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Abstract— Driver assist features such as adaptive cruise con-
trol (ACC) and highway assistants are becoming increasingly
prevalent on commercially available vehicles. These systems
are typically designed for safety and rider comfort. However,
these systems are often not designed with the quality of the
overall traffic flow in mind. For such a system to be beneficial
to the traffic flow, it must be string stable and minimize
the inter-vehicle spacing to maximize throughput, while still
being safe. We propose a methodology to select autonomous
driving system parameters that are both safe and string stable
using the existing control framework already implemented
on commercially available ACC vehicles. Optimal parameter
values are selected via model-based optimization for an example
highway assistant controller with path planning.

I. INTRODUCTION

Driver assist features such as adaptive cruise control
(ACC) and highway assistants promise to be the first step
toward an autonomous future. Such products have become
commonplace on many new commercially available vehicles
that are now on the market. These features are typically de-
signed for safety and rider comfort [1], but do not necessarily
take the overall traffic flow into account.

Changing the dynamics of a small number of vehicles
within the traffic has been shown to change the emergent
properties of the underlying flow [2]. This can influence
traffic string stability, which determines whether traffic jams
will arise due to the vehicle driving behavior alone. These
string instabilities have been shown to greatly increase fuel
consumption and vehicle emissions of the entire traffic
flow [2], [3]. To avoid these adverse impacts of string
instability, it is important that new automated driving systems
that are deployed be string stable, or close to string stable,
in that small disturbances must travel through a long platoon
of vehicles before the initial disturbance grows appreciably.

The design of string stable automated driving systems has
been a major focus for several years [4]–[12]. However,
experimental work by Melanés and Shladover [13] showed
that at least one commercially available ACC vehicle was
string unstable. More recently, work by Gunter, et al. has
shown that of eight different commercially available auto-
mated driving systems tested, all are string unstable [14],
[15]. Thus, while commercially available automated driving
systems may be designed to be string stable, it is possible
that the overall vehicle system when implemented is not
string stable as shown by [13], [14]. For automated driving
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systems, which typically take over additional driving tasks
beyond longitudinal control of the vehicle, it may be even
more difficult to ensure string stability by design.

One possible way to achieve string stability is by increas-
ing the inter-vehicle spacing, or space gap. However, since
the space gap is inversely proportional to the throughput, in-
creasing space gap will decrease the capacity of the roadway.
Therefore, we introduce the designation flow optimal, with
which we mean that the automated driving controller behaves
in such a way that it maintains as small of a space gap
as possible while being string stable. Moreover, the design
of automated driving systems should be both safe and flow
optimal to not only benefit the driver of the vehicle but also
be satisfactory from a traffic flow perspective.

While automated driving controllers that are string stable
have been proposed in the literature, many commercially
implemented controllers are not string stable [13]–[15]. To
address this, we propose model based system parameter
optimization approach to select automated driving control
parameters that are both safe and flow optimal [16]. This
framework can be applied to any number of proprietary
automated driving controllers. However, for demonstration,
we implement the framework on a specific highway assistant.
It is a model-predictive control approach that optimizes a
driving trajectory within a safety corridor [17], [18].

The goal of this article is to provide a novel methodology
that can be implemented in the prototyping phase of the
vehicle design to select automated driving controller param-
eters that are both safe and flow optimal. Thus, the proposed
method is control agnostic, since no specific knowledge
of the automated driving controller beyond the controller
parameters is required to identify a set of flow optimal
parameter values. To do this, a high resolution simulation of
the car following behavior is conducted, as is common during
the prototyping phase of automotive development. The lead
vehicle and following vehicle trajectories are used to analyze
the system for safety and throughput and to estimate a
speed-to-speed transfer function, which is analyzed for string
stability. Based on this analysis, optimal system parameter
values are found. The novel aspect of this work is the
formulation of a fitness function that considers both safety
and flow optimality, to then apply standard search-based
techniques for system optimization.

The remainder of this article proceeds as follows. A
introduction to string stability is presented in Section II.
System optimization is presented in Section III. Specifically,
the search based optimization is outlined in Section III-B and
the fitness function is derived in Section III-C. The designed
methodology is demonstrated on an example autonomous
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driving system with path planning in Section IV and flow
optimal system parameter values are identified and tested in
simulation. We conclude that the proposed framework can
be applied to a variety of systems in Section V.

