
Accelerating MPI Collectives with FPGAs in the

Network and Novel Communicator Support

Qingqing Xiong∗, Chen Yang∗, Pouya Haghi∗, Anthony Skjellum†, Martin Herbordt∗

∗Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
†Simcenter & Department of Computer Science and Engineering, University of Tennessee at Chattanooga

Email: ∗{qx, cyang90, haghi}@bu.edu, †tony-skjellum@utc.edu, ∗herbordt@bu.edu

Abstract—MPI collective operations can often be performance
killers in HPC applications; we seek to solve this bottleneck by
offloading them to reconfigurable hardware within the switch
itself, rather than, e.g., the NIC. We have designed a hardware
accelerator MPI-FPGA to implement six MPI collectives in the
network. Preliminary results show that MPI-FPGA achieves 10×
speedup in the most likely scenarios over conventional clusters.
We introduce a novel mechanism that enables the hardware to
support a large number of communicators of arbitrary shape,
and that is scalable to very large systems. MPI-FPGA is fully
integrated into MPICH and so transparent to MPI applications.

High performance computing (HPC) applications often

rely on collective communication for performing operations

that require interaction among multiple processes; collectives

comprise a large fraction of total HPC communication, and

in many applications they bottleneck performance. In MPI

implementations, much support has been added, which greatly

complicates the software stack.

In this work [1]–[3] we offload MPI collectives into FPGA

hardware (MPI-FPGA) [4]; in particular, into logic appended

to the communication switches [5]–[7]. This has at least

five benefits. First, it removes those extra layers of software;

second, the hardware implementations are at least an order-

of-magnitude faster than the software; third, it frees up the

processor for other work; fourth, it distributes the execution

of collective computation throughout the network, rather than

forcing it into source (for broadcast) or destination (for reduc-

tion); and fifth, it reduces network load as messages generally

only travel a single hop before being merged or duplicated.

Previous work in offloading collective support into hardware

has been mostly limited to processing in the NIC, which

has obvious limitations. General compute-in-the-network has

been much studied; however, there appear to be just two

recent commercial versions of in-switch computing: the IBM

BlueGene family and certain switches from Mellanox. Both

of these have limitations that are, in part, the result of being

ASIC-based and so having strictly bounded capabilities.

MPI-FPGA has several inherent advantages: first, it is not

limited to a small, fixed set of operations; second, for any

application, it only needs to implement the operations that

are substantially used; third, support can be extended beyond

simple datatypes to higher order structures such as vectors,

matrices, etc.; and fourth, compute-in-the-network can be

generalized still further to support altruistic computing.

In this work we introduce an in-switch design capable

of efficiently supporting communicators and the collectives

that run on them. The first major contribution is the design,

implementation, and evaluation of a set FPGA in-switch MPI

collectives. We believe this to be the first FPGA version to be

fully integrated into a general router. Also, MPI-FPGA is fully

integrated into MPICH with publicly available code and API;

MPI-FPGA is therefore currently transparently usable by any

MPI application. It is also easily extended to support additional

collectives or integrated into other MPI implementations. The

second major contribution is the finding that all collective

routing decisions–including those with arbitrarily complex

communicators–only need a small amount local information.

Our experiments show that MPI-FPGA can achieve 6× -

15× speedups for MPI collectives over a CPU cluster for

medium sized messages, with greater speedup for smaller

messages and less for larger messages. In addition, there is

little added cost over the general router itself and the enhanced

router only takes a small fraction of the total device resources.

ACKNOWLEDGMENTS

This work was supported in part by the NSF through awards

CCF-1562659, CCF-1562306, CCF-1618303, CCF-1617690,

CCF-1822191, CCF-1821431, and CCF-1919130; by the NIH

through awards 1R41GM128533 and R44GM128533; and by

a grant from Red Hat.

REFERENCES

[1] J. Stern, Q. Xiong, J. Sheng, A. Skjellum, and M. Herbordt, “Accelerating
MPI Reduce with FPGAs in the Network,” in Proc Workshop on Exascale

MPI, 2017.
[2] J. Stern, Q. Xiong, A. Skjellum, and M. Herbordt, “A Novel Approach to

Supporting Communicators for In-Switch Processing of MPI Collectives,”
in Proc Workshop on Exascale MPI, 2018.

[3] Q. Xiong, P. Bangalore, A. Skjellum, and M. Herbordt, “MPI Derived
Datatypes: Performance and Portability Issues,” in Proceedings of the

EuroMPI Conference, 2018.
[4] A. George, M. Herbordt, H. Lam, A. Lawande, J. Sheng, and C. Yang,

“Novo-G#: A Community Resource for Exploring Large-Scale Reconfig-
urable Computing Through Direct and Programmable Interconnects,” in
IEEE High Perf. Extreme Computing Conf., 2016.

[5] J. Sheng, C. Yang, and M. Herbordt, “Application-Aware Collective
Communication on FPGA Clusters,” in Proc. IEEE Symposium on Field

Programmable Custom Computing Machines, 2016.
[6] J. Sheng, Q. Xiong, C. Yang, and M. Herbordt, “Collective Communica-

tion on FPGA Clusters with Static Scheduling,” Computer Architecture

News, vol. 44, no. 4, 2016.
[7] J. Sheng, C. Yang, and M. Herbordt, “High Performance Dynamic

Communication on Reconfigurable Clusters,” in Proc. IEEE Conf. on

Field Programmable Logic and Applications, 2018.


