Accelerating MPI Collectives with FPGAs in the
Network and Novel Communicator Support

Qingqing Xiong*, Chen Yang*, Pouya Haghi*, Anthony Skjellum', Martin Herbordt*
*Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
fSimcenter & Department of Computer Science and Engineering, University of Tennessee at Chattanooga
Email: *{qx, cyang90, haghi}@bu.edu, ftony-skjellum@utc.edu, *herbordt@bu.edu

Abstract—MPI collective operations can often be performance
killers in HPC applications; we seek to solve this bottleneck by
offloading them to reconfigurable hardware within the switch
itself, rather than, e.g., the NIC. We have designed a hardware
accelerator MPI-FPGA to implement six MPI collectives in the
network. Preliminary results show that MPI-FPGA achieves 10x
speedup in the most likely scenarios over conventional clusters.
We introduce a novel mechanism that enables the hardware to
support a large number of communicators of arbitrary shape,
and that is scalable to very large systems. MPI-FPGA is fully
integrated into MPICH and so transparent to MPI applications.

High performance computing (HPC) applications often
rely on collective communication for performing operations
that require interaction among multiple processes; collectives
comprise a large fraction of total HPC communication, and
in many applications they bottleneck performance. In MPI
implementations, much support has been added, which greatly
complicates the software stack.

In this work [1]-[3] we offload MPI collectives into FPGA
hardware (MPI-FPGA) [4]; in particular, into logic appended
to the communication switches [5]-[7]. This has at least
five benefits. First, it removes those extra layers of software;
second, the hardware implementations are at least an order-
of-magnitude faster than the software; third, it frees up the
processor for other work; fourth, it distributes the execution
of collective computation throughout the network, rather than
forcing it into source (for broadcast) or destination (for reduc-
tion); and fifth, it reduces network load as messages generally
only travel a single hop before being merged or duplicated.

Previous work in offloading collective support into hardware
has been mostly limited to processing in the NIC, which
has obvious limitations. General compute-in-the-network has
been much studied; however, there appear to be just two
recent commercial versions of in-switch computing: the IBM
BlueGene family and certain switches from Mellanox. Both
of these have limitations that are, in part, the result of being
ASIC-based and so having strictly bounded capabilities.

MPI-FPGA has several inherent advantages: first, it is not
limited to a small, fixed set of operations; second, for any
application, it only needs to implement the operations that
are substantially used; third, support can be extended beyond
simple datatypes to higher order structures such as vectors,
matrices, etc.; and fourth, compute-in-the-network can be
generalized still further to support altruistic computing.

In this work we introduce an in-switch design capable

of efficiently supporting communicators and the collectives
that run on them. The first major contribution is the design,
implementation, and evaluation of a set FPGA in-switch MPI
collectives. We believe this to be the first FPGA version to be
fully integrated into a general router. Also, MPI-FPGA is fully
integrated into MPICH with publicly available code and API;
MPI-FPGA is therefore currently transparently usable by any
MPI application. It is also easily extended to support additional
collectives or integrated into other MPI implementations. The
second major contribution is the finding that all collective
routing decisions—including those with arbitrarily complex
communicators—only need a small amount local information.

Our experiments show that MPI-FPGA can achieve 6x -
15x speedups for MPI collectives over a CPU cluster for
medium sized messages, with greater speedup for smaller
messages and less for larger messages. In addition, there is
little added cost over the general router itself and the enhanced
router only takes a small fraction of the total device resources.

ACKNOWLEDGMENTS

This work was supported in part by the NSF through awards
CCF-1562659, CCF-1562306, CCF-1618303, CCF-1617690,
CCF-1822191, CCF-1821431, and CCF-1919130; by the NIH
through awards 1R41GM128533 and R44GM128533; and by
a grant from Red Hat.

REFERENCES

[1] J. Stern, Q. Xiong, J. Sheng, A. Skjellum, and M. Herbordt, “Accelerating
MPI_Reduce with FPGAs in the Network,” in Proc Workshop on Exascale
MPI, 2017.

[2] J. Stern, Q. Xiong, A. Skjellum, and M. Herbordt, “A Novel Approach to
Supporting Communicators for In-Switch Processing of MPI Collectives,”
in Proc Workshop on Exascale MPI, 2018.

[3] Q. Xiong, P. Bangalore, A. Skjellum, and M. Herbordt, “MPI Derived
Datatypes: Performance and Portability Issues,” in Proceedings of the
EuroMPI Conference, 2018.

[4] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,
“Novo-G#: A Community Resource for Exploring Large-Scale Reconfig-
urable Computing Through Direct and Programmable Interconnects,” in
1IEEE High Perf. Extreme Computing Conf., 2016.

[5] J. Sheng, C. Yang, and M. Herbordt, “Application-Aware Collective
Communication on FPGA Clusters,” in Proc. IEEE Symposium on Field
Programmable Custom Computing Machines, 2016.

[6] J. Sheng, Q. Xiong, C. Yang, and M. Herbordt, “Collective Communica-
tion on FPGA Clusters with Static Scheduling,” Computer Architecture
News, vol. 44, no. 4, 2016.

[7]1 J. Sheng, C. Yang, and M. Herbordt, “High Performance Dynamic
Communication on Reconfigurable Clusters,” in Proc. IEEE Conf. on
Field Programmable Logic and Applications, 2018.