II. TRAFFIC STRING STABILITY

For a platoon of vehicles, it is possible to define an equilib-
rium flow where each vehicle drives with the same speed and
a fixed spacing (and thus no acceleration). If we introduce a
small perturbation to this equilibrium flow, it will propagate
from one vehicle to the next along the platoon of vehicles.
String stability tells whether this perturbation will amplify
or dissipate as it propagates through the platoon of vehicles.
Specifically, for a string stable platoon, this perturbation will
eventually dissipate until successive vehicles are not affected
by the perturbation. If the platoon is string unstable, this
small initial disturbance will amplify as it propagates from
one vehicle to the next [19]. Therefore, the string stability of
each vehicle’s following behavior depends on the two-vehicle
interaction between each successive vehicle pair.

Practically, string stability of a following vehicle can be
assessed by estimating a speed-to-speed transfer function
Γ(s) for a two-vehicle trajectory pair as a function of the
complex frequency s, which explains the frequency response
of a system to a specific input [20]. A sufficient condition
for string stability is then [12]:

|Γ(s)| ≤ 1 ∀s. (1)

Using the transfer function, it is also possible to construct
a Bode plot to identify which frequency ranges are amplified,
and at what amplification amplitude. Further, the maximum
amplification amplitude can be used as a measure for how
well-behaved a system is with respect to amplifying distur-
bances. If the maximum amplification amplitude from the
Bode plot is small, disturbances may not grow sufficiently
large on a reasonable timescale that is relevant for traffic.
More information can be found in the article by Wilson and
Ward [19].

Thus, the relevant measure when designing automated
driving for practical implementation is the amplification
amplitude A:

A = max
s

20 log10 |Γ(s)|, (2)

where A is the amplitude in decibels. Specifically, A tells
how quickly disturbances are amplified as they propagate
from one vehicle to the next. Therefore, the magnitude of A
is used as a measure of string instability, with larger values of
A being considered further from string stable. This is similar
to the notion of stability margin introduced by Wang [21].

III. SYSTEM OPTIMIZATION

In this section, the methodology for the system optimiza-
tion is introduced, and the fitness function used for the
optimization is described.

A. Methodology overview

During the automotive design process for an automated
system, the entire system is first designed at an abstract level.
At this point, there are certain design decisions that need
to be made early on in the design process so that individ-
ual teams can use these specifications to design individual
components independently. For example, the computation
cycle time is often determined early in the design process,
since it affects the computation schedule of a variety of
hardware and software components. However, other aspects
of the project fall under the category of design decisions
that can be postponed by parameterizing attributes pi ∈
P (∀i < n = |P |) and their domains Di ∈ D. For
example, the concrete (safety) distance that is kept to other
traffic participants may be adjusted later on. Thus, the exact
configuration of the system can be determined at a later point.
The domains span a space of possible system configurations
C = D1 ×D2 × ... ×Dn ⊂ Rn. Assigning specific values
to each pi yields a specific configuration. Selecting these
parameters must then be done in such a way as to satisfy any
design requirements (e.g., safety, string stability, etc.). These
can then be selected to be the optimal parameters based on
some optimization routine.

B. Search-Based Optimization with Scenarios

Search-based techniques can be used to identify the best
candidate in a search space with the help of a fitness function
as seen in Figure 1 where an initial set of candidate system
parameters is created either by reusing existing system
configurations, by using manually created ones by experts,
or selected at random. These candidates are then tested in a
simulation and the simulation results are evaluated via the
fitness function, which returns a quantitative measure of the
quality of the respective system configuration. According
to these fitness values, the optimization algorithm updates
the parameter values to obtain a new system configuration
that performs better in the fitness function than the original
parameter values. This iteration may be continued until a
maximum number of iterations is reached, the assigned
computation time is spent or the optimizer fails to find a
better solution. Ideally, search-based techniques are able to
find the global optimum, which is the best system configu-
ration with respect to the fitness function. In this work, we
use a multi-objective optimization technique (e.g., NSGA-
II [22]), which make use of Pareto optimality. Instead of a
single fitness value, a vector of fitness values is used with
each element of the vector representing one of the three
desired objectives described next (safety, string stability, and
minimum following timegap). Note that in this work we use
minimization to find the system optimal parameter values.
Thus, a vector x is better than another vector y if all xi ≤ yi
and at least one xi < yi.

