to the convolutions at FP and EB where the
filter size is normally smaller than 7, the filter sizes in PG
(R and C) can be in the hundreds. This requires expensive
convolution tiles – the resources can even exceed those
of the FPGA. Even if this does not happen, the PG may
still occupy most of the computing resources and result
in a serious workload imbalance. In PG, K × K W × W
convolutions need to be performed. In FPDeep, we cut
K ×K large convolutions into W ×W small convolutions
(K × K). The overall operation count stays the same. But
in this case, the PG module always fits the DSP resources
constraint and the CE array design of PG is similar to the
ones in FP and EB.

6 EXPERIMENTS AND EVALUATION

In this section, we describe experiments performed to eval-
uate the efficiency of FPDeep. First, we evaluate the correct-
ness and performance of the design on a small FPGA cluster
with eight Xilinx VC709 boards. Based on these results,
we validate a cycle-accurate software simulator. Because
the small FPGA cluster is insufficient for complex neural
networks, we use the software simulator to evaluate the
performance of FPDeep on large-scale clusters.

6.1 Small Scale Cluster Experiments
The small scale cluster experiments use a cluster of eight
Xilinx VC709 evaluation boards. As shown in Fig. 13(A),
each VC709 motherboard contains one XC7VX690T FPGA,
an FMC-HPC connector for the daughterboard extension,
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Fig. 13. Hardware evaluation and MPI-based software simulator

and an SMA FMC, which contains 32 SMA connectors. Some
of the SMA connectors are used for forward propagation,
others for backward propagation. The eight FPGA boards
are connected in a 1-D daisy chain. This cluster is used to
validate the parameterized hardware accelerators (Section
5), to perform the topology experiments (Section 4), and to
validate the correctness of the software simulator.

6.2 Large Scale Cluster Experiments
The FPDeep software simulator is based on MPI version
OpenMPI 2.1.1 (Fig. 13); n CPUs work in a pipelined man-
ner. For each CPU, we have two MPI process groups, one
each for FP and BP. Additional MPI processes handle data
exchange with adjacent CPUs, broadcast the previous CPU’s
temporal activations, and reduce the current CPU’s results.
The simulator is parameterized to support various FPGA
platforms. For example, the MPI processes which handle
communication have configurable parameters that enable
accurate simulation of the data exchange among FPGA
boards with different interconnect bandwidths and latency.

The software simulator is currently used to evalu-
ate large-scale VGG-19, VGG-16, and AlexNet training.
For larger and more complex DNNs such as ResNet,
GoogLeNet, and Recurrent Neural Networks, we will use
emerging large-scale FPGA clusters. For example, the Open
Cloud Testbed (associated with the Massachusetts Open
Cloud), which was kicked off at the end of 2019, will in
the first stage be equipped with at least 64 Xilinx Alveo 280
boards and be publicly available.

6.3 Utilization and Performance
6.3.1 FPGA Resource Utilization
For illustration, we map AlexNet and VGG-16/19 to a clus-
ter with 15 FPGAs. Figs. 14(A-I) show resource utilization
of each FPGA and resource allocations among the net-
work layers. As shown in the DSP utilization reports (Figs.
14(C)(F)(I)), the mapping is well-balanced. The utilization
of DSP slices is roughly 80% and the throughput of each
FPGA is around 1 TOPS. On-chip BRAM is only used in
the FPGAs that work solely on the CONV layers (FPGAs
1-14) and utilization of BRAMs is under 80%. The highest
bandwidth requirement among these 15 FPGAs for these
three networks is 18.6 Gb/s.

For AlexNet (only 8 layers), the 15-node cluster does not
require parameter balancing to achieve the best performance

so CLB and BRAM utilization have been left unbalanced.
For VGG-16/19, however, parameter balancing is required.

6.3.2 Performance and Power Efficiency
Table 6 compares performance and power efficiency among
the Titan X GPU [43], the Tesla K80 GPU [23], a previous
FPGA implementation [43], and this work.

[43] uses a workstation with an 8-core 3.8GHz AMD
A10-5800K CPU and an Nvidia Titan X GPU. We use a
server with Nvidia Tesla K80 GPUs as the golden model
and baseline design. OpenBLAS and cuDNN libraries are
used in software implementations. [43]’s CPU & GPU and
our GPU implementation are all based on data parallelism,
while [43]’s FPGA design is based on layer parallelism; the
latter results in inter-board workload imbalance. The power
consumption of all baseline and FPDeep systems are board-
level and measured with a power meter.

FPDeep provides performance 5× higher than previ-
ous FPGA work and comparable to the Titan X GPU. We
evaluate energy efficiency with respect to GOPs/J. FPDeep
provides 8.8× better energy efficiency than the Titan X and
5.6× better than the previous FPGA work. Compared with
the K80, FPDeep provides 5.7× better energy efficiency.

6.3.3 Load Balance and Optimization
Alexnet, VGG-16, and VGG-19 are mapped onto clusters of
sizes 5 to 85 with the cycle-accurate simulator. To demon-
strate workload balance among FPGAs in different sized
clusters, we present the proportions of idle stages. Figs.
15(B)(D)(F) show that this is always under 5%. When the
number of FPGAs is more than 30, this number is stable with
fluctuation between 0.5% to 1%. Generally, as the number of
FPGAs increases, the proportion of idle stages decreases.
The reason is that during ICP and OFP, the number of DSPs
allocated to each layer is rounded to a multiple of K × K .
With more FPGAs and DSP resources, this effect is reduced.

Computation and communication are critical constraints
in system throughput. The roofline plots of AlexNet, VGG-
16, and VGG-19 are shown in Figs. 15(A)(C)(E). Note that
the throughput has linear scaling up to the constraint im-
posed by inter-FPGA communication. For example, with
150 Gbps as the inter-board communication constraint,
FPDeep shows linearity up to 83, 56, and 70 FPGAs
for Alexnet, VGG-16 and VGG-19, respectively. As each
transceiver (of that generation) can reach a maximum rate
of 28 Gb/s, using 6 transceivers per FPGA achieves this
number [12], [36], [37].

Since high-end FPGAs frequently have more than 50
transceivers, scaling to much larger clusters is possible.
The reason that bandwidth required by VGG-16 is larger
than VGG-19 is straightforward: VGG-19 has more layers
and thus more workload. During partitioning, with the
same overall hardware resources, each layer of VGG-19 is
allocated fewer resources. Thus, fewer batch features in each
layer can be computed and transferred in parallel, which
results in a smaller bandwidth requirement.

6.4 DNN Model Convergence
Figs. 16(A)(C)(E) show the number of epochs that can be
trained per hour. FPDeep provides a linear speedup of
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(A) CLB Utilization of AlexNet
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(B) BRAM Utilization of AlexNet
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(C) DSP Utilization of AlexNet
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(D) CLB Utilization of VGG-16
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(E) BRAM Utilization of VGG16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Device id
0.0

0.2

0.4

0.6

0.8

1.0

Ut
il 

pe
rc

en
t

(F) DSP Utilization of VGG16
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(G) CLB Utilization of VGG-19
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(H) BRAM Utilization of VGG19
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(I) DSP Utilization of VGG19
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Fig. 14. Experimental results and utilization report when mapping AlexNet and VGG-16/19 to a cluster with 15 FPGAs

TABLE 6
Cluster-Level experimental result. All of these CPU/GPU/FPGA implementations use single floating point precision. [43], [23], and [24] do not

show the experiment result of training time per epoch

CPU [43] GPU [43] GPU FPGA [43] FPDeep
Device AMD A10 Titan X Tesla K80 Xilinx XC7VX690T
CNN

Model AlexNet AlexNet AlexNet
[23]

VGG-16
[24] AlexNet VGG-16 AlexNet VGG-16 VGG-19

Config 1 CPU 1 GPU 1 GPU 1 GPU 4 FPGAs 1 FPGA 15 FPGAs 15 FPGAs 15 FPGAs
Perf

(GOPS) 34.23 1385 2330 2018 207 (Per
FPGA)