C. Search Space and Fitness Function

Both a search space of potential system configurations and
a fitness function is required for the optimization routine.
The search space C is the space of parameters, depends
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Fig. 1. Search-based techniques for scenario optimization.

on the specific autonomous system, and may differ between
manufacturers. However, there are three aspects that hold
for every driving system that has to take over the driving
task (possibly among other driving tasks) of following a lead
vehicle: the planned and controlled spacing, velocity, and
acceleration. These are fundamental for the vehicle following
behavior. For safety considerations, a safety distance to the
lead vehicle always has to be maintained, while velocity and
acceleration influence how a system adapts to dynamicity
changes of the lead vehicle. There are multiple system
parameters that influence those three aspects. Concrete values
for those parameters cannot be chosen independently since
each affects string stability and safety. Therefore, the optimal
parameters that are safe and flow optimal are selected via
model-based optimization over the candidate space C.

To identify an optimal system configuration, the desired
system properties have to be incorporated into a fitness
function. In addition to being safe and string stable, the
system should keep minimum spacing to the lead vehicle.
However, the desired system properties may be contradictory
to each other. Specifically, maintaining a small timegap may
contradict with the safety considerations and string stability.
Therefore, there are multiple goals that are optimized, and a
balance between these objects must be obtained. To address
this, we use multi-objective optimization, which requires a
fitness function that computes an array of fitness values,
i.e., one fitness value per goal (safety, string stability, low
spacing).

The overarching system requirement is safety since flow
optimality is irrelevant if the system is not safe. In this
work, we use a safety distance as a measurement for how
safe the system is. A variety of different safety distance
interpretations are presented in existing works. We use the
one presented in [23], which is a physical interpretation of
the safety distance described in the Vienna Road Conven-
tion [24].

c1c2

∆d(t)

d(t)

dsafe(t)

Fig. 2. Minimum safety distance at a specific moment in time t.

A vehicle c2 that is following another vehicle c1 as shown
in Figure 2 has to keep sufficient distance from c1 to avoid
collision if c1 suddenly slows down or stops. This notion

defines a certain minimum safety distance dsafe(t) which
c2 has to respect throughout the scenario. The remaining
distance until violation ∆d(t) can be computed knowing
the safety distance. The system may not violate the safety
distance constraint during the entirety of a simulation. Thus,
the remaining buffer until violation ∆d(t) must never be
negative. This is the case if the minimum value of ∆d(t) is
not negative. Let this minimum be denoted as α:

α = min(xc1(t)− xe(t)− dsafe(t)) (3)
= min(d(t)− dsafe(t)) (4)
= min(∆d(t)), (5)

where e is the ego vehicle, xe its longitudinal position, and
xc1 the other car’s longitudinal position. This measurement
for safety is then used as part of the fitness function for the
safety goal. All safe systems are considered equally safe and
thus get the same fitness value. This means a large value of
∆d(t) is not necessary since a small one is sufficient for
safety.

Since we minimize the value of the fitness function, the
best system configuration needs to be assigned the smallest
fitness value. For a non-safe system, α < 0, therefore we
minimize −α to obtain a safe system. The final fitness
function for safety looks as follows:

fsafety =

{
−α; α < 0

0; otherwise.
(6)

Similarly, a fitness function for string stability as another
goal is derived. As described in Section II, the maximum
amplification rate A can be used as a measurement distance
from string stability for a particular system. To estimate
A, numerical approximations can be used for the transfer
function in (2). If A is positive, the system is not stable
and disturbances are amplified, while if A ≤ 0 the system is
string stable. However, the rate at which the system dissipates
disturbances is not the focus of this work. Therefore, we
employ the same concept as above to distinguish stable from
unstable systems and use the following fitness function for
string stability:

fstable =

{
A; A > 0

0; otherwise.
(7)

To ensure that the automated system does not achieve
string stability simply by leaving an excessive timegap to
the lead vehicle, a fitness function to minimize the timegap
τ is also used for the goal of low spacing. Here timegap τ is
the inter-vehicle headway measured in time. While important
for flow optimality, maintaining a low timegap is considered
secondary to the the safety and string stability requirements.
Therefore, the fitness function for timegap returns a large
constant value for system configurations that are not both
safe and string stable. This constant needs to be bigger than
any possible value for the spacing, e.g.,∞, as this means that
all systems that are not safe and stable get a worse fitness
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value for spacing than all systems that are safe and stable.

fspacing =

{
∞; fsafety + fstable > 0

τ ; otherwise.
(8)

Combining these three fitness functions yields the final
fitness function that can be used for optimization with multi-
objective techniques to find system parameter values that are
safe, stable, and minimize the inter-vehicle spacing:

ffinal = [fsafety fstable fspacing]. (9)

IV. NUMERICAL EXAMPLE AND EXPERIMENTS

In this section, a numerical example is used to demon-
strate the proposed method on the driving behavior of an
automated driving system with path planning. We introduce
experimentally-collected field data that is used as the lead
vehicle driving profile, and introduce the example automated
driving system, which is simulated to follow the lead vehicle.
Flow optimal system parameter values are selected via the
proposed optimization routine, and simulations are conducted
to demonstrate the performance of the optimized system.