290 (Per
FPGA)

1157(Per
FPGA)

1197(Per
FPGA)

1220(Per
FPGA)

Training
time (H)/

Epoch
NA NA NA NA NA NA 0.17 2.19 2.76

Power
efficiency
(GOPS/J)

0.39 4.22 7.87 6.86 6.55 8.28 37.09 37.88 38.13
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Fig. 15. Roofline Models, Percent Idle stages, and Epochs per hour of
AlexNet, VGGNet-16 and VGGNet-19

training per epoch. As hybrid model/layer parallelism does
not constrain the choice of mini-batch size, the optimal
learning rate and mini-batch size can always be applied in
SGD, leading to the minimum number of epochs needed

for training of a given accuracy. Hence, the linear speedup
of training per epoch results in a linear speedup of CNN
training.

Figs. 16(B)(D)(F) show the convergence rates of FPDeep
and the traditional centralized DP training using the same
small mini-batch size in SGD. The results show that FPDeep
has similar convergence rates compared with the traditional
centralized DP method, demonstrating that the slightly-
unaligned weight update of FPDeep does not introduce
additional training epochs. For the centralized case, we use a
Sugon W740-G20 GPU server, which contains two Tesla K80
GPUs. The experiment is based on the Darknet framework;
the CUDA library is cuDNN 5.0. For the FPDeep case, we
use a Sugon CX50-G20 CPU cluster with an Intel Xeon E5-
2680 v3 CPU. The FPDeep software simulator is compiled
with gcc 7.1 and OpenMPI 2.1.1. The training dataset is
CIFAR-10.

7 DISCUSSION AND FUTURE WORK

We propose a framework, FPDeep, which maps training
logic of DNNs to multi-FPGA clusters with high efficiency
and also automatically generates RTL implementations for
target networks and clusters.

With FPDeep, clusters of FPGAs work in a deeply-
pipelined manner using a 1-D topology; this enables the ac-
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Fig. 16. Evaluation experimental setup

celerators to map directly onto existing platforms, including
Catapult, Catapult2, and almost any tightly-coupled FPGA
cloud or cluster. FPDeep uses two mechanisms to facilitate
high-performance and energy-efficiency: 1) various fine-
grained partition and mapping strategies to balance work-
loads among FPGAs and 2) training of CNNs is executed
in a fine-grained inter- and intra-layer pipelined manner,
which reduces the time that features need for backward
propagation and leads to a reduction in storage demand
to the point where only on-chip memory is required for
CONV layers. Experiments show that FPDeep has good
scalability to a large number of FPGAs. The bottleneck is
inter-FPGA communication bandwidth. However, we find
that with 250 Gb/s bidirectional bandwidth per FPGA,
which is easily supported by current generation FPGAs,
FPDeep’s performance shows linearity up to 100 FPGAs. For
example, using Alexnet and the VGGNets as benchmarks,
with 6 transceivers per FPGA (e.g., using a 2014-era Altera
Stratix-V), FPDeep shows linearity up to 83 FPGAs. We
evaluate energy efficiency with respect to GOPs/J and find
that FPDeep provides 5.7x to 8.8x higher energy efficiency
than GPU servers.

We briefly discuss future work. One area is supporting
more complex NN models. Here, two additions are needed.
First, while the current graph partitioning method supports
ResNet and Inception (as described in Section 3.2), RNN and
other new models require more complex graph structures.
Second, support needs to be added for additional modules
as described in Section 5.1. A second area is investigating
benefits of hierarchical communication networks as arise
when the nodes are multi-FPGA boards. Finally, another
interesting question is use of off-chip memory. Currently,
we only use off-chip memory when we are processing the
fully connected layer. In the case of small clusters and
large networks, where off-chip memory would be an option,
we instead use the weight balancing scheme described in
Section 3.4. In the future, as HBM becomes widespread,
for very large networks it could make sense to use off-chip
memory as an intermediate buffer to store activations and
parameters.
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