A. Experimental Data and String Stability Computation

The experimental data used for the lead vehicle speed
profile is presented in the work by Gunter, et al. [15] and
is collected from an instrumented vehicle that drives on a
straight, flat track. The lead vehicle in the data drives at
a constant 22 m/s (80 km/h) and conducts multiple, quick
deceleration events before accelerating back up to 22 m/s
after each event as seen in Figure 3. This dataset is selected
since it is representative of the rapid disturbances that may
be seen in typical traffic flow. More information on the
experimental methods used to collect the data are presented
in the article by Gunter, et al. [15].
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Fig. 3. Lead vehicle velocity profile used as scenario input for optimization.

The data in Figure 3 is used by the simulation software
as the lead vehicle speed profile. During the optimization,
a speed-to-speed transfer function is estimated using the
MATLAB function tfest() receiving this lead vehicle
speed profile and the simulated following vehicle trajectory
as input. This function finds the best-fit transfer function
between two timeseries datasets. The maximum amplification
amplitude A is then computed using (2).

B. Example Automated Driving System

The proposed methodology to find flow optimal param-
eters is designed to work on a broad range of automated
driving system that a vehicle manufacturer may have imple-
mented on a vehicle. However, for the purpose of demon-
stration, we use an example automated driving system that
is described below.

From the multitude of approaches in literature, we chose
the following model-predictive control approach [17], [18]
as basis for our implementation for two reasons: First, it
is designed for the use as a highway pilot of characteristic
of SAE level 4 systems [25]. Second, it models the aspects
that influence velocity, acceleration and spacing explicitly,
making the results in this article easier to interpret.

c1e

dp(v1) x1

Fig. 4. Schematic simplified depiction of the predicted positions xi and
planned safety distance dp(vi) at a specific prediction time tk .

The autonomous driving system used in this article works
as follows: first, in the planning the positions xi and veloci-
ties vi of surrounding cars ci are estimated for each sample
time step tk over a short time horizon (see Figure 4). For
safety distance planning, a timegap τ is used, which is one
of the parameters to optimize. The safe operating envelope
is bounded by the planned safety distance dp(vi) = τ · vi
to the predicted positions xi of other cars ci. Within the
bounds of this envelope, a trajectory is identified by quadratic
optimization the following way:

J =

N∑
k=0

θ(vk − vdes)2 + κa2k. (10)

θ and κ along with τ , which determines the planning distance
dp, are the system parameters for which our approach finds
optimal values. The objective is to keep the velocity at each
time step vk as close to the desired velocity vdes as possible
over all time steps N of the prediction and planning horizon.
The desired velocity vdes is determined by the driver in
Level 1-2 systems, and by the speed limit in higher levels of
autonomy. In the example presented in this article, a desired
speed of vdes = 33.33 m/s= 120 km/h is used. Similarly, the
acceleration at each time step ak is kept as low as possible
in each time step. While optimizing the trajectory one can
not minimize both the acceleration and the difference of
velocities at the same time. For example, assume a car in
front of the automated vehicle is slowing down, there are two
possible outcomes: either the system starts braking early with
small braking acceleration (θ << κ), which would minimize
the acceleration in all time steps, but causes the velocity to
deviate from the desired velocity for a larger number of time
steps; or the system brakes later with a larger (negative)
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acceleration (θ >> κ), which minimizes the difference of
the velocities in all time steps, but causes a greater absolute
value of the acceleration. This underlines the difficulty in
finding satisfactory parameter values.

The tracking of the longitudinal trajectory is done by a PID
controller, controlling the position of the gas and the brake
pedal. It is tuned for a physical model of a sports car with a
weight of 1,410 kg, length of 4.18 m, width of 1.83 m and
height of 1.35 m. The model is provided by the widely used
physical simulation software CarMaker by IPG Automotive
[26], which also served as the simulation environment for this
work. This simulation tool is capable of capturing the vehicle
dynamic response and produces realistic driving behavior
that mimics real-world testing.

These parameters (θ, κ, and τ ) influence the path planning
by motivating the planner to prefer trajectories of certain
form. We allow the weights to be withing 1 to 1000 (see
Table I), and the timegap to be between 0.0 s and 5.0 s. These
boundaries are a rough over approximation, e.g. a driving
system that keeps 5.0 s is not desirable at all. However, the
desire for low spacing will ensure that a small value is chosen
for this timegap.

Parameter Lower Bound Upper Bound
Velocity model parameter θ 1.0 1000.0
Acceleration model parameter κ 1.0 1000.0
Timegap model parameter τ 0.0 5.0

TABLE I
SYSTEM PARAMETERS FOR PATH PLANNING.

C. Results

For the optimization, the multi-objective genetic algorithm
from the global optimization toolbox of MATLAB [27] is
applied. Note that the technological aspect is not the focus
of this work and other techniques could be used as well.
The population size was set to 150 and the number of
generations to 15, resulting in 2250 simulation executions.
The experiments were executed multiple times to rule out
randomization effects.

A new dataset that is not used during optimization and,
thus, unseen by the system (see black curve in Figure 5b)
is then used as a lead vehicle speed profile in CarMaker.
The optimized system is simulated to drive behind the lead
vehicle using the flow optimal system parameter values
identified in the optimization (θ = 777.211, κ = 255.891,
τ = 0.684) with the best fitness values of [0, 0, 0.684]. The
resulting simulated following vehicle speed profile under the
flow optimal parameter values shown in Figure 5 is plotted
in a solid red line. For the duration of the scenario, the
the system remains safe, in that the remaining distance until
violation never becomes negative as seen in Figure 5a. This
means that the safety distance is not violated. In Figure 5a
we see that the spacing maintained by the vehicle is roughly
twice the minimum safety distance which could lead to the
assumption that it would be possible to further reduce the
spacing to increase throughput. However, the maintained
following distance in this example (roughly 15m at 80 km/h)
is the minimum distance achievable to also be string stable.

Additionally, there may be other circumstances for which
this following behavior is required to maintain safety.
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(a) Distances during the scenario.
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(b) Velocities during the scenario.
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(d) String stable Bode plot for the estimated speed-to-speed transfer
function of the designed following vehicle.

Fig. 5. Results of experiment for the system configuration with parameter
values θ = 777.211, κ = 255.891, τ = 0.684.

The system remains string stable, in that the perturbation
is not amplified as seen in Figure 5c, where no systematic
overshoot or undershoot is observed in the following vehi-
cle’s speed profile compared to the lead vehicle. The string
stability of the resulting system is also seen in Figure 5d
where the Bode plot of the speed-to-speed transfer function
of the following vehicle is plotted. This shows that at all
frequencies, the designed automated following system is able
to either leave unchanged, or decrease the amplitude of the
disturbance making it string stable. Since this system also
minimizes the planned minimum following distance while
remaining string stable (roughly 0.7 s headway in this case),
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the system is considered to be flow optimal.
The results plotted in Figure 5 only guarantee string

stability for the specific scenario being shown in this figure.
However, by constructing the Bode plot for the estimated
transfer function of the following vehicle behavior, we see
that the resulting system dissipates all frequencies of distur-
bances, and therefore is string stable.

V. CONCLUSIONS

In conclusion, the proposed methodology for selecting
flow optimal and safe automated driving system parameters
is a practical way to design string stable automated driving
systems for real-world applications that minimize following
distance while maintaining a safe following distance. This
can be done within the framework of the existing controllers
that are particular to each vehicle manufacturer. The example
presented in this article shows one such system, and the
simulation results with the calibrated system parameters
show that the system maintains a safe following distance
and does not amplify disturbances on a testing dataset that
was not used for training, even with a following timegap as
low as 0.7s. However, it is important to note that the example
only represents one test drive, and therefore string stability
assessments can only be made for the range of disturbance
frequencies observed during this drive. Additionally, testing
safety in one scenario does not imply safety in all scenarios.
Furthermore, the current optimization does not take into
account aspects such as rider comfort, which could be
included by extending the fitness function to consider this.

The proposed methodology is a practical approach to
identifying autonomous driving system parameters that do
not only achieve a desired vehicle-level performance (e.g.,
safety), but also take the overall traffic flow into account
by considering string stability and traffic density. This
methodology is intended to be straightforward and controller
agnostic, meaning that it can easily be implemented to design
automated driving systems without specific knowledge of the
underlying controller dynamics. This makes the proposed
methodology particularly applicable in practice.
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